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Abstract

Trypanosoma brucei is a kinetoplastid parasite that causes African trypanosomiasis, which is fatal 

if left untreated. T. brucei regularly switches its major surface antigen, VSG, to evade the host 

immune responses. VSGs are exclusively expressed from subtelomeric expression sites (ESs) 

where VSG genes are flanked by upstream 70 bp repeats and downstream telomeric repeats. The 

telomere downstream of the active VSG is transcribed into a long-noncoding RNA (TERRA), 

which forms RNA:DNA hybrids (R-loops) with the telomeric DNA. At an elevated level, telomere 

R-loops cause more telomeric and subtelomeric Double-Strand Breaks (DSBs) and increase VSG 

switching rate. In addition, stabilized R-loops are observed at the 70 bp repeats and immediately 

downstream of ES-linked VSGs in RNase H-defective cells, which also have an increased amount 

of subtelomeric DSBs and more frequent VSG switching. Although subtelomere plasticity is 

expected to be beneficial to antigenic variation, severe defects in subtelomere integrity and 

stability increase cell lethality. Therefore, regulation of the telomere and 70 bp repeat R-loop 

levels is important for the balance between antigenic variation and cell fitness in T. brucei. 
Additionally, the high level of the active ES transcription favors accumulation of R-loops at the 

telomere and 70 bp repeats, providing an intrinsic mechanism for local DSB formation, which is a 

strong inducer of VSG switching.
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Introduction

Transcription associated RNA:DNA hybrids or R-loops are a double-edged sword that plays 

important roles in certain cellular processes and causes genome instability 1. Therefore, their 

localization and amount need to be tightly regulated. The telomeric tandem repeats in a 

number of organisms are transcribed into TERRA 2, which can form telomere R-loops that 

often affects genome stability 3 in humans, yeast, and Trypanosoma brucei cells 4. Recent 

studies also showed that R-loops at the telomere and the subtelomere influence antigenic 

variation 5 in T. brucei 6–8. The beneficial functions and adverse effects of R-loops have 

been reviewed extensively previously 1, 4, 9, 10. Here we will focus on recent findings on 

effects of R-loops, particularly those at the telomere and the subtelomere, on antigenic 

variation in trypanosomes.

The R-loop structure

R-loops are three-stranded RNA-DNA structures with an RNA:DNA hybrid and a displaced 

single-stranded DNA 11. The replication-associated RNA:DNA hybrids are usually 11 bp 

long (in Okazaki fragments) and transcription-associated RNA:DNA hybrids are generally 8 

bp long (within the RNA polymerase active site) 12. However, longer R-loops (> 1 kb) can 

also form 13. Currently the thread back hypothesis is the best working model for R-loop 

formation: DNA behind a transcription bubble is negatively supercoiled, which has a 

tendency to unwind, allowing the nascent RNA to anneal with the template strand easily 
1, 14. In support of this, defective transcription elongation and termination, RNA splicing, 

and relaxation of supercoiled DNA all lead to elevated R-loop levels 15–18. In addition, DNA 

nicks on the nontemplate DNA strand downstream of the promoter and G clusters facilitate 

initial R-loop formation, while subsequent expansion and stabilization of the RNA:DNA 

hybrid are enhanced by high G density and negative supercoiling 19.

R-loops play important roles and are necessary for several cellular processes 1. First, in 

mammals, R-loops drive the programmed genomic rearrangement during immunoglobulin 

class switch in activated B-cells 20. Second, R-loops formed at the promoter regions can 
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modulate gene expression 21–23. Third, R-loops are associated with H3 S10 phosphorylation, 

a heterochromatic marker, suggesting that it has an important role in chromatin structure 

modulation 24. Fourth, in human mitochondria, origin-specific DNA replication is initiated 

with a two step process: (1) transcription from an upstream promoter leads to accumulation 

of R- loops, and (2) processing the R-loops by RNase H1 generates 3’ ends for DNA 

replication by DNA polymerase γ 25. However, R-loops are also well-known to be a genome 

instability factor 26. The displaced single-stranded DNA can be easily mutated and 

contributes to transcription-associated mutagenesis 27, recombination, and DSBs 28, 29. A 

stable R-loop structure can also block the progression of the replication fork 19,30, although 

the underlying mechanism is still not fully understood 3. It is also possible that R-loops can 

trigger chromatin compaction 31–33, which in turn can block replication fork progression 3. 

Additionally, nucleotide excision repair endonucleases can process R-loops into DSBs 34.

R-loops are quite stable, as RNA:DNA interactions are thermodynamically more stable than 

DNA:DNA pairing 35, and many enzymes are involved in dissolution of the R-loop. Several 

RNA helicases including Rho 36, DHX9 37, and Senataxin 38 can unwind the RNA:DNA 

duplex. Ribonuclease H1 (RNase H1) can degrade the RNA strand of the RNA:DNA hybrid 

and requires a tract of at least four ribonucleotides in the substrate 39. Eukaryotic 

Ribonuclease H2 (RNase H2), usually a trimer 40, 41, can resolve the R-loop 42, 43 and 

remove single ribonucleotides from genomic DNA 44–46. These enzymes play important 

roles in maintaining an appropriate level of R-loops in cells 47.

Recent studies in a kinetoplastid parasite, Trypanosoma brucei, have shown that telomere 

and subtelomere R-loops can induce DNA damages, not only contributing to genome 

instability but also emerging as an important factor that influences antigenic variation 6–8. 

