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Abstract

The opioid crisis has hit American cities hard, and research on spatial and temporal patterns of 

drug-related activities including detecting and predicting clusters of crime incidents involving 

particular types of drugs is useful for distinguishing hot zones where drugs are present that in turn 

can further provide a basis for assessing and providing related treatment services. In this study, we 

investigated spatiotemporal patterns of more than 52,000 reported incidents of drug-related crime 

at block group granularity in Chicago, IL between 2016 and 2019. We applied a space-time 

analysis framework and machine learning approaches to build a model using training data that 

identified whether certain locations and built environment and sociodemographic factors were 

correlated with drug-related crime incident patterns, and establish the top contributing factors that 

underlaid the trends. Space and time, together with multiple driving factors, were incorporated into 

a random forest model to analyze these changing patterns. We accommodated both spatial and 

temporal autocorrelation in the model learning process to assist with capturing the changes over 

time and tested the capabilities of the space-time random forest model by predicting drug-related 

activity hot zones. We focused particularly on crime incidents that involved heroin and synthetic 

drugs as these have been key drug types that have highly impacted cities during the opioid crisis in 

the U.S.
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1. Introduction

The opioid crisis spread across the United States beginning with the west coast, and then 

expanding to heavily impact the central, mid-Atlantic, and east coast of the U.S. as well as 

states in the southeast (Ciccarone, 2017; Dasgupta et al., 2017). The estimated number of 

adolescent and adult illicit drug users increased from 27 million in 2014 to 53.2 million in 

2018 (Center for Behavioral Health Statistics and Quality, 2015; Substance Abuse and 

Mental Health Services Administration, 2019). Opioids are a category of drugs that include 

heroin as well as synthetic drugs such as fentanyl (National Institute on Drug Abuse, 2019a). 

The crisis was reflected by the increasing numbers of overdoses involving heroin, that 

expanded spatially from the west coast of the U.S. in the early 2000s to reach Appalachia, 

the Great Lakes and Ohio Valley, and New England by 2016 (Hedegaard et al., 2018; Jalal et 

al., 2018; Stewart et al., 2017). The number of heroin users reached a peak in 2016 with an 

estimated 948,000 users or 0.4 percent of the U.S. population at that time (Substance Abuse 

and Mental Health Services Administration, 2019). Fentanyl, a potent synthetic opioid, has 

also become a threat nationally (Center for Disease Control and Prevention, 2019a; Marshall 

et al., 2017; Spencer et al., 2019) as synthetic opioids have been increasingly identified as a 

leading factor in overdose deaths in at least 23 states since 2015 (Center for Disease Control 

and Prevention, 2019b; National Institute on Drug Abuse, 2019b).

Research on the spatial and temporal patterns of drug activities and detecting clusters of 

particular drugs is useful for distinguishing hot zones of those drugs that in turn provides a 

basis for assessing the availability of substance use treatment facilities in these locations 

(Abraham et al., 2018; Yarbrough et al., 2019). For this study, the research objective was to 

identify factors related to built environment and sociodemographic characteristics of 

communities that were related to the changing patterns of drug activities involving particular 

drugs in a city, and to build a space-time random forest model, that could shed light on the 

importance of the different factors, and model these changing patterns over space and time 

so that mitigation steps might be taken. We investigated the spatiotemporal patterns of drug-

related crimes using narcotic crime data as a proxy for locations where drugs were likely to 

present. We analyzed the spatial patterns of more than 52,000 reported incidents of drug-

related crime, including over 16,000 heroin and synthetic drug-related crimes at block group 

granularity in Chicago, IL between 2016 and 2019. Chicago is a major metropolitan city in 

the U.S. with a population of over 2.7 million in 2018. We designed a space-time random 

forest model that accounted for spatiotemporal autocorrelation in the patterns of drug-related 

crimes in order to identify a set of possible underlying drivers for these patterns and track 

what changes have occurred. These drivers included specific types of locations (e.g., vacant 

buildings and alleys), additional built environment factors (e.g., road network density and 

street intersection density), and sociodemographic factors (e.g., level of education, income, 

and percentage of owner occupancy in a neighborhood). Here, built environment refers to 

the properties of human-modified places such as streets, buildings, parks and transportation 

systems, and characterizes city structure (United States Environmental Protection Agency, 

2019). Public health problems including mental health and substance use disorder have been 

shown to be related to built environment factors (Cerdá et al., 2013; Srinivasan et al., 2003). 

Sociodemographic variables such as education, income and household status have also been 
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found to be correlated with drug activities (Lipton et al., 2013; Nechuta et al., 2018; Vilalta, 

2010). The space-time random forest model was used to identify built environment and 

sociodemographic factors that were most associated with the drug activity locations. Spatial 

and temporal autocorrelation were accommodated in the model learning process to capture 

the changing trend of drug activity patterns over successive time periods.

2. Related works

Crime dataset records including the location and date-time of drug crime incidents for 

delivery, possession, and the manufacture of drugs, have been intensively used for 

investigating geographic patterns of drug activities. In a previous study, researchers analyzed 

crime data as well as recorded calls for police service to examine the relationships between 

drug activities, social disorder and crime, with results that showed significant spatial links 

between them (Weisburd and Mazerolle, 2000). Another study investigated the geographical 

relations between alcohol outlets, drug markets and violence using arrest data on drug 

possession and trafficking to map estimated drug markets in Boston (Lipton et al., 2013). In 

Mexico, an analysis of the spatial dynamics of drug arrests related to marijuana and cocaine 

found sociodemographic factors such as college education, housing conditions, and female-

headed households were positively correlated with arrests involving marijuana, but no 

sociodemographic correlates were significantly established for cocaine patterns (Vilalta, 

2010).

Space-time modeling of changing patterns of crime in cities, for example, homicides, 

burglaries, drug use and gun violations has studied by researchers (Hodgkinson and 

Andresen, 2019; Mohler, 2014; Piza and Carter, 2018; Shiode et al., 2015; Zhao and Tang, 

2017). Existing studies of geographical research on crime patterns have included among 

other topics, forecasting crime hotspots based on historical crime data, and finding 

correlations between crime patterns and surrounding environmental characteristics. Recent 

studies, for example, have used network-based models to detect and forecast street-level 

crime hotspots by using historical crime data (Shiode and Shiode, 2020; Y. Zhang and 

Cheng, 2020). While other research investigated correlations between crime patterns and 

environmental variables extracted from multiple-source data such as social media data, 

remote sensing imagery and Google Street View (He et al., 2017; Vomfell et al., 2018; Yang 

et al., 2020). Machine learning methods have been used extensively for predicting crime hot 

zones, although few studies have combined spatiotemporal patterns of historical crime data 

together with multiple underlying driving factors in machine learning models.

Hotspot analysis has assisted in identifying where events are densely concentrated, and has 

been used as a basis for predicting spatial patterns of repeated events in urban environments 

(Albright et al., 2019; Chainey et al., 2008). For example, a previous study used hotspot 

analysis to examine the homicide patterns in Chicago from 1960 to 1995 (Ye and Wu, 2011). 

