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Abstract

Targeting epigenetic regulators such as histone modifying enzymes provides novel strategies for 

cancer therapy. The GCN5 lysine acetyltransferase (KAT) functions together with MYC both 

during normal development and in oncogenesis. As transcription factors, MYC family members 

are difficult to target with small molecule inhibitors, but the acetyltransferase domain and the 

bromodomain in GCN5 might provide alternative targets for disruption of MYC-driven functions. 

GCN5 is part of two distinct multiprotein histone modifying complexes, SAGA and ATAC. This 

review summarizes key findings on the roles of SAGA and ATAC in embryo development and in 

cancer, to better understand the functional relationships of these complexes with MYC family 

members, as well as their future potential as therapeutic targets.

Introduction

GCN5 was defined in the late-1990s as a component of the Spt-Ada-Gcn5-Acetyl 

transferase (SAGA) complex in yeast (1) and related TFTC/STAGA complexes in mammals 

(2) [1, 2]. These multiprotein assemblies post-translationally modify histones as well as 

other proteins [1]. SAGA is composed of lysine acetyltransferase (KAT), deubiquitinase 

(DUB), SPT and TAF modules. These modules maintain SAGA architecture (SPT), regulate 

histone acetylation and deubiquitination (KAT and DUB) and interact with general 

transcriptional machinery (TAF), as well as specific transcription factors (TRRAP; TF 
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binding module) [3]. GCN5 (KAT2A) was later identified as a component of the ADA Two 

A Containing (ATAC) complex, which also regulates gene transcription and chromatin 

organization [4]. GCN5 KAT activity and specificity is augmented by association with the 

Alteration/Deficiency in Activation (ADA) proteins [1, 5], and independent ADA-GCN5 

complexes have been identified in yeast and metazoans [6]. GCN5 requires association with 

both ADA2 and ADA3 for robust acetylation of histone and nonhistone targets [7]. GCN5 is 

associated with two forms of ADA2 in metazoans, termed ADA2A and ADA2B [8]. 

ADA2B is exclusively found in SAGA, while ADA2A is found in ATAC [8]. Outside of the 

KAT modules, SAGA and ATAC are distinct in composition, likely reflecting unique 

functions [3, 4].

Both SAGA and ATAC function as transcriptional co-activators. These complexes are 

targeted to genomic loci through interactions with sequence specific transcription factors, 

and may be stabilized at certain regions through interactions of “reader” domains with 

specific histone modifications. Some studies indicate that SAGA acts at select genes, 

whereas others indicate that it functions as a general transcription factor [9–11]. Recent 

studies may resolve these differences, as chromatin immunoprecipitation (ChIP) 

experiments indicate that the SAGA subunit SUS1 is recruited to yeast genes regulated by 

the general transcription factor IID (TFIID), as well as to known SAGA-regulated genes and 

ribosomal protein genes [12, 13]. However, under conditions of heat shock, SUS1 binding 

shifts away from SAGA-dominated and ribosomal protein genes to stress-responsive genes 

[12], and SAGA colocalizes with heat shock factor 1 (Hsf1) at these genes [14]. These 

findings indicate that SAGA distributions across the genome can be dynamic.

SAGA regulates both transcription initiation and elongation through its KAT and DUB 

activities. SAGA also has non-histone substrates, such as c-MYC, which is acetylated by 

GCN5 and its ortholog PCAF [15] and TRF1, which is deubiquitylated by USP22 [16]. As 

such, SAGA influences gene expression at many levels, from transcription to protein 

stability [17]. GCN5 functions extend beyond the nucleus, independent of the SAGA and 

ATAC complexes, including mitochondrial functions in S. cerevisiae [18]. Genetic studies in 

mice indicate GCN5 [19, 20] and USP22 [21] are required for normal embryo development. 

SAGA also impacts signaling pathways, genome integrity and metabolic control in 

mammalian cells [17]. Although less studied, components of ATAC are also required for 

normal embryo development, modulating ribosome biogenesis, cell-cycle and DNA repair 

[22]. This review will further explore the functions of SAGA and ATAC in development and 

in cancer, especially in regards to MYC functions.