These results further indicate that R-loops can have both beneficial and detrimental effects, 

and its level needs a tight regulation.

Antigenic variation in T. brucei

Trypanosomsa brucei causes human and animal African trypanosomiasis, which are usually 

fatal without treatment. T. brucei is transmitted by tsetse (Glossina spp.) and threatens 

millions of people in sub-Saharan Africa 48. The bloodstream form (BF) T. brucei 
proliferates in the extracellular space of the mammalian host. Its major surface antigen, 

Variant Surface Glycoprotein (VSG), forms a dense protein layer 49, masks other invariant 

surface antigens, and can elicit strong immune responses 50. However, T. brucei regularly 

switches its VSG coat, effectively evading its elimination by the host 5. This antigenic 

variation is a critical pathogenesis mechanism and has two major aspects: VSG monoallelic 

expression and VSG switching.

There are more than 2,500 VSG genes and pseudogenes (all are located at subtelomeric 

regions) in the T. brucei genome 51. Many of these are in large VSG gene arrays on 

megabase chromosomes (Fig. 1A, top) 52–54. Individual VSG genes are also found at two-

thirds of minichromosome subtelomeres (Fig. 1A, bottom) 51, 55, 56. VSG genes located at 

these loci are normally not expressed. At the BF stage, VSGs are expressed exclusively from 

BF VSG Expression Sites (B-ESs, Fig. 1B, top), which are large polycistronic transcription 

units (PTUs) transcribed by RNA Pol I and are located immediately upstream of the 
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telomere on megabase or intermediate chromosomes (Fig. 1A, top and middle) 57, 58. VSG is 

the last gene in any B-ES and is located within 2 kb from the telomeric TTAGGG repeats in 

all completely sequenced B-ESs, while the B-ES promoter is located 40 – 60 kb upstream 

(Fig. 1B, top) 52, 59, 60. 70 bp repeats are found immediately upstream of the VSG gene in 

long arrays (3 – 20 kb) in B-ESs 52, 59. T. brucei has multiple B-ESs (~ 15 in the Lister 427 

strain), all with similar gene organization and ~ 90% sequence identity 59, but often having 

different VSG genes 59. However, at any moment, only one B-ES is fully active, presenting a 

single type of VSG on the cell surface 49. Monoallelic VSG expression ensures effectiveness 

of VSG switching, as the previously active VSG needs to be silenced for the parasite to 

avoid elimination by the host. Although detailed mechanisms are not fully understood, many 

factors have been shown to regulate VSG expression 61, such as chromatin structure 62–72, 

transcription elongation 73–75, inositol phosphate pathway 76, 77, nuclear lamina 78, 79, 

recruitment of sumoylated protein(s) to the active ES promoter 80, DNA replication initiation 

factors 81–84, a subtelomere and VSG-associated VEX complex 85, 86, and telomeric 

silencing 64, 87. The VSG coat is lost when T. brucei is ingested by its insect vector, tsetse 88. 

At the same time, T. brucei differentiates into the procyclic form (PF). After migrating to the 

salivary gland of tsetse, the infectious metacyclic form T. brucei expresses VSG again and is 

ready to be injected into a mammalian host 89. At this stage, VSGs are expressed from 

metacyclic ES (M-ESs, Fig. 1B, bottom) that are also located at subtelomeric regions and 

are transcribed by RNA Pol I 90, 91, except that M-ESs are monocistronic transcription units 

with the promoter located < 5 kb from the telomere 92–96.

VSG switching only occurs in proliferative BF T. brucei cells 97. It has two major pathways 
98, 99. In-situ switching occurs at the transcriptional level, where the originally active ES is 

silenced while a previously silent ES becomes fully transcribed, and no gene rearrangement 

is involved (Fig. 2A, bottom left) 9899. The second and more frequent switching event is 

DNA recombination-mediated and includes two major types of process 100. In crossover 

(CO, or telomere exchange, Fig. 2A, bottom right), a silent VSG (often ES-linked or at a 

minichromosome subtelomere) exchange places with the active VSG reciprocally, resulting 

in a new VSG being expressed from the originally active ES with no loss of genetic 

information 101, 102. In gene conversion-mediated VSG switching (GC, Fig. 2A, top right), a 

previously silent VSG gene is copied into the active ES to replace the originally active VSG, 

which is subsequently lost 103, 104. Theoretically, any functional VSG gene in the genome 

can act as a donor in GC-mediated VSG switching. However, sequences of different B-ESs 

are 90% identical 59, GC can often occur between B-ESs as they have long homologous 

sequences 103, 105. Additionally, all ES-linked and minichromsome VSGs are expected to be 

good GC donors as they have long telomere repeats downstream and 70 bp repeats upstream, 

the same as the active VSG (Fig. 1). Indeed, telomere conversion-mediated VSG switching 

events have been observed 106. When telomere-adjacent VSGs are used as donors, it is 

possible that VSG switching may occur through break-induced-replication (BIR) 107 instead 

of a classical GC (Fig. 2B). However, whether BIR occurs in VSG switching has not been 

investigated. Another type of GC has also been observed in VSG switching: several VSG 
genes can act as donors simultaneously, each donating a piece of the gene segment, resulting 

in a novel mosaic VSG gene 108–111. In many published switching assays, in situ switching 
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events are less frequent than recombination-mediated ones, while gene conversion is the 

most prevalent 6,112–115.