Prior studies investigated spatial patterns of drug activities and understand any associations 

with surrounding built environment characteristics (Cerdá et al., 2013; Chaney and Rojas-

Guyler, 2015; Darke et al., 2001). Drug-related crime data that records crime incidents 

including drug transactions, delivery and possession can be analyzed to provide insights on 

locations where drug use may be present. In this paper, we have incorporated space and time 
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into a random forest model to analyze drug-related crime incidents and their underlying 

factors over time. An earlier study described how the Chicago Police Department used a 

‘heat list’ that included approximately 400 individuals who were forecast to be potentially 

involved in crime (Lum and Isaac, 2016). They pointed out that police-recorded data was 

biased and could be attributed to the police’s determination of where to patrol and search. To 

examine drug-related crime patterns, and to gain further insights about locations of drug-

related activities, we compared the spatial patterns of deaths involving opioids and drug-

related crimes between 2016 and 2019, and based on this analysis, investigated the 

relationships between drug activities in Chicago, a major metropolitan city in the U.S.

For this study, we designed a space-time random forest model that ingested data from 

multiple geospatial data sources to investigate drug activity patterns and their associated 

spatiotemporal characteristics in an urban setting. We accommodated both spatial and 

temporal autocorrelation in the model learning process to assist with capturing the changes 

over time and tested the model’s ability to capture trending changes by predicting future 

drug incident locations. Random forest, a machine learning model, combines a large number 

of decision trees, using selected features to split tree nodes and repeated sampling of 

different subsets of observations to train the models (Breiman, 2001). The output for random 

forest regression is the mean value of all regression trees, while the majority decision of all 

classification trees is the output for random forest classification tasks. Random forest model, 

with the capability of processing massive datasets and handling multicollinear relationships 

within multi-source datasets, has been used for drug-related public health research 

(Ancuceanu et al., 2019; Fernández-Delgado et al., 2014; Kamel Boulos et al., 2019). For 

example, a random forest model was used to detect individuals with substance use disorder 

based on a set of behavior and health characteristics (Jing et al., 2020). In previous research, 

random forest models were often implemented without using spatial and temporal relations 

between model variables. Recent studies have begun to address spatial dependencies into 

random forest models. For example, a recent study proposed a geographical random forest 

model, attempting to include spatial heterogeneity in a random forest model by 

disaggregating a global model into several local sub-models (Georganos et al., 2019) to 

understand local variations.

3. Data

3.1 Drug-related crime in Chicago

In this study, a public safety dataset provided by the Chicago Data Portal1 was used for 

accessing drug-related crime data in Chicago between 2016 and 2019. Chicago Data Portal 

extracted the public safety dataset from the Chicago Police Department’s Citizen Law 

Enforcement Analysis and Reporting (CLEAR) system. For the reported incidents, the 

police recorded the type of crime such as possession, delivery and manufacture of drugs and 

also described the drug types. In order to discover the spatial patterns of heroin and synthetic 

drug-related crimes, the incidents were categorized by drug types. With the increased 

1Chicago Data Portal: https://data.cityofchicago.org/
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presence of fentanyl in U.S. cities since 2016, we assumed that the category of synthetic 

drugs would likely include incidents involving fentanyl (Hedegaard et al., 2019).

To capture community-level characteristics in the model, we aggregated all the variables 

including the frequency of drug-related crime incidents, sociodemographic and built 

environment factors at U.S. Census block group level. Block group is the smallest 

geographic unit used by the U.S. Bureau of Census to publish sample data from the 

American Community Survey (ACS), and we selected this as the unit of analysis for this 

study. To model communities by block group, 5-year ACS estimates were used to help 

smooth any uncertainty created by using this fine level of spatial granularity. Using block 

groups helped us to account for varying community characteristics and reveal patterns at this 

scale. We defined the drug-related crime rate as the frequency of drug crimes during a time 

period aggregated by block group units and adjusted by block group population. Chicago has 

2210 block groups. Typically, a block group in Chicago has a population of 800–10,000 

individuals. It should be noted that there were eight block groups with no associated 

population counts including, for example, O’Hare International Airport and Chicago 

Midway International Airport. As our analysis examined built environment and 

sociodemographic characteristics of locations where populations were living and working, 

these eight block groups were not included in the model dataset. A complete list of factors 

we have collected in this study as well as literature that have previously established a link 

between drug activities and these factors are presented in Table A.1 in Appendix A.

Between 2016 and 2019, drug-related crimes occurred across most of downtown Chicago 

(Figure 1). For this period, 52,567 drug-related crime incidents occurred in 1,901 block 

groups out of 2,210 block groups in total. The total number of drug-related crime incidents 

(across all categories) decreased by 12% in 2017, and then increased by 21% in 2019 (Table 

1). The statistics showed that the number of heroin-related incidents was quite consistent 

from 2016 to 2017 and then increased by 18% over 2018 and 2019. For the same period, 

incidents involving synthetic drugs consistently increased, with a noticeably high growth 

rate, 94%, from 2016 to 2019.

3.2 Deaths involving opioids in Chicago

To determine the degree to which the spatial patterns of drug-related crime incidents were 

associated with locations where drug activities frequently occurred, and illustrate that drug-

related crimes were not necessarily being driven by other crime-related aspects (e.g., 

policing strategies), we analyzed the spatial patterns of opioid-involved mortality and 

compared these patterns to the reported locations of drug-related crimes. Data on opioid-

involved mortality between 2016 and 2019 for Chicago were extracted from the Medical 

Examiner Case Archive dataset accessed from Cook County Open Data2. The Cook County, 

IL Medical Examiner’s Office recorded the time and location of deaths, and determined 

causes and manners of death cases under its jurisdiction. Deaths involving all categories of 

opioids in Chicago consistently increased between 2016 and 2019 (Table 2). The number of 

heroin-involved deaths reached a peak in 2017. During the four-year period, deaths 

2Cook County Open Data: https://datacatalog.cookcountyil.gov/
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involving fentanyl increased in the Chicago area by 69%. A noticeable increase in synthetic 

drug-related crime incidents was also noted for this same period.

3.3 Built environment and sociodemographic data

We collected built environment data for the study region from the United States 

Environmental Protection Agency (EPA) Smart Location Database released in 20133. This 

dataset summarized indicators associated with urban design, location efficiency, transit and 

demographics, including, for example, street intersections per square mile, road network 

density and walkability scores. The complete list of variables in the EPA Smart Location 

Dataset are accessible in their user guide4. We also collected supplementary 

sociodemographic variables from U.S. Census at the granularity of block group including 

educational factors e.g., percentage of population with college-level education or higher, 

economic factors e.g., percentage of occupied houses, and social factors, e.g., the percentage 

of full-time employment. The American Community Survey (ACS) 5-year estimates dataset 

at block group for 2017 was used for accessing and calculating these sociodemographic 

variables. In total, 104 candidate factors were collected, including 61 built environment 

factors and 43 sociodemographic factors (Table A.1 in Appendix A).

