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ABSTRACT

Objective: To propose an algorithm that utilizes only timestamps of longitudinal electronic health record data to

classify clinical deterioration events.

Materials and methods: This retrospective study explores the efficacy of machine learning algorithms in classi-

fying clinical deterioration events among patients in intensive care units using sequences of timestamps of vital

sign measurements, flowsheets comments, order entries, and nursing notes. We design a data pipeline to parti-

tion events into discrete, regular time bins that we refer to as timesteps. Logistic regressions, random forest

classifiers, and recurrent neural networks are trained on datasets of different length of timesteps, respectively,

against a composite outcome of death, cardiac arrest, and Rapid Response Team calls. Then these models are

validated on a holdout dataset.

Results: A total of 6720 intensive care unit encounters meet the criteria and the final dataset includes 830 578

timestamps. The gated recurrent unit model utilizes timestamps of vital signs, order entries, flowsheet com-

ments, and nursing notes to achieve the best performance on the time-to-outcome dataset, with an area under

the precision-recall curve of 0.101 (0.06, 0.137), a sensitivity of 0.443, and a positive predictive value of 0. 092 at

the threshold of 0.6.

Discussion and Conclusion: This study demonstrates that our recurrent neural network models using only time-

stamps of longitudinal electronic health record data that reflect healthcare processes achieve well-performing

discriminative power.
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INTRODUCTION

Delayed recognition and failure to provide timely intervention to

patients developing clinical deterioration events result in suboptimal

prognoses.1,2 Patients often develop physiological instability hours

before clinical deterioration,3–5 and thus many are potentially avoid-

able.6 Early warning score systems have been developed to assist

clinicians in recognizing early signs of physiological deterioration,

allowing them to provide timely intervention.7 Early warning scores
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(EWS) typically take physiological measurements to calculate risk

scores of clinical deteriorations.8–12 Different levels of action are

recommended to corresponding healthcare professionals if a patient

exceeds certain thresholds.13 These actions typically include increas-

ing monitoring and examinations, initiating treatments, and eventu-

ally activating the Rapid Response Team to elevate patient care. A

Rapid Response Team (RRT) is a group of clinicians that respond to

patients with early signs of deterioration to prevent respiratory and

cardiac arrest in the hospital.14,15 The implementations of EWS and

RRT are associated with decreased mortality and in-hospital cardiac

arrest.16–19 In recent reviews of EWS, most data-driven EWS use

structured data (eg, vital signs, lab data, demography) from elec-

tronic health records (EHR),20,21 but a few include clinical concern

where clinicians answer structured questions if he/she is subjectively

concerned about the patient.22,23 In clinical practice, experienced

clinicians recognize patterns of patient deterioration based on expert

knowledge and clinical assessment skills and from “knowing the

patient” rather than solely on objective physiological measure-

ments.24–26 These subjective expert judgements, often made before

any physiological derangement is detected by machines, are cap-

tured in EHR data.25,27–29

It is widely known that the EHR is not a direct reflection of

patient’s pathophysiology but rather a record of the healthcare pro-

cess with noise.30,31 Time is an important component that represents

the dynamic and positive feedback loop of healthcare processes.30,31

Additional measurements and clinical records are often made when

clinicians are concerned about their patients’ conditions.25,27 For ex-

ample, a series of vital sign measures in early morning implies a dif-

ferent healthcare process than a set of those recorded as a routine

measurement at scheduled times. Therefore, features reflecting the

healthcare process (eg, time and co-occurrence of measurements, or-

der placement, prescriptions, notes) can likewise be utilized for

model building. In the National Institute for Nursing Research-

funded Communicating Narrative Concerns Entered by RNs (CON-

CERN) study, our team demonstrates that the inclusion of docu-

mentation and measurement frequency in an EWS triggered an alert

5–26 hours earlier than the first Modified Early Warning Score

(MEWS) alert.32 In our more recent work, the CONCERNv2.0

model,, including additional nursing note features and temporal fea-

tures, further increases the “lead time” to 42 hours compared to

MEWS and National Early Warning Score.33 Most EWSs rely solely

on physiological measurements, but we believe the use of features

that represent clinicians’ concerns could augment early detection.