Many proteins, especially those involved in DNA recombination, have been shown to play 

important roles in VSG switching. For example, RAD51 that mediates strand invasion in 

homologous recombination 116, RAD51–3 (a RAD51-related protein) 117, and BRCA2 118, 

all facilitate VSG switching, while Topoisomerase 3 alpha 114, the RMI1 homologue 115, 

replication origin binding factor TbORC1 81, and a RecQ helicase, RECQ2 119, suppress 

VSG switching. Additionally, telomere proteins have been shown to suppress VSG 

switching 6, 112, 120, 121, while cells harboring an extremely short active VSG-adjacent 

telomere have a ~ ten-fold higher VSG switching rate than WT cells 122. In addition, cells 

with defective RNase H enzymes appear to have a higher VSG switching frequency than 

WT cells 7, 8. However, how VSG switching is initiated and regulated is less well-

understood 123, 124.

T. brucei telomere proteins and antigenic variation

VSG is expressed exclusively from subtelomeric regions 60, and the telomere complex has 

been shown to play important roles in antigenic variation in T. brucei 6, 87, 112, 120, 121, 125. 

Telomeres are nucleoprotein complexes that are essential for genome integrity and 

chromosome stability in eukaryotes 126, 127. Proteins that directly bind the telomere DNA or 

associate with the telomere chromatin through protein-protein interaction play critical roles 

in all aspects of telomere functions, including proper maintenance of the telomere length 128, 

suppression of illegitimate DNA degradation, recombination, and repair at the chromosome 

ends 129, assembly of a telomere heterochromatin that represses subtelomeric gene 

expression 130, and regulation of the telomeric transcript level 131.

In T. brucei, besides the telomerase components that are required for telomere maintenance 
132–134, several other telomere proteins have been identified 87, 121, 125, 135. TbTRF directly 

binds the duplex TTAGGG repeats through its C-terminal Myb domain 135, and the telomere 

DNA binding activity is essential for cell viability and telomere/subtelomere stability: cells 

transiently depleted of TbTRF and the TbTRF mutants with weakened telomere-binding 

activities have more VSG switching events that mostly involve the loss of the active ES 112. 

A TbTRF-interacting factor, TbTIF2, is essential for normal cell growth and has a critical 

role in maintaining telomere/subtelomere integrity: depletion of TbTIF2 results in increased 

amount of DSBs in ESs, and a transient depletion of TbTIF2 leads to more frequent VSG 

switching, with most events involving the loss of the active ES 121. TelAP1 is identified in 

the TbTRF protein complex and in the complex that can interact with an oligonucleotide of 

telomeric sequence 125. It is the only non-essential telomere protein identified so far, and 

TelAP1 null cells exhibit a faster VSG silencing kinetics when cells are differentiated from 

BF to PF in vitro 125.

TbRAP1 is a TbTRF-interaction factor that associates with the telomere chromatin and is 

essential for cell viability 87. Depletion of TbRAP1 leads to derepression of all ES-linked 

silent VSGs (upto several thousand-fold), while the originally active VSG is expressed at ~ 

50% of its WT level 64, 87. Because transcription from silent B-ES promoters is detected but 

transcription elongation attenuates within a few kb 74, 75, it is hypothesized that depletion of 
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TbRAP1 removes a blockage of transcription elongation, resulting in basal level VSG 

expression from all silent ESs 87. This is consistent with the observation that promoter-less 

VSGs at minichromosome subelomeres are not derepressed after TbRAP1 depletion 6487. 

Additionally, the TbRAP1-mediated telomeric silencing is position-dependent, exerting 

strongest effects on telomere-adjacent VSG genes, weaker effects on VSG pseudogenes in 

the middle of B-ESs, and weakest effect on reporter genes inserted immediately downstream 

of the B-ES promoter 87. The PF T. brucei cells proliferate in the midgut of tsetse and 

express procyclins as its major surface protein 136. VSGs are normally silenced at this stage 
88 but derepressed upon TbRAP1 depletion 64. Additionally, telomeric and subtelomeric 

chromatin structure is less compact when TbRAP1 is removed in PF cells 64. TbRAP1 also 

plays an important role in maintaining telomere/subtelomere integrity and stability, which 

helps suppress VSG switching 6. Interestingly, the underlying mechanism involves the 

telomeric transcript (TERRA) and telomere R-loops.

TERRA in T. brucei

The UUAGGG repeat-containing telomere transcript (TERRA) was first identified in T. 
brucei cells and several closely related kinetoplastid parasites three decades ago 137. In 

recent years, TERRA has been detected in all eukaryotes tested 138–142 and has been shown 

to be the product of telomere repeat transcription in humans, mouse embryonic stem cells, 

both budding and fission yeasts, and plants 140, 141, 143–149. Often, all telomeres are not 

transcribed 150, 151, and transcription from intrachromosomal telomeric sequences can be 

abundant 149. TERRA has been shown to play important roles in telomere protection 
138, 151153, length regulation 148, 154, 157, and recombination 158 in mammalian cells and 

yeasts. TERRA may also play a role in gene expression regulation in mouse embryonic stem 

cells 152. In addition, an excessive amount of TERRA led to telomere and subtelomere 

instability in yeast 158, presumably due to its propensity to form telomere R-loops 159, 160, 

which is known to induce DSBs and cause genome instability 4,161
.