Links between SAGA and MYC family

GCN5 was the first identified transcription-related KAT [23], and it acetylates lysine 

residues in histones H3 and H2B [17]. Mammals also express PCAF (P300/CBP-Associated 

Factor, or KAT2B), which is highly homologous to GCN5 [24]. GCN5 and PCAF are 

incorporated into SAGA and ATAC complexes in a mutually exclusive way. In contrast to 

Gcn5, no abnormal phenotypes are associated with Pcaf deletion in mice [19, 20]. 

Interestingly, combined knockout of Gcn5 and Pcaf results in more severe developmental 
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phenotypes than Gcn5 deletion alone [19], suggesting both redundant and synergistic roles 

for these two KATs.

Conditional deletion of Gcn5 in neural progenitor cell populations reduces brain mass in 

mice, with a phenotype similar to conditional loss of c-Myc or N-myc [25, 26]. Interestingly, 

MYC regulates chromatin structures in neural progenitors at least in part through 

upregulation of GCN5 [26]. Regulatory connections between GCN5 and MYC family 

members have been observed in numerous settings. The TRRAP protein in SAGA directly 

interacts with MYC in cancer cells, recruiting GCN5 for activation of MYC target genes 

[27–29]. Moreover, acetylation of MYC by GCN5 or PCAF extends its half-life in vivo, 

augmenting MYC functions [15]. In embryonic stem cells (ESCs), GCN5 [30] and other 

SAGA components [31] colocalize with MYC for upregulation of cell-cycle genes, 

promoting ESC self-renewal. Moreover, functions of MYC as a “Yamanaka factor” in 

somatic cell reprogramming involve upregulation of GCN5 expression followed by 

recruitment of GCN5 protein to MYC target genes [30]. Loss of Gcn5 also hinders 

transcription of c-MYC target genes associated with FGF signaling in embryoid bodies and 

early differentiation [32]. Altogether, these studies indicate that GCN5 and MYC work 

together in a feed forward loop. These functions are likely to involve SAGA, as the TAD 

domain of MYC interacts with SAGA but not ATAC components [33], and MYC 

upregulates expression of several components of SAGA in addition to GCN5 [30].

SAGA in Cancer

GCN5 likely plays a role in the oncogenic functions of MYC, although GCN5 and other 

components of SAGA may contribute to cancer formation or progression independently of 

MYC as well. GCN5 over expression is observed in multiple cancer types (Figure 1A), and 

GCN5 depletion inhibits cell proliferation or induces apoptosis, consistent with a role in 

oncogenesis. For example, inhibition of GCN5 activity reduces viability of lung cancer 

stem-like cells and reduces non-small cell lung cancer growth [34, 35]. GCN5 has also been 

linked to regulation of cell proliferation and invasion in glioma [36]. In breast cancer, GCN5 

regulates the epithelial-to-mesenchymal (EMT) transition by enhancing STAT3, AKT and 

E2F1 signaling pathways [37]. GCN5 over expression in hepatocellular carcinoma is linked 

to increased AIB1 expression, which drives progression of these cancers [38]. In melanoma 

cells, AND-1, a protein required for the stability of GCN5, is upregulated [39]. A CRISPR 

screen for factors required for AML identified GCN5 (KAT2A) as a “top-hit” [40]. In 

lymphoma cells, GCN5 inhibition reduces cell-survival through reduction of MYC target 

gene expression [41]. Many of the cancer types that overexpress GCN5 also harbor MYC 

amplifications or increased expression of MYC family proteins.

Although highly related to GCN5, PCAF may play different roles in cancer, acting as either 

an oncogene or tumor suppressor based on the tissue of origin. In hepatocellular carcinoma, 

PCAF promotes autophagy [42]. PCAF acts as a suppressor of gastric cancer by inhibiting 

cell growth and through increased immunity [43]. In contrast, upon p53 loss of function and 

perturbation of DNA damage response, PCAF may promote Hedgehog-dependent cell-

survival and proliferation [44, 45]. Double knockdown of both PCAF and GCN5 

significantly affects c-MYC levels in urothelial carcinoma cells [46]. Given the differential, 
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but overlapping, expression patterns of GCN5 and PCAF in specific tissues, and their 

different functions during development, these KATS also likely have shared and unique roles 

in different cancers that are important to define for therapy development.

ADA proteins

Functions of the ADA proteins (ADA2 A and B isoforms and ADA3) in cancer have not yet 

been defined, but they are likely to be important as these proteins are critical regulators of 

GCN5 catalysis [6, 17]. A recent study to define gene dependencies in N-MYC-driven 

neuroblastomas identified ADA2B and several other SAGA components as top hits [47]. 