3.4 Spatial data

The reported crimes dataset for Chicago included descriptions of locations where each 

incident occurred. The frequencies of all locations for drug-related crime reports between 

2016 and 2019 were analyzed and the most frequent locations for reported heroin and 

synthetic drug-involved crimes were computed. Based on this analysis, seven geospatial 

locations were identified as key locations. These included gas stations, vacant lots, 

abandoned buildings, parking lots, alleys, parks, and high schools. Data layers for sites 

relevant to drug-related crimes including data on vacant lots and abandoned buildings, and a 

boundary map of park property were collected from the Chicago Data Portal. Locations of 

gas stations were obtained from the ESRI Business Analyst5 dataset. Street alley networks 

were sourced from Chicago WBEZ6; public high school locations were obtained from the 

Chicago Data Portal, and private high school locations from the Cook County Open Data7. 

We calculated spatial variables from these layers and aggregated the values by U.S. census 

block group.

4. Geospatial patterns of drug-related crime incidents and opioid-involved 

deaths

Clustering analysis was implemented to determine the spatial patterns of all drug-related 

crimes, crimes by individual drug type (i.e., heroin and synthetic drugs), and for opioid-

involved deaths. Global Moran’s I statistic was used to measure the spatial autocorrelations 

3Smart Location Mapping: https://www.epa.gov/smartgrowth/smart-location-mapping
4EPA Smart Location user guide: https://www.epa.gov/smartgrowth/smart-location-mapping
5ESRI Business Analyst https://www.esri.com/en-us/arcgis/products/arcgis-business-analyst/
6Chicago WBEZ https://www.wbez.org/
7Cook County Open Data https://datacatalog.cookcountyil.gov/
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for both the drug-related crimes and the opioid-involved deaths (Li et al., 2007; Moran, 

1950).

The spatial patterns of both the reported drug-related crime incidents and opioid-involved-

deaths were significantly clustered, as illustrated by positive Global Moran’s I values of 

0.424 and 0.309, respectively, and p-values smaller than 0.001. We examined the correlation 

between the drug-related crime rates and the number of opioid-involved deaths (adjusted by 

block group population). The Pearson’s correlation coefficient between these two values was 

0.61 with the p-value smaller than 0.001. Based on these results, during this period of study, 

the spatial distribution of drug-related crime incidents and opioid-involved deaths showed a 

significant positive relation suggesting that the locations of drug-related crimes were 

indicative of where drug use was also happening in the city.

Anselin’s Local Moran’s I statistic was developed by Anselin (1995) and was commonly 

used to implement clustering analysis (Liu and Wang, 2017; Neutens et al., 2013). We used 

Anselin’s Local Moran’s I statistic to identify changing patterns of heroin and synthetic 

drug-related crime incidents over time Block groups that were in a significant high-high 

value cluster were then identified as hotspot block groups. In 2016 and 2017, two major 

clusters were found for reported crimes involving heroin (Figure 3a). Hotspot 1 (upper 

hotspot) was consistent throughout 2016 and 2019 (Figure 3a). Heroin-related crime 

incidents that occurred in hotspot 1 increased by 22% during the four-year period. By 

contrast, hotspot 2 (lower hotspot), gradually diminished during the four years and in 2019, 

impacted only two block groups (Figure 3a). During the four-year period, the heroin 

hotspots diminished over time and the synthetic drug hotspots took over in those block 

groups. The clusters of synthetic drug-related crimes changed from a scattered pattern in 

2016 to being concentrated in two distinct hotspots by the end of 2019 (Figure 3b). These 

two distinct synthetic drug hotspots were in similar locations to the heroin hotspots of 2016 

and 2017, but included a higher number of block groups.

5. Building a space-time random forest model

5.1 Incorporating space and time into a random forest model

To build a random forest model that was capable of capturing the changing patterns of 

heroin and synthetic-drug related crime incidents over time, spatial and temporal lag 

variables were added to the model in order to detect the spatial dependencies on neighboring 

block groups, and the relationships between successive time periods.

Temporal patterns of the reported crimes were used to guide the selection of time periods 

over which to detect spatial change. To select the temporal granularity for analyzing heroin-

involved crime incidents, we aggregated monthly incidents by census block group and used 

clustering to determine the hotspot block groups. A time series of heroin-related incidents 

was created based on the monthly count of hotspot block groups. To smooth out short-term 

fluctuations and distinguish the overall trend, a moving average technique was applied to the 

heroin crime hotspot block group time series data (Cryer and Chan, 2008). We selected the 

largest time interval between highest and lowest values in the time series – five months – as 

the temporal length to process the spatial pattern of heroin-related crime. Using this interval 
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helped us to reliably detect the changing pattern of incidents, even as the pattern fluctuated. 

For synthetic drug incidents, the number of incidents by block group was much smaller, as 

there were less than 50 monthly synthetic drug-related incidents in all 2202 block groups 

during the study period. This number was too small to implement clustering analysis and 

therefore, we created a time series based on the raw count of synthetic drug-related incidents 

instead of by hotspot block groups. In this time series, the longest time interval between a 

highest and lowest number of incidents was nine months, and that was used as the temporal 

granularity to identify the changing patterns for synthetic drug activities.

We trained the random forest model using different combinations of factors including 

sociodemographic factors and built environment factors, as well as three variables that 

related to change over space and time. This included two lag variables (a time-lagged 

variable and a spatiotemporally lagged variable) and a trend variable. The time-lagged 

variable was a binary variable identified based on whether a given block group was in a hot 

spot of drug-related crime during the previous time period. The spatiotemporally lagged 

variable referred to the count of block groups in queen adjacent neighborhoods that 

belonged to a hotspot during the previous time period. The trend variable was computed 

based on the time intervals calculated to capture the changing patterns of clusters (Chi and 

Zhu, 2008), and tracked any increases or decreases in the numbers of neighboring block 

groups that belonged to a hotspot during the previous time period. As a final step, model 

prediction accuracy (i.e., percentage of block groups correctly predicted) was computed.

5.2 Including key locations of drug-related crime incidents in the model

To analyze locations for drug-related crime incidents and develop a foundation for building a 

machine-learning classifier, we summarized the most frequent locations for both heroin and 

synthetic drug-related crime incidents. According to the crime data provided by the Chicago 

Data Portal, there were 180 different location descriptions in total. While numerous types of 

locations were recorded, not all of these locations were useful for our analysis. Sidewalks 

and streets, for example, were the two most frequent locations for drug-related crime 

however, these are ubiquitous features in a city and so we did not utilize either of these 

features in our model.

Similarly, specific locations at a residence (e.g., porch or yard), and vehicles were also 

recorded as frequent locations for drug-related crimes, however, these were also not used for 

this research. Instead, we used neighborhood features that were more uniquely identifiable 

including alleys, vacant buildings, vacant lots, parking lots, gas stations, parks, and high 

schools. To incorporate these key locations in the model, we calculated seven variables from 

key location layers, including the counts of gas stations, vacant lots, vacant buildings, and 

high schools, as well as alley density and area of park properties in each block group.