The telomere transcript was detected in both BF and PF T. brucei cells and only a fraction of 

this RNA is polyadenylated 137. Most strikingly, the TERRA level is resistant to 1 mg/ml 

alpha-amanitin, suggesting that TERRA is transcribed by RNA polymerase I 137. Knowing 

that the active VSG is transcribed at a very high level from a subtelomeric ES by RNA Pol I 

that is resistant to alpha-amanitin, it was hypothesized that TERRA is transcribed by RNA 

Pol I as a product of read-through into the telomere repeats downstream of the active VSG 
gene 137. This hypothesis was confirmed recently by Nanavaty et al. 6. All B-ESs are PTUs 
52, 59, 162, and nascent polycistronic transcripts are processed through trans-splicing, where a 

common spliced leader (SL) sequence is added to the 5’ end of individual mRNAs 163, 164. 

After reverse transcription of total RNA using a CCCUAA primer, Nanavaty et al. were able 

to detect a PCR product using primers specific to the active VSG gene, indicating that the 

un-processed nascent RNA containing both the telomeric UUAGGG and the active VSG 
sequences exists, which confirms that TERRA indeed is transcribed from the telomere 

downstream of the active ES 6. No TERRA product was detected from silent ES-adjacent 

telomeres 6. However, T. brucei has more than 200 telomeres that do not host any ESs 52. 

Whether TERRA can be transcribed from ES-free telomeres is still unknown. Our lab has 

now performed a TERRA FISH analysis in BF T. brucei cells using the TELC-PNA probe 
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(PNA Bio). We frequently observe only one or two TERRA foci in each T. brucei nucleus 

(Fig. 3A), suggesting that TERRA is transcribed from few telomeres if not only from the 

active ES-adjacent telomere. Additionally, we performed TERRA FISH and TbTRF IF 

analysis simultaneously and found that TERRA is colocalized with TbTRF at the telomere 

(Fig. 3A).

Interestingly, TERRA is detected in PF T. brucei cells where VSG is not transcribed 137, 165, 

suggesting that not all TERRA is transcribed as a read-through product. Our lab has also 

detected both UUAGGG and CCCUAA repeat-containing TERRA species in PF T. brucei 
cells (Fig. 3B). In addition to the TERRA species with various sizes (from 0.5 kb to 10 kb, 

shown in northern blotting as a smear), PF T. brucei also transcribes both G-rich and C-rich 

TERRAs with a more discrete size (~ 1 kb) (Fig. 3B). However, the origins of both 

UUAGGG and CCCUAA repeat containing TERRA species in PF T. brucei cells are 

currently unclear.

Although the function of T. brucei TERRA is not clear, TERRA has been shown to form 

telomere R-loops 6, and higher than WT levels of telomere R-loops result in an increased 

amount of subtelomeric and telomeric DSBs and an elevated VSG switching rate 6–8.

Telomere and subtelomere R-loops and antigenic variation

Telomere R-loops are detected in WT T. brucei cells 6 by the monoclonal antibody S9.6 that 

specifically recognizes the RNA:DNA hybrid 166. Depletion of TbRAP1 leads to not only a 

higher level of TERRA but also more telomere R-loops and an increased amount of 

telomeric and subtelomeric DSBs, which in turn cause more frequent VSG switching 6. The 

increased amount of DSBs at telomeres and subtelomeres is mainly mediated by the 

increased amount of telomere R-loops, as expression of an ectopic allele of TbRNase H1 in 

TbRAP1-depleted cells brings telomere R-loops and telomeric/subtelomeric DSBs back to 

WT levels, which further reduces the VSG switching rate back to its WT level 6.

Although a higher level of TERRA is frequently associated with an elevated amount of 

telomere R-loops and vice versa 158, 160, 167, 168, this may not always be the case in T. 
brucei. It has been shown that the R-loop level is influenced by RNA processing 169, 170. 

High transcription level and poor RNA processing can both lead to an increased level of R-

loops. However, it is unknown whether TbRAP1 plays any direct roles in dissolution of the 

telomere R-loop or whether TbRAP1 affects premature RNA (containing both UUAGGG 

repeats and the upstream VSG sequences) processing. When an ectopic allele of TbRNase 

H1 is expressed in the TbRAP1-depleted cells, the TERRA level is still much higher than 

that in WT cells, even though the amount of telomere R-loop is reduced to the WT level 6, 

suggesting that TERRA and the telomere R-loop may be regulated independently. It would 

be interesting to further examine the relationship between telomere R-loop and TERRA in T. 
brucei.

Two recent studies on T. brucei ribonuclease H enzymes also showed that R-loops at the 

telomere and the subtelomere influence VSG switching frequencies 7, 8. T. brucei has two 

RNase H enzymes, a non-essential TbRNase H1 171 and an essential TbRNase H2 8. DRIP-

seq experiments (R-loop immunoprecipitation followed by high-throughput sequencing 
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analysis) were done to map which genomic loci have R-loops in WT and RNase H defective 

cells 7, 8, 172. In WT cells, R-loops are detected at the region immediately downstream of the 

active VSG gene, and a much lower level of R-loops is observed immediately downstream 

of a silent VSG gene 7, 8. More R-loops are clearly detected at both of these regions in 

TbRNase H1 null cells 7. Depletion of TbRNase H2A (the catalytic subunit of TbRNase H2) 

has a similar phenotype 8, indicating that both RNase H enzymes influence R-loop levels at 

the telomere and subtelomere junction.