Importantly, loss of ADA2A or ADA2B inactivates both GCN5- and PCAF-containing 

versions of ATAC and SAGA, respectively, providing an efficient way to eliminate 

redundant functions of these KATs in cancer cells.

USP22

USP22 is a member of the ubiquitin-specific processing proteases (USPs) family, and it 

targets both histone and non-histone substrates. USP22 is particularly known for targeting 

mono-ubiquitinated H2B to facilitate gene regulation [45, 48, 49]. USP22 has been 

described as a member of an 11 gene ‘death from cancer’ signature [50] and like GCN5, 

genetic studies indicate that USP22 has important functions in both normal development and 

oncogenesis.

Deletion of Usp22 in mice leads to vascular defects in the placental labyrinth linked to 

decreased activity of several signaling pathways including those driven by TGFβ, VEGF and 

other receptor tyrosine kinases [21]. Similarly, USP22 is also critical for angiogenesis of 

non-small cell lung cancer where its functions mirror those observed in placenta 

development [51]. Early embryonic lethality of USP22 deficient mice is also linked to 

increased p53 expression [52]. USP22 affects the stability and expression of non-histone 

proteins such as TRF1, which impacts telomere structure and genome integrity, and FBP1, 

which regulates MYC expression [16, 53]. Other studies indicate USP22 is important for 

counteracting silencing in heterochromatin and serves as a positive cofactor for nuclear 

receptor activation [53, 54]. The SAGA DUB module is also known to impact early stages of 

the DNA damage response (DDR) and is required for the DNA repair phase of class switch 

recombination (CSR) [55].

USP22 is overexpressed in highly aggressive tumors [56], and knockdown of USP22 in 

cancer cells often leads to cell-cycle arrest and decreased tumor growth [57]. Here again, 

USP22 functions include both gene regulation, likely due to changes in H2B ubiquitination, 

and regulation of non-histone protein stability. USP22 deubiquitinates c-MYC in breast 

cancer cells, increasing MYC stability [58]. USP22 also regulates androgen receptor levels 

and coordinates with MYC signaling to drive prostate adenocarcinoma [59]. USP22 

deubiquitinates and stabilizes the PU.1 transcription factor. Loss of USP22 in a mouse 

model of KRAS-driven leukemia exacerbated disease due to decreased PU.1 stability and 

subsequent blocks to myeloid differentiation associated with increased expression of MYC 

target genes in progenitor cells [60]. Multiple cancer types are dependent on GCN5 and 

USP22, as shown by DepMap [61], analyses (Figure 1B).
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Further work is needed to determine the relationship between the KAT and DUB modules in 

cancer, and whether both enzymes might be simultaneously targeted for a synergistic 

response. Loss of GCN5 results in the depletion of USP22 from SAGA, leading to telomere 

fusions in human and mouse cells [16]. The DUB module may stimulate the KAT activity in 

SAGA [62] and USP22 is acetylated at multiple lysines [63]. Crosstalk between these 

enzymatic modules is consistent with functional relationships between other DUBs and 

KATs in oncogenesis [64].

Overview of ATAC and its role in Cancer

The YEATS2 component of ATAC is emerging as potentially important in cancer. YEATS2 

contains a histone fold domain as well as a YEATS domain, which selectively binds to 

(“reads”) acetyl-lysine residues in histones and likely other non-histone proteins [65]. In 

particular, YEATS2 binds to acetylated H3K27, recruiting the ATAC complex to chromatin 

[66]. This recruitment allows for the maintenance of H3K9ac and H3K14ac facilitating gene 

transcription. YEATS2 is amplified in lung, ovarian, cervical and uterine cancers and is 

necessary for survival of non-small cell lung cancer cells [66]. Whether ATAC plays a role in 

MYC functions is currently unknown. YEATS2 physically interacts with MYC, but at much 

lower levels than SAGA components [33]. Cancers, such as lung, liver, breast and prostate, 

are dependent on YEATS2 and ATAC2, as shown by DepMap analyses (Figure 1C). The 

YEATS domain and the ATAC2 KAT domain might provide unique targets for cancer 

therapies.