We propose an algorithm that utilizes only timestamps of longi-

tudinal EHR data (eg, time and co-occurrence of vital sign measure-

ments, flowsheet comments, order entries, and nursing notes) to

classify clinical deterioration events. These time-series data reflect

nurses’ decision-making related to patient surveillance.25,28 We em-

phasize that our data for analysis do not include any measurement

values (eg, heart rate ¼ 90mHg). This study aims to 1) validate the

proposed models built on sequences of timestamps of underlying

clinical data that reflect the healthcare process, and 2) evaluate the

impact of including time-of-day and time-to-outcome information

in the model.

MATERIALS AND METHODS

This project was approved by both Columbia University Irving

Medical Center and Brigham and Women’s Hospital Institutional

Review Board for the Protection of Human Subjects.

This retrospective study explores the efficacy of machine learn-

ing algorithms in classifying clinical deterioration among patients in

intensive care units (ICU) using sequences of timestamps of vital

sign measurements, flowsheets comments, order entries, and nursing

notes in electronic health records. We design a data pipeline to parti-

tion events into discrete, regular time bins that we refer to as time-

steps. Logistic regressions, random forest classifiers, and recurrent

neural network (RNN) algorithms are tested on a training dataset

against a composite outcome of death, cardiac arrest, and RRT calls.

We choose single layer Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU), 2 well-established modalities, as our

RNN classifiers.34,35 Then we validate our algorithms on a holdout

dataset with Area Under the Precision-Recall Curve (AUPRC) sensi-

tivity, Positive Predictive Value (PPV), and F-score. The code is ac-

cessible on the online repository: https://github.com/lf2608/

Timestamps_EHR_Deterioration_Predict.

Cohort selection
This study utilizes the deidentified dataset of ICU admissions from a

composite site of ICUs within a healthcare system in the northeast

region of US (Supplementary Material, Appendix 1). We select a

subset of patients admitted during a 4-year period from 2016 to Jan-

uary 2019. Each site has its own go-live date to collect data, based

on the dates that the commercial EHR system Epic went live in

2016. Inclusion criteria for the patient cohort are: 1) at least 18

years of age at the time of admission and 2) non-hospice and non-

palliative care patients.9 We exclude hospice and palliative care

patients since these admissions have different care plans and health-

care processes compared to non-palliative care. Clinicians focus

more on patient comfort rather than disease progression; therefore,

fewer clinical measurements and documentations are made for hos-

pice and palliative care patients. We select the first ICU visit (via ad-

mission or transfer) for a given patient’s hospital encounter. ICU

stays shorter than 36 hours are excluded (Figure 1) because we re-

quire at least 24 hours of data for analysis followed by a 12-hour

time span to predict an outcome. As part of the deidentification pro-

cess, the date of each ICU stay is shifted randomly to a range be-

tween Apr 2013 to Feb 2017 but in a way that the month, day of

week and time stay the same. We randomly split the dataset into a

training set (75%) and a holdout set (25%). The holdout set is only

used for model validation.

Feature selection
We select timestamps from 15 types of underlying clinical data,

namely vital signs, flowsheets comments, order entry, and nursing

notes for analysis. These chosen clinical data have the following

characteristics: 1) regularly collected and entered into EHR on all

patients, 2) reflecting clinicians’ judgement or decision-making pro-

cess based on patients’ conditions.25,27,28 These timestamps repre-

sent the time when the data was collected by the clinician, but not

the time when it was entered into the EHR. The method of feature

selection is reported in our previous works.32,33 (Table 1) The parti-

tioning of data which results in the creation of timesteps will be fur-

ther explained in the Data Preprocessing section.

Primary outcome
The primary outcome of this study is a composite outcome of death,

cardiac arrest, and RRT calls. The policy for initiating RRT calls at

our study sites is as follows: nurses make decisions to activate RRT

based on established early warning criteria related to the patient’s
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respiratory, cardiovascular, neurologic, and other conditions.

Death, cardiac arrest, and RRT calls are the measurable clinical

events that occur for patients who experience deterioration. We

choose this composite outcome in order to increase the prevalence

of the outcome set. If more than 1 outcome occurred in an ICU stay,

the first event is defined as time of primary outcome.

