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Abstract

Histone tails, representing the N- or C-terminal regions flanking the histone core, play essential 

roles in chromatin signaling networks. Intrinsic disorder of histone tails and their propensity for 

post-translational modifications allow them to serve as hubs in coordination of epigenetic 

processes within the nucleosomal context. Deposition of histone variants with distinct histone tail 

properties further enriches histone tails’ repertoire in epigenetic signaling. Given the advances in 

experimental techniques and in silico modelling, we review the most recent data on histone tails’ 

effects on nucleosome stability and dynamics, their function in regulating chromatin accessibility 

and folding. Finally, we discuss different molecular mechanisms to understand how histone tails 

are involved in nucleosome recognition by binding partners and formation of higher-order 

chromatin structures.
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Introduction

Packing of eukaryotic DNA into chromatin engages the basic building blocks called 

nucleosomes. Nucleosome core particles (NCP) consist of an octamer of four types of 

histones (H2A, H2B, H3, H4), and ~147 DNA base pairs wrapped around them [1]. The N- 

and C-terminal intrinsically disordered (IDP) regions flanking histone cores represent 

histone tails that do not have well determined tertiary structure but rather exist in a dynamic 

conformational ensemble. In addition, a linker histone H1, comprising a globular domain 

and disordered N-and C-terminal tails, can bind to nucleosome to form so called 

chromatosome. The variability in histone tails can be introduced through post-translational 

modifications (PTM) and deposition of histone variants. The roles of histone tails in the 

epigenetic regulation have been elucidated through the advances in experimental approaches 
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such as nuclear magnetic resonance (NMR) spectroscopy, cryo-electron microscopy (cryo-

EM), fluorescence resonance energy transfer (FRET), chemical crosslinking and mass 

spectrometry (MS) [2*,3,4**,5,6,7]. A large variety of histone tail PTMs, histone modifying 

enzymes and reader proteins has been identified and characterized to unravel their roles in 

various regulatory processes [8,9]. With a rapidly increasing number of histone and 

nucleosome complex structures deposited in the Protein Data Bank (PDB) [10], atomic 

details of histone tail mediated interactions have been revealed [11*,12**,13**].

Histone tails participate in various chromatin functions. They moderate nucleosome stability 

and dynamics, DNA accessibility, nucleosome sliding and repositioning [14,15]. One of the 

most important roles of histone tails is associated with nucleosomal function to ensure the 

coordination in time and space of different pathways of epigenetic regulation. Indeed, 

nucleosomes represent hub points in chromatin signal flow and form a dense set of 

interactions with other macromolecules [16,17*]. This requires modularity, a crosstalk 

between signaling components, proofreading capability and redundancy which in turn yields 

high response sensitivity and robustness. In this review, we summarize the distinct biological 

and physico-chemical properties of histone tails which allow them to perform these above-

mentioned functions in the context of the full nucleosome and chromatin.

Physico-chemical properties of histone tails are essential for chromatin 

signaling

IDPs are characterized by certain physico-chemical properties which are explored by histone 

tails. Intrinsic disorder in histone tails may speed up the search for nucleosome targets and 

facilitate their interactions with partners. To achieve it, according to the fly-casting 

mechanism, intrinsically disordered proteins use an increased capture radius for specific 

binding compared to folded proteins [18]. It has been known for a long time that histone 

tails affect nucleosome thermodynamic stability and dynamics. Removing tails may induce a 

more rapid nucleosome unwrapping but the long-lived DNA detachments may lead to 

structural rearrangements of the H3 tails delaying of DNA re-wrapping [19,20*,21] (Figure 

2c). Histone tail dynamics is correlated with the DNA unwrapping although this coupling 

strongly depends on the salt concentration [7,22]. The energetic barrier in nucleosome 

unwrapping mainly arises from the electrostatic interactions between DNA and histone core. 

However, according to the recent study, the unwrapping of DNA from histone core abolishes 

the tail-DNA interactions and results in an increased conformational entropy of histone tails. 