5.3 Model training, validating and out-of-sample testing

A random forest model was used to gain insights into the contributions of built environment 

and sociodemographic factors in classifying hotspots of both heroin and synthetic drug-

related crimes and to capture the changing patterns of drug-related activities over space and 

time. The modeling was performed in R, an open-source ecosystem that provides multiple 
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packages for machine learning, and used R packages ‘ranger’, ‘RRF’, ‘pdp’ and ‘rgdal’ 

(Bivand et al., 2008; Deng and Runger, 2013; Diggle, 2013; Wright and Ziegler, 2017).

Built environment and sociodemographic factors were used as input variables in the random 

forest classifier to identify whether a block group belonged to a hotspot or not. Bagging, also 

called bootstrap aggregating, is an ensemble algorithm that was used for selecting samples 

for each tree in the random forest. Typically, each bootstrap sample subsets approximately 

63% of the training data while leaving out about 37% of the data (Breiman, 1996). The out-

of-bag (OOB) error rate is the misclassification error rate of the estimates fitting the trees 

whose bootstrap samples do not have this observation. In this study, the OOB error rate was 

used to evaluate the fitting accuracy of the random forest model.

To test the model’s ability of predicting future spatial locations of heroin and synthetic 

drugs, an out-of-sample test using an independent test dataset was implemented to evaluate 

the model forecasting performance. We trained the space-time random forest model to 

associate the spatiotemporal patterns of drug-related crime with potential predictor variables 

using the data for the first three years (2016 ~ 2018). The drug-related crime data was 

aggregated by the computed temporal intervals (5 months for heroin-related crime and 9 

months for synthetic drug-related crime) to generate spatial patterns. The training model 

used these aggregated patterns as output, and used one month as an offset during the training 

process.

Heroin data for the last five months of 2019 and synthetic drug-related crime data for the last 

nine months of 2019 were used as the independent test datasets in the out-of-sample test. 

Predictive accuracy (ACC) was used to evaluate the model’s ability to forecast future drug 

hotspots. ACC has been widely used to assess the predictive performance of machine 

learning classifiers (Chen et al., 2017; He and Garcia, 2009) and is calculated as:

ACC = TP + TN
TP + FP + TN + PN #(1)

where TP (true positive) is the number of actual hotspot block groups that are correctly 

predicted; TN (true negative) is the number of actual non-hotspot block groups that are 

correctly predicted; FP (false positive) and FN (false negative) are the numbers of block 

groups that are incorrectly predicted.

Following the approach by Chainey et al. (2008), we computed a prediction accuracy index 

(PAI) that returned the density of drug-related crimes in the predicted block groups as 

compared to the density of drug-related crimes over the whole study area. We also computed 

a prediction efficiency index (PEI) that measured the ratio of PAI and maximum possible 

PAI that a model can achieve (Hunt, 2016). PAI and PEI were used to evaluate both the 

effectiveness and efficiency of the hotspot prediction models.

5.4 Feature selection: guided regularized random forest (GRRF)

For this research, a guided regularized random forest (GRRF) was used for feature selection 

(Deng and Runger, 2013). GRRF models use a variable importance score calculated from a 

preliminary random forest model to guide feature selection in the regularized random forest. 
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Regularization aims at selecting high-quality feature subsets to avoid overfitting problems by 

penalizing inputting new features into the model (Deng and Runger, 2012). A feature with a 

higher importance score in the preliminary random forest is penalized less in GRRF. GRRF 

selects a compact feature subset and reduces redundancy among the selected features.

For this research, we collected 104 candidate factors in total, including 61 built environment 

factors and 43 sociodemographic factors. GRRF was used to select two compact variable 

subsets for heroin model and synthetic drug model separately. For heroin-related crime 

hotspot classification, input variables selected by GRRF included 20 built environment 

factors and 26 sociodemographic factors, as well as three spatial and temporal lag variables 

(Table A.2 in Appendix A). For synthetic drug-related crime hotspot classification, selected 

factors included 17 built environment factors and 23 sociodemographic factors. The three 

spatiotemporal lag variables were also included (Table A.3 in Appendix A).

5.5 Model optimization: handling class imbalances, grid search for model 
hyperparameters and weighting key location features at splitting nodes

To handle any class imbalance problems that arose due to the presence of spatial clusters or 

hotspots, two techniques, oversampling minority classes and underdamping majority classes 

(i.e. using bagging to repeatedly generate random subsets for each decision tree) have been 

recognized by researchers as efficient resampling methods (Japkowicz and Stephen, 2002; 

Kotsiantis et al., 2006; Liu et al., 2009). An imbalanced class problem existed in our 

synthetic drug training dataset, for example, for the first time period, January through 

September 2016, 2164 block groups belonged to the majority class (i.e., block groups that 

were not in a hotspot) while only 39 block groups belonged to the minority class (i.e., block 

groups belonging to a hotspot). We tested oversampling the minority class at multiple ratios 

of (α = 100%, 200%, 300%, 400% and 500%) and repeated underdamping the majority 

class at ratios of β (β = 50%, 25%, 12.5%, 6.25%, and 3.13%) during the bootstrapping 

process. We compared the classification accuracy of these 25 (5 × 5) combinations and 

found that when α=200% and β = 25%, the model had the best prediction performance. For 

the heroin training dataset, the class imbalance problem was present but not quite as strong 

as with synthetic drug case. Resampling the heroin training dataset did not help to improve 

model performance in terms of prediction accuracy, so neither underdamping nor 

oversampling was implemented for the heroin training dataset.

The random forest model uses hyperparameters that need to be set, including numbers of 

drawn candidate variables at each split (mtry), the number of trees (ntree), the sample size of 

observations for each tree, and the minimum number of samples for each node (Probst et al., 

2019). Two hyperparameters, mtry and ntree have been shown to influence prediction 

performance (Bernard et al., 2009; Biau and Scornet, 2015). Tuning hyperparameters can 

improve the accuracy of the random forest model to some extent. A model tuning method, 

grid search, was used for searching for the best combination of two hyperparameters, i.e., 

the number of trees (ntree) and numbers of drawn candidate variables at each split (mtry) in 

our random forest model (Probst et al., 2019). The typical default setting in a random forest 

classifier for these two hyperparameters is ntree = 500 or 1000, and mtry = nv where nv is 

the number of input variables. In our model, 49 variables were used for predicting heroin 
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hotspots and 43 variables were used for predicting synthetic drug hotspots. The typical 

default setting for our classifier was ntree = 500 and mtry = 7, however this default setting 

might not always be the best setting. In our models, with a given mtry, the error rate of the 

misclassification became stable when ntree reached approximately 200. Therefore, we used 

the tuning grid for ntree from 200 to 1000 with step = 100 and mtry ranging from 3 to 14 

with step = 1, then, set the grid search process with 5-fold cross-validation and 3 repeats per 

fold. We found that the best settings of hyperparameters for classifying the heroin-related 

crime hotspots was when using mtry = 8 and ntree = 500, and for synthetic drug hotspots 

when mtry = 14 and ntree = 400.