Data preprocessing pipeline
The exact time of ICU admission is not accessible from the database.

With the assumption that the admission time is approximated by the

first record of data, our data preprocessing pipeline rounds down

the time of first record to the nearest hour and uses that as the ad-

mission time. Likewise, it rounds down the outcome time to the

nearest hour for ease of computation. It then extracts data from 12

to 36 hours prior to discharge (n¼6559) or the following composite

outcome of death, cardiac arrest, or RRT call (n¼161) for final

analysis. Next, it partitions the 24-hour sequence into regularly

spaced timesteps and calculates the count of records for every fea-

ture within each timestep (Figure 2). Each timestep is indexed by the

corresponding time-of-day. Then the pipeline sorts the data by the

time-of-day index so the first row of the data always starts at 12 am

(Table 2). The indexes are then dropped from the dataset so they are

not used for model derivation. In our dataset, discharges happened

mostly during the day while deterioration events occurred more

evenly between day and night (Supplementary Material Appendix

6). The time-of-day index of data’s first timestep is decided by the

hour of outcome since we only sample data 36 to 12 hours prior to

that. Rather than creating an additional variable which leaks the in-

formation about the time of outcome, this method embeds the time-

of-day information by sorting the data by the time-of-day index.

Our pipeline also generates the unsorted dataset by keeping the

time-to-outcome sequence of the healthcare process. In the follow-

ing text, we call the sorted dataset the “time-of-day dataset” and the

unsorted the “time-to-outcome dataset.”

We visualize the distribution of timestamps of vital signs, flow-

sheet comments, order entries, and nursing notes in the dataset

against time-of-day. While notes have a bimodal distribution, major

clusters on the hour and smaller clusters on the quarter of hour are

shown for vital signs, data entries, and flowsheet comments. Most

interevent intervals of the features are within 2 hours long (Supple-

mentary Material Appendix 4). Therefore, we set 3 different lengths

of timesteps (15, 30, 60 minutes) for partition in an attempt to cap-

ture different levels of granularity in the timestamp sequences. For

algorithms taking a single data point (ie, logistic regression and ran-

dom forest classifier), we calculate the count of timestamps for each

feature over the 24 hours analytic period.

Model derivation and validation
We apply the oversampling technique on the training set to tackle

the imbalanced data during model training. In order to optimize dis-

Figure 1. Cohort selection. There are 8367 unique ICU admissions including 200 outcome events in this dataset. After removing ICU admissions shorter than 36

hours, the final dataset consists of 6720 ICU admissions. (Table 3) There are 161 admissions with composite outcomes of death, cardiac arrest, or Rapid Response

Team call, which consist of 2.40% of the dataset. Finally, we split the dataset into training set and holdout set in a ratio of 3:1.

Table 1. Categories of features used in model derivation

Category Features

Vital signs entered* heart rate (HR), blood pressure (BP), respiratory rate (RR), body temperature (BT), oxygen saturation

(SpO2)

Flowsheet comments heart rate comments, blood pressure comments, respiratory rate comments, body temperature comments,

oxygen saturation comments

Order entries single vital sign measurement, complete set of vital signs measurement, one-time medication order, medica-

tion withholds

Nursing notes documentation made by nurses

*Any automated device that generates data requires a nurse’s manual validation during data collection.
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criminating power as well as to prevent overfitting, we set a dictio-