Interestingly, in both TbRNase H1 null and TbRNase H2A-depleted cells, increased 

amounts of R-loops are detected across the active and silent ESs, with the most prominent 

increase at the 70 bp repeats 7, 8. The heterogeneous ~ 70 bp repeats are found upstream of 

most VSG genes (Fig. 1 & 2) 51. The repeats often contain varying numbers of tandem TAA 

triplets and their sizes range from 66 to 81 bp 173, 174. Two highly conserved motifs 

(AGTGTTGTGAGTGTG and TATAATAAGAGCAGTAAT) have been identified and 83% 

of the 70 bp repeats being studied contain one or both of these motifs 175. In VSG gene 

arrays, usually few copies of 70 bp repeats are upstream of a VSG gene 52, 162. While in B-

ESs, 3 – 20 kb of 70 bp repeats are upstream of the VSG gene 59. In WT BF cells, no stable 

transcripts from the 70 bp repeats have been detected, even though the active ES is highly 

transcribed by RNA Pol I, suggesting that RNA processing is very efficient. However, in 

TbRNase H1 null and TbRNase H2A-depleted cells, a significant amount of R-loops are 

detected at the 70 bp repeat region in both active and silent ESs 7, 8. Consistent with the 

notion that R-loops often induce DNA damages 3, more γH2A (DNA damage associated 

histone H2A with phosphorylated T130 176) associates with the active ES chromatin, 

particularly at the telomere-proximal region, in TbRNase H1 null cells 7, suggesting 

telomere-proximal R-loops are more stable. When TbRNase H2A is depleted, much more 

γH2A associates with both active and silent ES chromatin throughout the whole ES 8. 

Furthermore, more switchers are observed to have shed the originally active VSG on the cell 

surface in the RNase H defective cells, suggesting that these cells have an increased VSG 

switching rate than WT cells 7, 8. Therefore, increased amounts of telomere/subtelomere R-

loops in RNase H defective cells are linked with elevated DNA damage levels at ESs and 

more frequent VSG switching 7, 8

In TbRNase H defective cells, an increased amount of R-loops is detected at the telomere/

subtelomere junction 7, 8. It is likely that telomere R-loops are also stabilized in these cells, 

although this has not been tested directly. It is also unknown whether TERRA levels are 

increased when the RNase H enzymes are deleted or depleted. In TbRNase H1 null and 

TbRNase H2A-depleted cells, the mRNA levels of a number of silent VSGs are increased 

(upto several ten-fold) 7, 8, suggesting that TbRNase H1 and H2 may be important for VSG 

silencing. R-loops have been shown to affect gene expression in other organisms 21–23. 

Therefore, it is possible that VSG expression is affected by nearby R-loops and that TERRA 

level is also increased in TbRNase H defective cells. On the other hand, frequent VSG 

switching in the RNase H defective cells 7, 8 could also lead to mildly increased VSG 

mRNA levels when a cell population is examined. Cells expressing both the originally active 

VSG and an originally silent VSG simultaneously are observed by IF in the TbRNase H 

defective cells 7, 8. However, these cells might be in the middle of a VSG switching process. 

Whether the TERRA level is affected by the RNase H enzymes needs further investigation.
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It is important to note that functions of TbRNase H1 and H2 are not limited at ES regions 
7, 8, 172. A recent DRIP-seq analysis detected R-loops in multiple T. brucei genome loci in 

WT cells 172. In TbRNase H1 null cells, increased levels of R-loops are also observed at 

transcription start sites of RNA Pol II transcribed PTUs, while no significant increase of 

DNA damage at these sites is seen 172. It is also unknown whether TbRNase H1 affects 

mRNA levels of genes located outside of ESs. On the other hand, depletion of TbRNase 

H2A leads to a dramatic increase in the amount of genomic DNA damage, particularly at the 

transcription initiation sites 8. Additionally, several tens of genes other than VSG, ESAG, or 

procyclin genes exhibit increased mRNA levels when TbRNase H2A is depleted 8.

Subtelomeric regions are often composed of various repeats and gene families 177–179. High 

polymorphism in the subtelomere is frequently observed among different chromosome ends 

and individuals in humans 180, 181, yeast 177, 182, fly 183, plant 184, and fungal pathogens 
185, 186. T. brucei subtelomeres also exhibit dynamic variations: the T. brucei homologous 

megabase chromosome pairs often differ greatly in size (Fig. 1A) 187. Several factors 

contribute to this size polymorphism: subtelomeric ESs and VSG gene arrays have different 

sizes, telomere lengths vary at different chromosome ends, and repetitive chromosomal 

regions vary in size 188. Importantly, two-thirds of the size polymorphisms are due to 

variations in subtelomeric regions, while chromosomal core regions, containing all essential 

genes, are relatively stable 53.

Telomere dysfunctions are well-known to induce genome instabilities. At the telomere 

vicinity, unprotected telomeres lead to chromosome end-to-end fusions 189, 190, anaphase 

bridges 191, 192, and telomere recombination 193, 194. Telomere fusions in human cells can 

further induce a persistent mitotic arrest that leads to greatly increased cell lethality 195. At a 

global level, telomere crisis results in dicentric chromosome formation and subsequent 

chromothripsis and kataegis 191. Dysfunctional telomeres can also lead to subtelomere 

instability in yeast 196, 197. In telomerase null cells, Type I and Type II survivors use DNA 

recombination-dependent mechanisms to maintain their telomere length 196, where Type I 

survivors amplify their subtelomeric Y’ elements in a Rad51-dependent pathway 197, 198. 

Studies in T. brucei have shown that depletion of telomere proteins, TbTRF, TbRAP1, and 

TbTIF2, all result in unstable subtelomeres 6, 112, 120, 121.