Weighting the features that were known to be more informative for detecting drug-related 

crime hotspots (i.e., predicting dependent variables) more than other variables can increase 

the contribution of these features and is likely to improve the classification accuracy 

(Amaratunga et al., 2008; Ma et al., 2011; Malley et al., 2012). In this study, the key 

locations that were identified from the drug crime records were considered to be more 

informative than other built environment or sociodemographic variables. Given this, we set 

higher weights for the key location variables to have a higher probability of these variables 

being selected in the splitting nodes.

5.6 Contributions of variables in the model

In order to understand the relationships between the different factors and the reported drug 

incident patterns, we analyzed variable importance that revealed the contributions of 

different factors to identify heroin and synthetic drug-related crime hotspots. To interpret 

each factor’s contribution for classification, we used corrected impurity importance, also 

namely actual impurity reduction (AIR), to measure variable importance (Nembrini et al., 

2018). Corrected impurity importance measures the improvement of the classification rate at 

splitting nodes without bias (Calle and Urrea, 2011; Nembrini et al., 2018; Strobl et al., 

2007). We also constructed partial dependence plots (PDP) for the spatial and temporal lag 

variables (Friedman, 2001; Greenwell, 2017). PDP used a partial dependence function to 

measure the marginal effect of the variables on the classification outcome (Greenwell, 2017; 

Molnar, 2019). This process provided insights into the relationships of drug-related activity 

patterns between successive time periods.

6. Applying the space-time random forest model to drug-related crimes

6.1 Model training and contribution of variables

To train the random forest classifier to learn the changing trends of drug-related crime 

patterns and reinforce the role of spatiotemporal autocorrelation underlying any of the 

changes, we fitted and validated the model using the data between 2016 and 2018, and 

evaluated the model performance in terms of the misclassification rate based on out-of-bag 

(OOB) error. The final time periods of 2019 ((i.e., August-December 2019 for heroin, April-

December 2019 for synthetic drugs) were used to perform an independent test of the 

model’s prediction performance. For classifying heroin crime hotspot clusters, the OOB 

error 2.41% showing that it correctly classified 97.59 % of block groups during the training 
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process. For synthetic drug hotspots, the OOB error was 4.52% indicating that the classifier 

correctly classified 95.48% block groups.

In order to measure the contribution of each variable for classifying the hotspots, we used 

actual impurity reduction (AIR) to evaluate the variable importance. Variables used for 

classifying heroin crime hotspots (Figure 4a) and synthetic hotspots (Figure 4b) were ranked 

by their importance scores. For classifying heroin hotspots, the top two important variables 

were key location variables, vacant lots (VacLot) and vacant buildings (VacBldg). The next 

two high ranking variables were sociodemographic variables, percentage of low-wage 

workers (R_PctLowWage) and percentage of the population with Bachelor’s degree or 

higher (PBachelorHigher). For classifying synthetic drug-related hotspots, high ranking 

variables were similar to those for heroin but the rank varied. The top two variables were 

VacLot and VacBldg (Figure 4b). A different set of sociodemographic factors (e.g. race and 

ethnicity, median household income, percentage of employment) were also correlated with 

synthetic drug-related crime locations.

We selected four built environment and sociodemographic factors that were in the top five 

both for classifying heroin hotspots and synthetic drug hotspots (Figure 5). These four 

variables were visualized by the boxplots for heroin-related crime hotspots, synthetic drug-

related crime hotspots and other block groups that belonged to neither a heroin nor a 

synthetic drug hot spot. There were more vacant buildings and vacant lots in heroin and 

synthetic drug crime hotspots than in non-hotspot block groups (Figure 5a and 5b). The 

percentage of low-wage workers was higher in heroin and synthetic drug hotspots than in 

other areas (Figure 5c). Median PBachelorHigher in the other block groups was 19.4% that 

was much higher than either heroin (5.6%) or synthetic drug hotspots (6.6%) (Figure 5d).

To understand the relationships of drug crime patterns between successive periods t −1 and t, 
partial dependence plots (PDP) were used to analyze the effect of one or two input features 

(i.e., spatial and temporal lag variables at t-1) on the prediction (i.e., the probability of a 

block group being classified as a hotspot block group at t). The length of a time period was 

calculated from the previous time series analysis. For example, in the heroin model, when 

time period t-1 corresponded to January-May 2016, time period t corresponded to Feb-June 

2016. For predicting heroin hotspots, the partial dependence plot of nb_t_1 (number of 

neighboring hotspot block groups during t-1 period) showed that being surrounded by more 

hotpot block groups resulted in a higher probability of a given block being classified as a 

hotspot block group in a successive time period t (Figure 6 a). When a given block group at 

t-1 was surrounded by a low number of hotspot block groups, this block group was more 

likely to maintain its status in the successive time period (Figure 6 a, b). For predicting 

synthetic drug hotspots, a given block group tended to become the same status as its 

surrounding block groups (Figure 6 c, d).

6.2 Predicting heroin and synthetic drug hotspots

To analyze the predictive power of built environment and sociodemographic factors, and also 

the spatiotemporal variables in the space-time random forest model, we built seven models 

using different combinations of categories of variables as model input. We trained the model 

using the data between 2016 and 2018. As stated above, heroin data for the last five months 
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and synthetic drug-related crime data for the last nine months of 2019 were used as 

independent test datasets to evaluate out-of-sample forecasting accuracy. For this out-of-

sample testing, we compared the predicted hotspots with the actual hotspots calculated from 

the 2019 drug crime data.

To test the model’s ability to predict heroin hotspots, built environment and 

sociodemographic factors assisted in locating the potential hotspots, while spatial and 

temporal lag variables enabled the classifiers to learn the changing spatial pattern of hotspots 

(Figure 7). Predicting heroin hotspots using only sociodemographic variables (Figure 7a) or 

built environment variables (Figure 7b) generated overprediction in the lower hotspot 

because the model learned information only from previous hotspots but did not capture the 

disappearing pattern, while only using spatial and temporal lag variables in the model 

(Figure 7 f) resulted in underestimating the size of the upper hotspot. Inputting 

spatiotemporal autocorrelation variables into the model improved the prediction 

effectiveness of the model as illustrated by the increase in PAI (Table 3), but the variations 

on prediction efficiency (PEI) of seven models were minimal. The model using the three 

types of variables (Figure 7g) was able to correctly predict 81.4% heroin hotspot block 

groups and 99.3% non-hotspot block groups, as the overall prediction accuracy (ACC) was 

98.3% (Table A.4 in Appendix A).

For predicting synthetic drug hotspots, incorporating spatial and temporal variables enabled 

the random forest classifier to capture the expanding hotspots (Figure 8), while only using 

spatiotemporal autocorrelation in the model resulted in an overprediction of the size of the 

hotspot (Figure 8f). The built environment (Figure 8a) and sociodemographic factors (Figure 

8b) both played important roles for predicting synthetic drug hotspots but neither of them 

enabled the model to learn the missing pattern of the small hotspot in the southeastern side. 

The best model (Figure 8g) for predicting synthetic drug-related hotspots successfully 

identified which block groups were not likely to become a hotspot block group (93.0 % 

correctly identified), but might underestimate the size of actual hotspots (60.0% correctly 

identified). The best model with the highest ACC, PAI, and PEI for predicting synthetic drug 

hotspots, 90.7%, used a combination of all three types of variables (Table 3 and Table A.4 in 

Appendix A).