Distributions of the SAGA and ATAC complexes

Identification of specific oncogenic or tumor-suppressive pathways affected by SAGA or 

ATAC is needed to fully understand functions of these complexes in cancers. Chromatin 

immunoprecipitation studies in GM12878 and HeLa cell lines indicate that SAGA and 

ATAC are targeted to different genomic loci by distinct regulatory elements [67]. SAGA and 

ATAC also are involved in distinct signaling pathways [68]. Unlike ADA2A (ATAC), 

ADA2B (SAGA) interacts with the tumor suppressor protein p53 and p53-response genes 

[68]. ATAC interacts with several MAPK pathway components during osmotic stress 

induction and may play a more prominent role than SAGA in this process [68].

Targetable domains within the SAGA and ATAC complexes

SAGA and ATAC subunits provide unique targets for potential therapy development. Both 

complexes contain multiple enzymatic activities, the HAT and DUB modules in SAGA and 

the two KATs in ATAC. The acetyltransferase domains of the KATs, the reader domains in 

GCN5 (bromodomain) and YEATS2 (the YEATS domain) and ubiquitin specific protease 

domain of USP22 all provide potential targets for inhibitor development.

Targeting KAT activities

KAT activity can be repressed by directly inhibiting enzymatic activity or disrupting 

interactions between a KAT and recruitment proteins necessary for its functions. KAT 

inhibitors include natural products, carboxylic acids, protein-protein interaction inhibitors, 
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bi-substrate inhibitors and synthetic compounds [69]. Oridonin, a lysine acetyltransferase 

inhibitor that targets multiple KATs including GCN5/PCAF, inhibits proliferation of breast 

cancer both in vitro and in vivo [70] and induces apoptosis in gastric cancer cell lines [71]. 

In the same study, Butyrolactone 3 (MB-3), a more specific GCN5/PCAF KAT inhibitor, 

was also shown to inhibit gastric cancer cell proliferation, but less potently than Oridonin. 

Similarly, Garcinol, a PCAF and P300 KAT probe, inhibits non-homologous end joining and 

radio sensitizes lung and cervical cancer cells in vitro [72]. PU139, a GCN5, PCAF, CREB 

and P300 KAT inhibitor, triggers caspase-independent cell-death in neuroblastoma cells and 

blocks the growth of neuroblastoma xenografts in mice [73]. Lastly, the GCN5/PCAF KAT 

inhibitor CPTH6 affects growth and viability of lung cancer stem-like cells and affects the 

viability of other cancer cell lines [74]. Key GCN5/PCAF KAT activity probes having 

therapeutic potential in cancer are summarized in Table 1. Future work should identify 

whether ATAC2, the second KAT within the ATAC complex, might also be targeted for 

therapy.

Unfortunately, available KAT inhibitors have limited utility for clinical trials due to issues 

with selectivity, toxicity and potency [69]. Not only is it difficult to develop inhibitors 

specific to particular KATs, these inhibitors also affect other acetyl coenzyme A (Ac-CoA)-

specific functions [69]. Since KATs are bi-substrate enzymes, multiple factors influence 

potency of inhibitors including the catalytic mechanism and concentration of substrates [69]. 

Lastly, since KATs function in multiple cellular processes beyond gene transcription, their 

inhibition may increase toxicity.

All KATs have non-histone substrates that may also be directly involved in tumorigenesis, 

such as p53, Rb and NF-κB [75]. The interplay between HATs and HDACs, which have also 

been targeted for therapeutic benefit, must also be considered. Use of an HDAC inhibitor on 

a HAT-dependent cancer, for example, might have more detrimental than beneficial effects.

Targeting Bromodomains in KATs

Bromodomains are found in KATs, methyltransferases and transcriptional coactivators, and 

some proteins, such as Brd4, help organize super enhancers that drive expression of 

oncogenes such as MYC [76]. Bromodomain and Extra-Terminal motif (BET) inhibitors 

provide an alternate way to target MYC and have shown therapeutic potential in 

hematological malignancies [77]. The BET family of proteins are characterized by two 

tandem bromodomains and an extra-terminal domain and regulate gene transcription through 

epigenetic interactions between bromodomains and acetylated histones [78]. Although BET 

inhibitors have efficacy as single agents, resistance to these is common and they may work 

best in combination with agents such as checkpoint inhibitors [76].