Thus, the energetic barrier arising from the electrostatic interactions can be significantly 

offset by such entropic contribution from histone tails (enthalpy-entropy compensation) 

[20*]. The same study suggested that histone modifications may modulate the stability of 

nucleosomes through fine-tuning of histone tails’ entropic contributions to the free energy of 

nucleosome unwrapping [20*].

Growing evidence demonstrates the functional importance of so-called fuzzy interactions 

[23] mediated by histone tails when a high conformational heterogeneity of tails can be 

maintained in the bound state [12**,13**,24*,25]. It has been suggested that such 

interactions may provide high on- and off-rates, thereby enabling rapid signaling response in 
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chromatin [24*,25]. Moreover, high conformational flexibility maintained on interaction 

interfaces minimizes the conformational entropy loss upon tail binding and facilitates the 

binding of histone modifying enzymes to multiple PTM sites [13**,24*,25]. The following 

example illustrates how interactions between two disordered regions of chaperone Vps75 

and H3 N-terminal tail allow H3 tail to stay in close proximity to the acetyltransferase 

Rtt109 active site. As a consequence, different H3 acetylation sites, K9, K23 or K27, can be 

all dynamically exposed to the catalytic pocket with the minimal entropic penalty [13**]. 

Such mechanism can, in turn, promote the cooperativity between nearby epigenetic marks of 

different types. Finally, disordered histone tails may promote the formation of complexes, as 

was observed in the case of H1 C-terminal tail which stays disordered, bridges together and 

stabilizes the complex between importin7 and importinβ [12**] (Figure 1a).

Disordered histone tails can fold upon binding undergoing so called disorder-order 

transitions. In such cases, the dynamic intrinsically disordered tails lose entropy, which may 

result in high specificity recognition even if the binding affinity is rather low. The following 

roles of disorder-order transitions may be directly connected to histone tails’ functions in 

chromatin signaling. First, disorder-order transitions may maintain the spatial clustering of 

residues. Recent simulation study showed that N-terminal tail of H1 was completely 

unstructured in the free unbound state but folded upon binding to nucleosome [26*]. Such 

disorder-order transition allowed to preserve clustering of basic residues (K14, K17, K20 

and K21) and provided concerted positive charges on one face of the formed alpha helix 

promoting interactions between H1 N-terminal tail and DNA [26*]. Second, disordered tails 

may adopt different stable conformations upon binding to different partners. This could 

confer functional promiscuity enabling tails to bind to a wide range of different chromatin 

factors. Third, disorder-order transitions may modulate and drive the signal transduction by 

allosteric coupling. Multiple studies pointed to the allosteric regulation of chromatin factors 

by histone tails [11*,27,28]. One representative example includes an allosteric activation of 

de novo methyltransferase DNMT3A by H3 tails (Figure 1b). Interactions between ATRX–

DNMT3–DNMT3L (ADD) domain and catalytic domain (CD) of DNMT3A cause 

autoinhibition of its enzymatic activity. The disordered H3 tails can interact with residues 

located on the ADD-CD binding interface and form an anti-parallel β sheet with the two β-

strands in ADD domain, leading to a conformational change of ADD domain, thus inducing 

the activation of DNMT3A [11*].

The deposition of reversible PTMs and histone variants enhances the functional diversity of 

histone tails. The distinct patterns of covalent histone modifications form a “histone code” 

which offers a dynamic way to mediate the regulatory processes in chromatin on the 

nucleosomal scaffold. IDPs are usually enriched with modification sites and histone tails 

represent extreme cases with the very high density of PTMs (methylation, acetylation, 

ubiquitination, phosphorylation, ADP-ribosylation, crotonylation and succinylation), 

although recent studies point to the importance of PTMs in histone cores as well [29]. The 

flexibility of histone tails provides relatively easy access to their sites for chromatin factors, 

modifications in histone tails are recognized by various reader domains, allowing for 

recruitment of regulatory proteins to nucleosomes [30]. PTMs can orthosterically disrupt the 

interaction if the modified residue is directly located on binding interface. At the same time, 

post-translational modifications in tail residues can play roles of covalent allosteric effectors 
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and modulate binding of histone tails to partners by shifting the IDP’s conformational 

ensembles and/or equilibrium between ordered and disordered states. For example, it was 

shown that charge-reducing modifications may trigger the disorder-order transitions of H1 

tails in solvent and induce the formation of secondary structures [26*].