7. Discussion

In this research, a space-time random forest model was designed to investigate changing 

patterns of reported crime incidents involving different drugs in a major metropolitan city 

(Chicago) over time. One of the outcomes of this study was that we identified a set of factors 

useful for identifying heroin and synthetic drug hotspots in a city. We found that both heroin 

and synthetic drug hotspots were more likely to appear in the neighborhoods where there 

were more vacant buildings and vacant lots comparing to other non-hotspot block groups, 

while in synthetic drug-related hotspots, there were relatively more vacant buildings and less 

vacant lots than in heroin-related hotspots. While the characteristics of heroin and synthetic 

drug-related crime hotspots shared some similarities, we also investigated the possibility of 

an incident involving both heroin and synthetic drugs, but we found only a few (less than 

0.1%) incidents were reported to involve both drugs. We also found that some 
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sociodemographic factors were strong indicators for two types of drug hot spots but the rank 

of the factors varied. Overall, low income and education were the top two sociodemographic 

factors for predicting heroin hotspots, while low employment was also an important 

correlate with synthetic drug-related hotspots. Some of these top factors have also been 

found to be significantly related to drug activities in previous research. For example, 

research has established significant sociodemographic and built environment correlates for 

drug activities, typically including low education levels (McCord and Ratcliffe, 2007), low 

income (Vilalta, 2010) and high unemployment rate (Cerdá et al., 2013).

Incorporating spatial and temporal relationships into a random forest model enabled the 

model to learn the changing trends of the spatial patterns. In our research, incorporating 

space and time allowed the model to capture the concentration of block groups over time 

(heroin) or the increase in block groups (synthetic drugs) in Chicago during the study time 

period. We also compared our model results with a previous study that used a random forest 

model approach to predict crime hotspots (Borges et al., 2017). They used urban features 

and time-varying features such as timestamps of crime occurrences in a random forest 

model. We found that our approach based on incorporating spatiotemporal autocorrelation, 

improved the random forest model’s performance in terms of prediction accuracy and 

efficiency by enabling the model to capturing the changing patterns of drug activities.

For this research, the drug-related crime data accessed from Chicago Data Portal were 

extracted from the Chicago Police Department’s Citizen Law Enforcement Analysis and 

Reporting (CLEAR) system. We do not have information on policing practices during the 

study time period nor do we know to what degree the drug crime locations may be 

influenced by these practices. However, our analysis of opioid-involved mortality between 

2016 and 2019 showed a positive association between the locations of opioid-involved 

deaths and drug-related crimes. Understanding, modeling and predicting the changing 

patterns of drug activities will further assist in locating substance use treatments and 

counseling services. It should also be acknowledged that drug-related crimes might be 

underreported (Mosher et al., 2010). For example, Mosher et al. (2010) indicated that high 

school administrators might be pressured to underreport or not report school crimes and 

minority groups had a greater tendency to underreport crime behaviors. Using crime-related 

data may miss additional locations where drugs were present (but no crime incidents were 

reported).

8. Conclusions

Our approach highlights a promising direction of using machine learning together with 

spatiotemporal autocorrelation to analyze changing patterns of repeated events – in this case, 

drug-related incidents – in cities. Incorporating space and time into a machine learning 

model assists in making more accurate forecasts of changing patterns. Future work could 

consider combining spatiotemporal heterogeneity with machine learning models by adding 

spatiotemporal bandwidths during the modeling process to investigate the patterns at varying 

spatial and temporal scales. In this study, a random forest model was used for a space-time 

analysis framework. Future research could examine other machine learning approaches such 

as gradient boosting model to test spatiotemporal approaches using other tools. This study 
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also applied the space-time analysis framework and machine learning technologies to 

investigate the spatiotemporal patterns at block group level of more than 52,000 drug-related 

crime incidents, including more than 16,000 incidents involving heroin and synthetic drugs, 

in Chicago between 2016 and 2019. Our research found that while heroin-related crime 

incidents dropped slightly in 2017, they rose again in 2018, and continually increased in 

2019, staying mostly in the same locations. The pattern of crime incidents involving 

synthetic drugs evolved from a scattered pattern in 2016 to two distinct hotspot areas in 

2019. These hotspots were in the locations of 2016 and 2017 heroin-related hotspots. 

Understanding where drug-related crimes have been occurring is important as it can be 

indicative of where drug use is happening. Analyzing the geospatial patterns of different 

drugs including successfully being able to predict how these patterns have changed over 

space and time can provide a basis for applying further treatment services and mitigation 

efforts, and also be useful for assessing current related services and efforts. Identifying built 

environment drivers for drug hot zones such as key locations including vacant buildings and 

vacant lots where drug-related crime frequently occurred can help public safety stakeholders 

with effective decision making relating to particular drugs. Future work could investigate 

additional key locations in more detail.
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Appendix A.: Supplementary materials for modeling

Table 1.

Summary of factors established to be linked to drug activities in literature and related 

candidate variables collected in this study

Factors Related 
measures

Related variables collected in this 
study References

Income 
inequality

Low income, 
medium 
income, and 
high income

Percentage of low-wage workers, 
percentage of individuals in poverty 
status, percentage of medium -wage 
workers, percentage of high-wage 
workers

Dasgupta et al., 2017; Lipton et al., 
2013; Yarbrough et al., 2019

Low education 
level

College 
education

Percentage of population with college-
level degree or higher Nechuta et al., 2018

High 
unemployment 
rate

Employment 
status

Total number of workers, population at 
working age, employment, 
unemployment, gross employment 
density, full-time employment, part-
time employment

Cooper et al., 2016; Lipton et al., 
2013; McCord and Ratcliffe, 2007; 
Yarbrough et al., 2019

Employment by 
category

Service jobs, industrial jobs, 
entertainment jobs, retail jobs, office 
jobs, education jobs, health care jobs, 
public administration jobs

Xia et al. Page 15

Comput Environ Urban Syst. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Factors Related 
measures

Related variables collected in this 
study References

Demographics

Population Total population, residential density, 
population density

Chaney and Rojas-Guyler, 2015; 
Iyiewuare et al., 2017; Lipton et al., 
2013; Marotta et al., 2019; 
Marshall et al., 2017; Reisner et al., 
2015; Vilalta, 2010

Household 
status

Total households, median household 
income, jobs per household, household 
workers per job percentage of 
household in poverty status, number of 
households own two or more 
automobiles, number of households 
own one automobile, number of 
households own zero automobile

Gender Percentage of female population, 
percentage of male population

Race and 
ethnicity

Percentage of white Americans, 
percentage of African Americans, 
percentage of Asian Americans, 
Percentage of Hispanic/Latino 
Americans

Community 
environment

Road network

Total road network density, street 
intersection density, network density of 
auto-oriented links, network density of 
pedestrian-oriented links, network 
density of multi-model links, density of 
auto-oriented intersections, density of 
pedestrian-oriented intersections, 
density of multi-model intersections