BET domains are just one subfamily of the more than 60 different bromodomain-containing 

proteins in mammals [79]. The bromodomains of CBP/P300 are essential for proliferation of 

leukemia and lymphoma cell lines [80], suggesting inhibitors targeting these may have 

therapeutic potential. Only a few small molecules targeting GCN5/PCAF bromodomains 

have been developed. L-Moses was the first selective bromodomain inhibitor reported for 

GCN5/PCAF [81]. L-Moses shows no cytotoxicity in normal blood cells and is 

metabolically stable in the human liver, suggesting it might be a good candidate for testing 
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as an anticancer agent. The GSK4027 chemical probe is a more selective and potent GCN5/

PCAF bromodomain inhibitor in vitro [82]. Additional studies are needed to determine the 

effects of L-Moses and the GSK probes on cancer cell lines and xenograft models. 

Development of PROTAC degraders of BET domains has proven useful in avoiding 

resistance mechanisms in cancer [83]. Such degraders targeting GCN5/PCAF 

bromodomains might also provide effective means of blocking functions of these KATs in 

cancer [84].

The discovery that YEATS domains, which are structurally distinct from bromodomains, 

also read acetyl-lysine moieties raises the possibility that chemical probes against these 

domains, including the YEATS2 protein in ATAC, may have therapeutic potential [85, 86].

Targeting DUBs

SAGA functions can also be targeted through USP22 inhibition. DUB catalytic centers are 

structurally homologous making development of selective inhibitors difficult [87]. In 

addition, USP27X and USP51 are not only structurally similar to USP22, they also compete 

with USP22 for activation by ATXN7L3 and ENY2 [88]. In some cases, a DUB may 

function as an oncoprotein in one cancer and a tumor suppressor in another, such as USP18, 

which plays an oncogenic role in lung cancer [89], but is a tumor suppressor in sarcomas. In 

addition, the DUB USP7 plays various roles depending on substrate abundance and 

physiological state [90]. Whether targeting USP22 will be effective in conferring 

antineoplastic effects is not clear. Proteasome inhibitors have been approved for therapies 

against myelomas and lymphomas [87]. Even though many DUB inhibitors show antitumor 

effects in vitro, they are not in clinical trials.

Conclusions and future perspectives

The proper balance between acetylation/deacetylation or ubiquitination/deubiquitination is 

essential in normal physiology. This balance makes targeting enzymes controlling these 

states a double-edged sword. However, selective inhibition of KATs in cancers that are 

‘addicted’ to high expression of oncogenes may allow definition of therapeutic windows. By 

simultaneously repressing pathways that cancer cells depend on, there is a greater chance in 

reducing severity and reoccurrence.

The SAGA complex appears to play a key role in promoting MYC-driven cancers (Figure 

1D). Both GCN5 and USP22 affect MYC protein stability, and SAGA serves as a co-

activator of MYC target genes, which include genes encoding SAGA components. Inhibitors 

of SAGA and ATAC activities may be useful in targeting the functions of difficult to drug 

proteins, like c-MYC. Identifying whether cancers driven by “undruggable” oncogenes are 

sensitive to GCN5, PCAF and ADA2B inhibition is an area of active investigation. How 

SAGA components affect the functions of different MYC family members is also an 

important question. Studies on GCN5 may also provide insight into targeting other 

epigenetic regulators that interact with c-MYC, such as TIP60 [91]. Understanding the 

division of labor between transcriptional coactivator complexes in mediating oncogenic 

pathways will hopefully help identify new strategies to tackle cancers.
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Figure 1. Targeting SAGA and ATAC in cancer.
A. GCN5 mRNA levels are significantly upregulated in most human cancers (red) relative to 

adjacent normal tissues (green), as indicated by analysis of The Cancer Genome Atlas (*, 

P<0.05; **, P<0.01; ***, P<0.001). Multiple cancer types show dependencies on B. GCN5 

and USP22 as well as C. YEATS2 and ATAC2, as shown by DepMap, where a lower 

CERES score indicates that a gene is essential to a cell line, where a score of 0 indicates that 

the gene is not critical. Cell lines containing damaging, hotspot or other non-conserving 

mutations in YEATS2 or ATAC2 are highlighted in red, orange and blue, respectively. D. 
Model summarizing how SAGA components promote MYC functions, through acting as a 

coactivator for MYC target genes and by increasing the stability of MYC protein through 

acetylation (GCN5) and deubiquitination (USP22).
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