Most telomere dysfunctions result in severe genome instability and cause cell growth defects 
129. In T. brucei, VSG is essential 199, and damages to the active VSG gene are generally 

poorly tolerated: Introducing an artificial DSB (an I-SceI cut) within or near the active VSG 
gene leads to cell death in more than 80% of the cell population 200, which also leads to a 

250-fold higher VSG switching rate 201. It is possible that the I-SceI cut is not repaired 

efficiently due to continued I-SceI expression. However, the location of the damage site 

appears to be a critical factor, as inducing the same I-SceI cut in a silent ES is much better 

tolerated 200. TbTIF2 and TbRAP1 are essential proteins that associate with the telomere 

chromatin 87, 121, and depletion of these proteins induces DNA damages mainly in the active 

and silent ESs 6, 121. These observations are consistent with the idea that DNA damages in 

the active ES are poorly tolerated. Depletion of TbRNase H2A results in global increased 

amounts of DNA damages at transcription initiation sites 8, suggesting that TbRNase H2A 

may be important for genome integrity at non-subtelomeric regions. Therefore, it is hard to 
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interpret whether the increased amounts of DNA damages in ESs contribute significantly to 

the growth defect in TbRNase H2A-depleted cells. On the other hand, some telomeric 

dysfunction and subtelomeric damages are better tolerated, contributing to subtelomeric 

plasticity. Single damages within silent ESs do not severely affect cell growth 200. Telomeres 

downstream of the silent ESs can be as short as < 100 bp without inducing any cell growth 

defect 202. Additionally, cells do not experience cell cycle arrest when a single telomere 

(without any adjacent ES) is deleted 203. Therefore, damages that do not directly disrupt the 

active VSG gene seem less detrimental to cell growth than the ones that do. However, 

TbRNase H1 null cells represent an exception, where an increased amount of DNA damages 

is detected in the active ES, but the cells are viable 7. Although it is not strictly comparable 

among different studies, loss of TbRNase H1 does not seem to cause an as high level of 

DNA damage in ESs as depletion of TbTIF2 or TbRAPl 6, 7, 121. In the latter two cases, 

DNA damages are observed in both active and silent ESs, while loss of TbRNase H1 only 

causes a moderate increase in the amount of DNA damages in the active ES 6, 7, 121. 

Therefore, at T. brucei subtelomeres, the amount of damages probably also contributes to its 

effect on cell fitness. In consistence with this, some DNA breaks are detected at 70 bp repeat 

region in the active ES in WT cells 201, suggesting that cells can tolerate a low level of 

subtelomeric damages, although the exact amount of telomere and subtelomere damages in 

WT cells is unknown.

These observations suggest that the balance between plasticity and integrity at the T. brucei 
subtelomere is a key factor of keeping a balance between antigenic variation and cell fitness, 

both important for parasite survival. A similar balancing act is necessary for proper telomere 

maintenance in human ALT cells 168, where a telomerase-independent and DNA 

recombination-dependent telomere maintenance mechanism is critical for cell survival 204. 

In ALT cells, overexpression of TERRA leads to an increased level of telomere R-loops and 

many more telomere recombination events 168. Importantly, depletion of RNase H1 in these 

cells leads to an accumulation of telomere R-loops and C-circle excision-mediated rapid 

telomere shortening 168.

Overexpression of RNase H1 in ALT cells reduces the amount of telomere R-loops, which 

hinders telomere recombination potential and results in gradual telomere shortening 168. 

Therefore, perturbing telomere R-loop levels in ALT cells disrupts the delicate balance 

between recombination-mediated telomere attrition and maintenance.

Achieving a good balance between telomere/subtelomere stability and subtelomere variation 

may be feasible through an introduction of the right amount of telomere/subtelomere 

damages 205. In Kluyveromyces lactis, variation in a subtelomeric gene family encoding β-

galactosidase allows yeast to better cope with different nutrition 206, a scenario not too 

different from VSG switching in T. brucei. Mild telomere dysfunction that does not induce 

global genome instability leads to increased variation of the subtelomere β-galactosidase-

coding genes, while severe telomere dysfunction causes complete deletion of these genes 
206. Therefore, mild telomere dysfunction can serve as a beneficial drive for subtelomere 

variations that allow cells to better adapt to environmental stresses 205. The TbRNase H1 

null cells 7 may be a good example of having a mild telomere/subtelomere dysfunction in T. 
brucei, as the amount of R-loop-induced subtelomeric DNA damages appears not severe 
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enough to trigger cell growth defect but sufficient to stimulate VSG switching, which is 

presumably beneficial for a long-term parasite survival inside the mammalian host. Since 

TbRNase H1 null cells are viable, it would be interesting to examine whether these cells 

have increased virulence when infecting an animal host.

Telomere/subtelomere R-loops and initiation of VSG switching

Homologous recombination (HR) is a major pathway for VSG switching 100. For ES-linked 

and minichromosome VSGs, the telomere sequence is found downstream of VSG51, 52, 59. 

Additionally, most VSG genes have a common 14 nt sequence in their 3’UTR region 51. It 

has been proposed that the common 14 nt VSG 3’UTR sequence and sometimes the 

telomere sequence can serve as the downstream homologous arm, while the 70 bp repeats 

can serve as the upstream homologous arm for efficient homologous recombination that 

mediates a VSG switch 207. However, an earlier study showed that the 70 bp repeats 

upstream of the VSG gene in an ES is not required for VSG switching 103. In a recent study 

that introduces an I-SceI cut in the active ES to initiate VSG switching, it is found that 70 bp 

repeats in the active ES promote selection of VSG donors from the genomic archive rather 

than only from silent ESs 207.