Cerdá et al., 2013; Marshall et al., 
2017; Srinivasan et al., 2003; Sutter 
et al., 2019; Weisburd and 
Mazerolle, 2000

Land use 
factors

Walkability index, total land area, total 
water area, total area, protected 
conservation area, area of unprotected 
land

Community 
characteristics

Occupancy
Percentage of house occupancy, 
number of vacant buildings, number of 
vacant lots

Cerdá et al., 2017, 2013; Darke et 
al., 2001; Lipton et al., 2013; 
Martins et al., 2015; McCord and 
Ratcliffe, 2007; Moore et al., 2018; 
Sutter et al., 2019; Visconti et al., 
2015

House 
ownership

Percentage of house ownership, 
percentage of rental properties

Activity density 
and diversity

Gross house unites and employment 
density, gross retail employment 
density, gross office employment 
density, gross industrial employment 
density, gross service employment 
density, gross entertainment 
employment density, gross education 
employment density, gross health care 
employment density, gross public 
administration employment density, 
employment entropy, employment and 
household entropy, commute trip 
productions and trip attractions 
equilibrium index, regional diversity

Key locations

Frequent 
locations for 
drug-related 
crimes

Alley density, number of vacant lots, 
number of vacant buildings, number of 
gas stations, number of parking lots, 
total area of park properties, number of 
high schools

Key locations were discussed in the 
Data section

Note: some variable names listed in the table refer to a group of variables (e.g., intersection density referring to intersection 
density of all intersections, three-leg intersection density and intersection density of intersections having four or more legs).
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Table 2.

List of variables in the random forest model for predicting heroin-related activity hot zones

Variable name Category Description

GasStation Built environment Number of gas stations in each U.S. census block group

VacLot Built environment Number of vacant lots in each U.S. census block group

VacBldg Built environment Number of vacant buildings in each U.S. census block group

ParkingLot Built environment Number of parking lots in each U.S. census block group

AlleyDen Built environment Alley density

ParkArea Built environment Area of park propertied in each U.S. census block group

HighSch Built environment Number of high schools in each U.S. census block group

POccupyHouse Built environment % of house occupancy

POwner Built environment % of house ownership

PRenter Built environment % of house rent

D3a Built environment Total road network density

D3amm Built environment Network density of auto and pedestrian links

D3apo Built environment Network density of pedestrian links

D3b Built environment Street intersection density

D3bpo3 Built environment Pedestrian-oriented intersection (three legs) density

D1A Built environment Gross residential density

D1C Built environment Gross employment density

D1C8_Off10 Built environment Gross office employment density

D1D Built environment Gross activity density (employment and house units)

D2R_JOBPOP Built environment Regional Diversity (ratio of jobs/population)

TotPop Sociodemographic Total population in each U.S. census block group

TotHH Sociodemographic Total households in each U.S. census block group

PMale Sociodemographic Percentage of male population

PFemale Sociodemographic Percentage of female population

PWhite Sociodemographic % of population selecting race as white American alone

PBlack Sociodemographic % of population selecting race as black/African American alone

PAsian Sociodemographic % of population selecting race as Asian American alone

Phispanic Sociodemographic % of population selecting race as Hispanic/Latino American 
alone

PBachelorHigher Sociodemographic % of population with college level degree

MedianHHIncome Sociodemographic Median household income

PPovertyHouse Sociodemographic % of household in poverty status

PPovertyIndv Sociodemographic % of population in poverty status

PEmploy Sociodemographic % of full time and part time employees

Punemploy Sociodemographic % of unemployment

PFulltimeEmploy Sociodemographic % of full-time employment among all employment

PParttimeEmploy Sociodemographic % of part-time employment among all employment
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Variable name Category Description

P_WRKAGE Sociodemographic % of population that is working aged

PCT_AO0 Sociodemographic % of zero-car households

PCT_AO1 Sociodemographic % of one-car households

AUTOOWN2P Sociodemographic Number of households that own two or more automobiles

PCT_AO2P Sociodemographic % of two-plus-car households

WORKERS Sociodemographic Number of workers

R_HIWAGEWK Sociodemographic Number of high wage workers

R_PCTLOWWA Sociodemographic % low wage workers

E5_IND10 Sociodemographic Industrial jobs

E8_SVC10 Sociodemographic Service jobs

HS_t_1 Spatial and temporal lag 
variables

Time-lagged variable (whether this BG belonged to a hotspot at 
t-1 period)

nb_t_1 Spatial and temporal lag 
variables

Spatiotemporally lagged variable (number of neighboring BGs 
belonged to a hotspot at t-1 period)

trend Spatial and temporal lag 
variables

Trend variable (increase or decrease in the number of 
neighboring block groups that belonged to a hotspot at t-1 
period)

Table 3.

List of variables in the random forest model for predicting synthetic drug-related activity hot 

zones

Variable name Category Description

GasStation Built environment Number of gas stations in each U.S. census block group

VacLot Built environment Number of vacant lots in each U.S. census block group

VacBldg Built environment Number of vacant buildings in each U.S. census block group

ParkingLot Built environment Number of parking lots in each U.S. census block group

AlleyDen Built environment Alley density

ParkArea Built environment Area of park propertied in each U.S. census block group

HighSch Built environment Number of high schools in each U.S. census block group

POccupyHouse Built environment % of house occupancy

POwner Built environment % of house ownership

PRenter Built environment % of house rent

AC_UNPR Built environment Total land area (not include park or conservation area)

D3b Built environment Street intersection density

D3bmm3 Built environment Auto- and pedestrian-oriented intersection (three legs) density

D1A Built environment Gross residential density

D1C5_Ret10 Built environment Gross retail employment density

D1D Built environment Gross activity density (employment and house units)

D2A_EPHHM Built environment Employment and household entropy

TotPop Sociodemographic Total population in each U.S. census block group
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Variable name Category Description

TotHH Sociodemographic Total households in each U.S. census block group

PMale Sociodemographic Percentage of male population

PFemale Sociodemographic Percentage of female

PWhite Sociodemographic % of population selecting race as white American alone

PBlack Sociodemographic % of population selecting race as black/African American alone

Pasian Sociodemographic % of population selecting race as Asian American alone

Phispanic Sociodemographic % of population selecting race as Hispanic/Latino American 
alone

PBachelorHigher Sociodemographic % of population with college level degree

MedianHHIncome Sociodemographic Median household income

PPovertyHouse Sociodemographic % of household in poverty status

PPovertyIndv Sociodemographic % of population in poverty status

PEmploy Sociodemographic % of full time and part time employees

Punemploy Sociodemographic % of unemployment

PFulltimeEmploy Sociodemographic % of full-time employment among all employment

PParttimeEmploy Sociodemographic % of part-time employment among all employment

P_WRKAGE Sociodemographic % of population that is working aged

PCT_AO0 Sociodemographic % of zero-car households

PCT_AO2P Sociodemographic % of two-plus-car households

R_HIWAGEWK Sociodemographic Number of high wage workers

R_PCTLOWWA Sociodemographic % low wage workers

E8_RET10 Sociodemographic Retail jobs

E8_OFF10 Sociodemographic Office jobs

HS_t_1 Spatial and temporal lag 
variables

Time-lagged variable (whether this BG belonged to a hotspot at 
t-1 period)

nb_t_1 Spatial and temporal lag 
variables

Spatiotemporally lagged variable (number of neighboring BGs 
belonged to a hotspot at t-1 period)

trend Spatial and temporal lag 
variables

Trend variable (increase or decrease in the number of 
neighboring block groups that belonged to a hotspot at t-1 
period)

Table 4.