Histone tails carry multiple PTMs sites that can be modified simultaneously or in sequential 

time order. Previously we showed for multiple phosphorylation events that they can expand 

the repertoire of the recognition patterns, provide more accurate modulation of the strength 

of the signal and lead to cooperative binding effects [31]. All these mechanisms could be 

attributed to histone tail signaling. For example, it has been shown that H3S28 

phosphorylation leads to the recruitment of the HP1 protein to the H3K9 methylated H3-tail 

since the negative charge of the phosphate group increases the H3-tail dynamics [32**]. At 

the same time, the enhanced conformational sampling study of H4 tail showed that 

progressive sequential acetylation had a cumulative effect, decreased conformational 

heterogeneity, and increased tail’s helical propensity [33]. Finally, it was demonstrated that 

H4K16ac worked cooperatively with the other three acetylated lysines on the same tail to 

disrupt the chromatin folding: while H4K5ac, H4K8ac and H4K12ac showed little effect on 

folding, the acetylation of all four lysines on the H4 tail disrupted chromatin folding 

significantly more than H4K16ac alone [34].

Besides the covalent modifications in histone tails, the deposition of diverse histone variants 

into nucleosomes brings another layer of regulatory mechanism [35]. Histone variants may 

have shortened or extended N- and C-terminal tails with altered physico-chemical properties 

compared to the canonical histones and in some cases (like H3.3 and H2A.X) may carry 

variant-specific PTMs [36,37]. For instance, H1 variant tails vary in sequence lengths and 

carry different numbers of charged amino acids and certain sequence motifs, like S/TPKK 

motifs [38,39]. It may fine-tune the disorder-order transitions upon DNA binding leading to 

different binding affinity values of H1 variants to nucleosome [26*]. Another Micrococcal 

nuclease digestion experiment showed that the extended C-terminal tail in H2A.W variant 

interacted with the linker DNA which increased the stability of nucleosome and affected the 

binding of linker histone H1 to nucleosome [40*]. Several “short H2A variants” including 

H2A.B, H2A.L, H2A.P and H2A.Q lack the portions of C-terminal tails and deposition of 

these variants into a nucleosome leads to unwrapping of DNA ends from the histone octamer 

and an increase in DNA accessibility [41,42].

Histone tail-DNA interactions modulate nucleosome recognition by 

chromatin factors

In eukaryotic cells the genetic material is tightly packed into the nucleus but at the same 

time, in many cases it should remain dynamically accessible during transcription and 

replication processes. To overcome such challenge, eukaryotic cells have different means to 

regulate chromatin and DNA accessibility, and intrinsic disorder of histone tails may provide 

a basis for such dynamic regulation. Histone tails have long been shown to have high 

conformational flexibility and solvent accessibility, giving an impression that they extend 

into the solvent and are fully accessible to binding partners. However, a growing pile of 
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evidence points to the extensive and transient interactions of histone tails with nucleosomal 

and linker DNA [4**,5,7] (Figure 2a). Recent NMR studies, for example, have shown that 

interactions of H3 tails with DNA lead to the decreased nucleosomal and linker DNA 

solvent accessibility [2*,4*,15]. Moreover, the removal of histone tails causes an enhanced 

binding of many chromatin factors to nucleosome, most likely resulting from the increased 

solvent accessibility of nucleosomal and linker DNA [17*]. These findings altogether point 

to the fact that tail-DNA interactions within and between nucleosomes regulate the amount 

of surface area on histone tails and nucleosomal or linker DNA accessible for binding to 

other partners. The tail-DNA interactions have been suggested to compete with binding of 

chromatin factors to histone tails and/or to nucleosomal and linker DNA [4**,15,17*].