Although a DSB is not absolutely required for HR, it is a good inducer for HR and 

frequently repaired by HR 208. Therefore, it has been hypothesized that DSBs are an 

important trigger of VSG switching 123, 201. In support of this, introducing an artificial DSB 

immediately upstream of the active VSG leads to a more than 250-fold higher VSG 

switching frequency 201, and DSBs introduced near the active VSG (both upstream and 

downstream) result in efficient VSG switching 200. DSBs can also be detected in 70 bp 

repeats by Ligation mediated PCR analysis in WT T. brucei cells 201, although the amount 

of telomeric and subtelomeric DNA damage in WT cells has not been carefully quantified. 

Interestingly, the active ES-adjacent telomere experiences frequent large fragment deletions 
209, which may be a consequence of TERRA transcription by RNA Pol I 6, 137 that depletes 

most nucleosomes in the active ES 67, 68 and may also interfere with the binding of TbTRF 

at the telomere. Therefore, DNA breaks in both the telomere and 70 bp repeats are possible 

to serve as an inducer for VSG switching. Several mechanisms are possible for DSB 

formation in these repetitive sequences.

First, as repetitive sequences, both telomeres and 70 bp repeats can be difficult to be 

replicated due to strand slippage during DNA replication 210 and secondary structure 

formation 211 (such as the G-quadruplex structure formed by the telomere G-rich strand 

DNA 212 and the non-H bonded structure formed by TTA/TAA in the 70 bp repeats 213). In 

mammalian and yeast cells, several telomere proteins have been shown to play important 

roles in ensuring proper telomere replication 214–216. Whether T. brucei telomere proteins 

have similar functions still requires further investigation. Nevertheless, obstacles in DNA 

replication often lead to stalled replication fork and eventual DSBs 217, 218. Second, it is 

shown that the active B-ES is replicated in early S phase 119. Hence, the transcription 

machinery may collide with the DNA replication machinery in the active B-ES and its 

adjacent telomere, which often causes fork stalling and collapsing followed by DSB 

formation 219. Third, the active ES and its adjacent telomere are transcribed at high levels by 
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RNA Pol I 6, 220, which can induce more DSB formation with or without the R-loop 

formation. RNA Pol I transcription depletes nucleosomes from the active ES 67, 68 and can, 

presumably, also remove some TbTRF from the telomere. The exposed DNA in the active 

ES and the adjacent telomere is likely more vulnerable to nuclease attack, which can result 

in more DSBs. Additionally, the traverse of RNA polymerase along repetitive DNA allows 

formation of DNA secondary structure, which helps DSB formation 221. Furthermore, the 

high levels of transcription can induce transcription-associated recombination (TAR) 222, 

and RNA Pol I transcription in BF T. brucei cells stimulates homologous recombination > 3 

fold 223. Finally, the telomere and subtelomere R-loops may further increase the chance of 

DSB formation in this area. We now know that TERRA forms R-loops with the telomeric 

DNA 6, and an increased level of telomere R-loops leads to an increased amount of DSBs in 

ESs and more frequent VSG switching 6. Additionally, R-loops are stabilized at the 70 bp 

repeats in TbRNase H1 null and TbRNase H2A-depleted cells, which is also linked with 

increased amounts of DNA damages in ESs and more frequent VSG switching 7, 8. 

Transcribing the active VSG with the flanking repetitive sequences provides a couple of 

intrinsic mechanisms to induce DSBs in the local region, either with or without the 

formation of local R-loops, which ensures a good chance of VSG switching through 

homologous recombination.

R-loops at the telomere and 70 bp repeats clearly contribute to more efficient antigenic 

variation 6–8. However, the underlying mechanisms of the formation and dissolution of these 

R-loops are not well-understood. Functions of T. brucei TERRA are not clear, and whether 

high levels of TERRA always lead to high levels of telomere R-loops is not known. 

Similarly, it is unclear whether the RNA transcribed from the 70 bp repeats can only exist as 

part of the R-loop in TbRNase H defective cells. Finally, TbRNase H1 null cells appear to 

have achieved a good balance between improved subtelomeric plasticity and sufficient 

genome stability 7. A better understanding about the detailed functions of TbRNase H1, 

particularly at the subtelomere, would be revealing for the positive and negative effects of 

telomere/subtelomere R-loops on antigenic variation and genome stability.

Telomere biology in other microbial pathogens and the potential link with pathogen 
virulence

Two kinetoplastid parasites that are closely related to T. brucei also cause debilitating human 

diseases: Trypanosoma cruzi causes Chagas disease, which can lead to serious heart and 

digestive problems 224. Leishmaniasis is caused by over 20 species of Leishmania. The 

disease severely decreases the life quality and causes heavy economic burdens 225. 

Telomeres in all three kinetoplastid parasites have the TTAGGG repetitive sequence 
162, 226, 227. Homologues of all known T. brucei telomere proteins can be easily identified in 

T. cruzi and Leishmania genomes 228, 229. Additionally, TERRA has been detected in 

Leishmania 165. However, it is unknown whether T. cruzi transcribes its telomeric sequence. 