Classification confusion matrixes, accuracy for predicting hotspot and non-hotspot classes 

and overall prediction accuracy (ACC)

Drug type Heroin Synthetic drug

Model 1
(sociodemographic)

pred 
obs

hotspot other class 
accuracy

ACC pred 
obs

hotspot other class 
accuracy

ACC

hotspot 106 12 89.8%
97.7%

hotspot 96 56 63.2%
90.5%

other 38 2046 98.2% other 154 1896 92.5%

Model 2
(built env)

hotspot other hotspot other

hotspot 106 12 89.8% 97.7% hotspot 96 56 63.2% 90.5%
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Drug type Heroin Synthetic drug

other 38 2046 98.2% other 154 1896 92.5%

Model 3
(sociodemographic 
+ built env)

hotspot other hotspot other

hotspot 106 12 89.8%
97.7%

hotspot 96 56 63.2%
90.5%

other 38 2046 98.2% other 154 1896 92.5%

Model 4
(sociodemographic 
+ spatiotemporal 
autocorrelation)

hotspot other hotspot other

hotspot 92 26 78.0%
98.4%

hotspot 93 59 61.2%
90.5%

other 10 2074 99.5% other 151 1899 92.6%

Model 5
(built env + 
spatiotemporal 
autocorrelation)

hotspot other hotspot other

hotspot 88 30 74.6%
98.2%

hotspot 97 55 63.8%
89.1%

other 10 2074 99.5% other 186 1864 90.9%

Model 6
(spatiotemporal 
autocorrelation)

hotspot other hotspot other

hotspot 87 31 73.7%
98.3%

hotspot 111 41 73.0%
87.5%

other 7 2077 99.7% other 234 1816 88.6%

Model 7
(sociodemographic 
+ built env + 
spatiotemporal 
autocorrelation)

hotspot other hotspot other

hotspot 96 22 81.4%
98.3%

hotspot 91 61 60.0%
90.7%

other 15 2069 99.3% other 144 1906 93.0%
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Highlights:

• Underlying factors for patterns of drug activities involving heroin and 

synthetic drugs were identified

• Integrating space-time analysis framework and machine learning to analyze 

patterns of repeated events in an urban context

• Accommodating both spatial and temporal autocorrelation in the model 

learning process
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Figure 1. 
Drug-related crimes for all categories of drugs in Chicago for 2016, 2017, 2018 and 2019.
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Figure 2. 
Frequency of drug-related crime incidents adjusted by population

(count/population*1000), and number of deaths involving opioids adjusted by population

(count/population*1000) by block group between 2016 and 2019
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Figure 3. 
Spatial clustering of drug-related crime incidents involving (a) heroin and (b) synthetic 

drugs in Chicago for 2016, 2017, 2018 and 2019
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Figure 4. 
(a) top 20 variables with the highest importance score for classifying heroin hotspots; (b) top 

20 variables with the highest importance score for classifying synthetic drug hotspots.
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Figure 5. 
Boxplots of (a) number of vacant buildings; (b) number of vacant lots; (c) percentage of 

low-wage workers and (d) percentage of population with Bachelor’s or higher degree for 

heroin-related crime hotspots, synthetic drug-related crime hotspots and other block groups
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Figure 6. 
Partial dependence plots of classification of heroin-related crime hotspots on selected 

variables (a) nb_t_1 (number of neighboring block groups belonged to a heroin hotspot at 

t-1); (b) joint effect of nb_t_1 and HS_t_1 (whether this block group belonged to a heroin 

hotspot at t-1, class 0 represented non-hotspot block group and class 1 represented hotspot 

block group); partial dependence plots of classification of synthetic drug-related crime 

hotspots on selected variables (c) nb_t_1; (d) joint effect of nb_t_1 and HS_t_1

Xia et al. Page 31

Comput Environ Urban Syst. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Space-time random forest model predicted heroin-related hotspot map using input variables: 

(a) sociodemographic factors (b) built environment factors (c) sociodemographic and built 

environment factors (d) sociodemographic factors and spatiotemporal autocorrelation (e) 

built environment factors and spatiotemporal autocorrelation (f) spatiotemporal 

autocorrelation (g) sociodemographic, built environment factors and spatiotemporal 

autocorrelation and (h) actual heroin hotspots calculated from the drug crime data, for 

August-December 2019 in Chicago
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Figure 8. 
Space-time random forest model predicted synthetic drug-related hotspot map using input 

variables: (a) sociodemographic factors (b) built environment factors (c) sociodemographic 

and built environment factors (d) sociodemographic factors and spatiotemporal 

autocorrelation (e) built environment factors and spatiotemporal autocorrelation (f) 

spatiotemporal autocorrelation (g) sociodemographic, built environment factors and 

spatiotemporal autocorrelation and (h) actual synthetic drug hotspots calculated from drug-

related crime data, for April-December 2019 in Chicago
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Table 1.

Summary of drug-related crimes in Chicago for 2016, 2017, 2018 and 2019

Year Number of incidents 2016 2017 2018 2019

Total drug-related crimes 13318 11677 13495 14077

Heroin-related incidents 3500 3449 3807 4065

Synthetic drug-related incidents 269 309 396 521
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Table 2.

Deaths involving opioid in Chicago for 2016, 2017, 2018 and 2019

Year Number of deaths 2016 2017 2018 2019

Total deaths involving opioids 743 794 801 879

Deaths involving heroin 418 542 489 473

Deaths involving fentanyl 405 465 624 685
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Table 3.

Model evaluation: classification accuracy (ACC), prediction accuracy index (PAI) and prediction efficiency 

index (PEI)

Drug Type Model
Heroin Synthetic drug

ACC PAI PEI ACC PAI PEI

Model 1
(sociodemographic) 97.7% 11.02 0.877 90.5% 4.37 0.548

Model 2
(built env) 97.7% 11.02 0.877 90.5% 4.37 0.548

Model 3
(sociodemographic + built env) 97.7% 11.02 0.877 90.5% 4.24 0.542

Model 4
(sociodemographic + spatiotemporal autocorrelation) 98.4% 14.34 0.877 90.5% 3.90 0.540

Model 5
(built env + spatiotemporal autocorrelation) 98.2% 14.75 0.876 89.1% 4.34 0.508

Model 6 (spatiotemporal autocorrelation) 98.3% 15.29 0.878 87.5% 3.47 0.544

Model 7
(sociodemographic + built env + Spatiotemporal autocorrelation) 98.3% 13.44 0.876 90.7% 4.47 0.549
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