Recently a tail displacement model has been proposed according to which the association of 

one protein or domain with the nucleosomal or linker DNA can potentially displace histone 

tails from DNA and increase tails’ accessibilities to other binding partners [2*,8] (Figure 

2a). One recent example supporting this view includes the nucleosome recognition by 

LSD1-CoREST complex, where the interaction between the SANT2 domain and 

nucleosomal DNA displaces the H3 tails from DNA and facilitates tails’ interactions with 

the LSD1 active site [2*]. Moreover, PTMs and mutations can directly modulate tail-DNA 

interactions in the context of nucleosome [5,43] (Figure 2b). Charge-changing 

modifications, for instance, can affect the binding of histone tails to DNA by perturbating 

their electrostatic interactions. In concordance with this, recent NMR studies demonstrate 

that phosphorylation and acetylation in H3 tail can weaken the tail-DNA interactions, 

enhance the tail dynamics and solvent accessibility thereby facilitating the binding of reader 

proteins to histone tails [4**,5].

Chromatin signaling by histone tail cleavage

Besides the reversible covalent histone modifications, the structure and dynamics of 

chromatin can also be regulated by irreversible proteolytic processing of histone tails [44,45] 

Due to the critical roles of histone tails in chromatin function summarized above, not 

surprisingly that histone tail cleavage has profound effects on nucleosome dynamics and 

interactions. It is expected that compared to covalent modifications, clipping of histone tails 

should lead to more drastic and long lasting changes to chromatin and plays essential roles 

in gene expression, cell differentiation, aging and cancer development [44,45]. As shown in 

the previous section, histone tails may interact with the nucleosomal and linker DNA, 

therefore proteolytic cleavage of histone tails may enhance the DNA accessibility to 

nucleosome-binding proteins. Moreover, histone tail cleavage may result in irreversible 

deletion of critical PTM sites and disrupt the inter-nucleosomal interactions affecting 

chromatin compaction [3,44].

Histone tail cleavage is performed by histone proteases which clip histone tails at particular 

sites [44,45]. Although histone tail cleavage occurs among all core histones, clipping of H3 

tail has been mostly investigated, and a comprehensive list of cleavage sites and their 

functional relevance has been compiled. For instance, matrix metalloproteinase 9 (MMP-9) 

primarily cleaves H3K18-Q19 sites in histone H3 N-terminal tail during the osteoclast 
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differentiation [46] and Jumonji-C (JmjC) domain-containing protein 5 (JMJD5) clips the 

H3 N-tail at monomethyl-lysine (Kme1) sites in the DNA damage response pathways [47].

Roles of histone tails in the formation of higher order chromatin structures

Histone tails moderate the inter-nucleosomal interactions and induce chromatin compaction 

as they contain a myriad of basic residues which contribute to the attractive electrostatic 

interactions between neighboring nucleosomes [48]. Without histone tails nucleosomes 

cannot self-associate and compact into higher order chromatin structures due to the 

increased DNA-DNA electrostatic repulsion [49,50**]. It has been revealed that H3, H4 and 

H1 tails mostly contribute to the cooperative chromatin folding process. Recent cryo-EM 

structures of nucleosome core particle, biochemical and small-angle X-ray diffraction 

experiments suggested that the H3 tail participated in the initial contact with the neighboring 

nucleosomal DNA and made essential contacts between two nucleosomes [51,52]. As for the 

H4 tails, chemical cross-linking experiments showed that H4 tails from an adjacent 

nucleosome formed the inter-nucleosomal interactions by docking onto a negatively acidic 

patch exposed by the core H2A/H2B dimers [53]. Further evidence was provided by another 

cryo-EM experiments showing the involvement of the H4 and H1 tails in inter-nucleosomal 

interactions [54,55]. It was, for example, identified that the C-terminal tail of H1.2 was 

essential for interacting with H3K27me3 to trigger the chromatin compaction and gene 

silencing in cancer cells [55].