It is also unclear whether R-loops are formed in T. cruzi and Leishmania. Still, the essential 

telomere function in maintaining genome stability is expected to be conserved in both T. 
cruzi and Leishmania. In addition, subtelomere stability may be an important factor for T. 
cruzi virulence. T. cruzi is able to infect any host cell but mainly macrophages, fibroblasts 

and epithelial cells 230. Infective forms of T. cruzi express surface transsialidase proteins 
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231, 232, and their conserved peptide motifs are important for interacting with cytokeratin and 

mediate host-parasite interaction 233. Decreasing trans-sialidase expression also contributes 

to the loss of T. cruzi virulence 234. Interestingly, the gp85 gene family that encodes trans-

sialidase is located at subtelomeric regions 235, and maintaining telomere and subtelomere 

stability is expected to help maintain stable gp85 gene copy numbers. Therefore, it will be 

interesting to investigate whether gp85 expression is affected by telomeric silencing, 

whether any R-loop is formed at telomere/subtelomere, and whether these R-loops affect 

gp85 gene family stability or their expression.

Several other microbial pathogens that undergo antigenic variation also host their variable 

surface antigens at subtelomeres 179, including Pneumocystis jirovecii that causes 

pneumonia in immunodeficient patients, in which DNA recombination appears to be the 

major pathway of antigenic variation 185. A better understanding of telomere functions and 

how telomere R-loops influence telomere and subtelomere stability will help us better 

understand the mechanisms of antigenic variations in these human pathogens.
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Research Highlights

• In T. brucei, a protozoan parasite that causes African trypanosomiasis and 

undergoes antigenic variation, the major surface antigen-coding VSG gene is 

transcribed from telomere-adjacent expression sites, where it is flanked by the 

telomere and 70 bp repeats

• In TbRAP1-depleted cells, an increased amount of telomere R-loops leads to 

an elevated amount of telomere/subtelomere DSBs and more frequent VSG 

switching

• Removal of TbRNase H enzymes results in accumulation of R-loops at the 70 

bp repeats and at the telomere-subtelomere junctions, more DSBs in VSG 

expression sites, and more frequent VSG switching

• R-loop levels at the telomere and 70 bp repeats influence the balance between 

antigenic variation and cell fitness

• The high level of transcription of the active ES by RNA Pol I promotes 

accumulation of R-loops at the telomere and 70 bp repeats. This provides an 

intrinsic mechanism for DSB formation in the active ES, which is a strong 

inducer of VSG switching.
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Figure 1. 
(A) Schematic diagram of a megabase chromosome (top), an intermediate chromosome 

(middle), and a minichromosome (bottom) in T. brucei, with their type, number, and size 

indicated. The central region of the two homologous megabase chromosomes are the same 

and is shown once, while their subtelomeres are different and shown separately (top). 

Individual genes are represented as short colored bars. Grey, functional genes; red, VSG 
genes; yellow, pseudogenes. PTUs and their transcription directions are marked with arrows. 

VSG gene arrays, a B-ES, and an M-ES are shown. A B-ES is shown at one subtelomere of 
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the intermediate chromosome (middle). Individual VSG genes are shown at subtelomeres of 

the minichromosome (bottom) (B) A representative B-ES (top) and an M-ES (bottom) is 

shown. ESAGs: Expression Site Associated Genes.
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Figure 2. 
(A) VSG switching mechanisms. Light blue soft arrow heads, telomere repeats; purple arrow 

heads, 70 bp repeats; red and dark blue 3D arrows, VSG genes; green 3D arrows, ESAGs; 
long red line with an arrow head, active transcription from the B-ES promoter; grey short 

line with an arrow head, short-distance transcription from the silent B-ES promoter. VSG 

switching pathways are explained in the text. (B) The classical double Holliday Junction 

pathway of homologous recombination to generate either GC or CO products is shown on 

the left. In comparison, the BIR pathway that usually occurs at the telomere is shown on the 
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right. The BIR and GC products are indistinguishable because the telomeres downstream of 

the VSG genes have the same tandem repeat sequence.
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Figure 3. 
(A) Subnuclear localization of TERRA. Top, TERRA FISH was performed in BF WT T. 
brucei cells with an Alexa488-conjugated PNA probe containing (CCCTAA)3 (TELC probe, 

PNA Bio). Hybridization was done at 37°C without denaturation. Treating cells with RNase 

A eliminated all nuclear punctate signals (right image in the top row), confirming that the 

observed signals represent RNA molecules. Bottom, TbTRF IF was performed using a rabbit 

antibody recognizing TbTRF 135 and an Alexa594-conjugated donkey anti-rabbit 2nd 

antibody. TERRA FISH was performed the same way as in (A). DNA was stained by DAPI. 
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The large DAPI-positive circle is the T. brucei nucleus, while the smaller DAPI-positive dot 

is the kinetoplast. All images are of the same scale, with the scale bar shown in the top right 

panel. (B) Northern blot of PF T. brucei total RNA. In both left and right panels, the EtBr-

stained agarose gel images are shown on the left. Hybridization using the TbTR probe was 

done as a loading control (shown on the right). An 800 bp (TTAGGG)n-containing DNA 

fragment was labeled with radioactive dGTP in the absence of dCTP to generate a probe that 

was used to detect the (CCCUAA)n-containing TERRA (left). The same probe was labeled 

with radioactive dCTP in the absence of dGTP to generate a probe that was used to detect 

(UUAGGG)n-containing TERRA (right). Hybridizations were done at 50°C. 10 units of 

RNase A and 20 units of RNase One were added in the RNase treatment control samples.
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