The roles of histone tails in chromatin folding are further aggrandized by PTMs, which can 

create binding sites for chromatin-associated proteins or directly modulate chromatin fiber 

dynamics. Of all known histone tail modifications, lysine acetylation is the most widely 

studied modification in relation to chromatin compaction, whose direct physico-chemical 

role is believed to neutralize the basic charge of lysine residue. Lysine acetylation results in 

a reduction of the electrostatic attraction between tails and the negatively charged DNA and 

thus directly impacts the nucleosome stability and chromatin folding [34]. For example, it 

has been observed that the acetylation of H4K16 has a negative effect on nucleosome array 

compaction in vitro and is associated with transcriptionally active chromatin [56]. A 

subsequent study demonstrated that H4K16ac lead toa more open chromatin in vivo [57]. 

Studies of H4 tail using molecular dynamics simulations have suggested that the H4K16ac 

impairs and weakens the H4 tail-acidic patch binding and reduces the inter-nucleosome 

interaction [3]. However, it should be noted that the outcome of histone tail acetylation 

depends on histone type and the locations of modified sites, and a recent study using 

reconstituted nucleosome arrays found that acetylation of H3K18 and H3K27, unlike 

H4K16ac, had no impact on higher-order chromatin structure [58*].

Conclusions and outlook

Disordered histone tails are essential components in epigenetic regulatory networks. PTMs 

along with histone variants dramatically enhance the functional diversity of disordered 

histone tails and enable them to modulate a variety of signaling processes through different 

molecular mechanisms. The high flexibility of histone tails is necessary for their signaling 

functions but poses major difficulties in characterizing their dynamics and interactions. 
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Recent developments in experimental approaches along with the increased computational 

power and advances in in silico simulations using improved water models and forcefields for 

IDP and DNA have helped to elucidate the mechanisms of histone tails in mediating intra-/

inter-nucleosome interactions (Figure 3). Notably, many hybrid methods that integrate 

experimental data with the molecular modelling have deliverednovel insights into how 

histone tails modulate nucleosome recognition by partners. However, the functional 

importance of histone tails merits more extensive studies focusing on their kinetics and 

dynamics in providing chromatin signaling with high spatio-temporal precision.
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Highlights

• Intrinsic disorder empowers histone tails’ diverse roles in chromatin 

signaling.

• Introducing PTMs and histone variants dramatically enhances the functional 

diversity of histone tails.

• Interactions of histone tails with nucleosomal and linker DNA modulate the 

nucleosome recognition by binding partners.

• Histone tail cleavage regulates chromatin structure and function.

• Histone tails play critical roles in the formation of higher-order chromatin 

structure.
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Figure 1. 
Intrinsically disordered histone tails perform their functions through different molecular 

mechanisms. (a) Fuzzy interactions of H1 tails stabilize the importin7-importinβ complex in 

histone transport (PDB: 6N88). H1 C-terminal domain can bind to acidic residues located 

near the importin7-importinβ binding interfaces through transient and non-specific 

electrostatic interactions. (b) Binding of H3 tails to ADD domain of DNMT3A allosterically 

induces the transition of DNMT3A from autoinhibitory state to the active state (PDB: 4UTP, 

4U7T). Molecular surfaces are rendered in magenta (ADD domain of DNMT3A), cyan 

(catalytic domain of DNMT3A) and green (DNMT3L).
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Figure 2. 
Mechanisms of regulation of nucleosome dynamics and interactions through histone tails. 

(a) Extensive and transient tail-DNA interactions in nucleosome and tail displacement 

mechanism of nucleosome recognition. (b) PTMs and mutations in histone tails modulate 

tail-DNA interactions and accessibility of DNA and tails in nucleosome. (c) Histone tail 

cleavage regulates nucleosome dynamics and interactions.
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Figure 3. 
Representative binding modes between disordered histone tails and nucleosomal DNA 

observed in molecular dynamics simulations. The cartoon representations of histone core 

domains are hidden for clarifications.
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