nary of hyperparameters for each classifier in our model selection

pipeline. The dictionary includes L1 and L2 regularization for logis-

tic regression,36,37 pruning parameters for random forest classifier,

as well as parameters for number of neurons, learning rate, and

dropout layer before outputs of LSTM and GRU algorithm (Supple-

mentary Material Appendix 2). The pipeline returns the best logistic

regression and random forest classifier with optimal hyperpara-

meters using grid search approach and 4-fold cross-validation from

python package scikit-learn (v.0.23.2). It also optimizes the hyper-

parameters for the single layer LSTM and GRU algorithm (tensor-

flow v.2.3.1) using the hyperband technique from python package

keras-tuner (v.1.0.1). Hyperband is a bandit-based approach to

speed up random search through adaptive resource allocation and

early stopping.38 We then set the thresholds for these classifiers with

the aim of achieving a well-performing sensitivity while retaining an

acceptable PPV. In the literature, PPV is often targeted in the range

of 10%–20% in model validation in order to avoid excessive false

alarms.39–41 The LSTM and GRU model are trained on a time-series

dataset of different length of timesteps (15, 30, 60 minutes) while lo-

gistic regression and random forest classifiers are trained on overall

counts of timestamps. Finally, we validate these classifiers on a hold-

out set based on AUPRC, sensitivity, PPV, and F-score since the ICU

stays with outcomes are rare. We then utilize bootstrapping to esti-

mate the 95% confidence interval of the model.

RESULTS

There are 8367 unique ICU admissions including 200 outcome

events in this dataset. These are broken into 76 cardiac arrest and

124 RRT calls. Since these were the first outcome events that the

patients had, patients who developed cardiac arrest then died were

recorded as cardiac arrest in this dataset. After removing ICU admis-

sions shorter than 36 hours, the final dataset consists of 6720 ICU

admissions. (Table 3) There are 161 samples with composite out-

comes of death, cardiac arrest, or RRT call which consist of 2.40%

of the dataset. A total of 830 578 timestamps are included in the fi-

nal analysis (Supplementary Material Appendix 3).

The GRU model, utilizing timestamps of vital signs, order

entries, flowsheet comments, and nursing notes on the time-to-

outcome dataset of timesteps of 60 minutes, has the best predictive

power with an AUPRC of 0.101 (0.06, 0.137). This model performs

better than the logistic regression with L2 normalization AUPRC

0.093 (0.09, 0.096), but the difference is not statistically significant.

(Table 4) The best GRU model has a sensitivity of 0.443 and a PPV

Figure 2. Time series partitioned by a given unit of time in data preprocessing. Our data pipeline rounds down both the admission time and outcome time to the

nearest earlier hour for the ease of computation. It then partitions the sequences of timestamps into regularly spaced timesteps and calculates the count of

records for every feature within each timestep. Data 36 to 12 hours prior to the outcomes are used for final analysis.

Table 2. Feature representation of the time-of-day dataset

Time-of-day Index Timesteps

Index

Feature A Feature B Feature C Feature D . . ... Feature K

[00:00, 00:30) 25 1 0 0 0 . . .. . . 0

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

[12:00, 12:30) 1 0 3 1 0 . . ... 2

[12:30, 13:00) 2 5 4 1 3 . . .. . . 1

[13:00, 13:30) 3 0 0 0 0 . . .. . . 0

[13:30, 14:00) 4 1 0 1 0 . . .. . . 1

. . .. . . . . ... . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

[23:30, 00:00) 24 0 0 1 1 . . .. . . 0

This table illustrates the feature representation of an ICU stay. In this example, the original data starts at time-of-day 12 pm and is then sorted by the time-of-

day index. The interpretation for the first row, the 25th timestep of the data: there is 1 measurement of Feature A during the time-of-day [00:00, 00:30]. The in-

dexes are not used for model derivation.
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of 0.092 at the threshold of 0.6. In general, the RNN models on

time-to-outcome datasets have better AUPRC than those on time-of-

day datasets. The performance of the RNN models varies on data-

sets of different length of timesteps with no significant differences.

The values on the scale bar represent the difference between the

average count of a given feature from ICU stays with outcomes and

without outcomes. These averages are calculated for every feature

per hour per patient. The redder the color for a particular feature,

the more frequent that feature occurs in an ICU stay with outcome.

DISCUSSION

Our implementation of machine learning algorithms that use only

timestamps from EHR metadata results in well-performing discrimi-

native power. We emphasize that this approach doesn’t include the

clinical measurement value (eg, heart rate ¼ 90) but instead uses the

frequency and co-occurrence of each data entry and documentation

pattern that reflect clinicians’ practice patterns and clinical work-

flow. Additionally, our RNN algorithms display their abilities to

learn temporal patterns, which results in improved discriminating

power. This result supports our hypothesis that metadata in EHR, a

proxy signal of the clinician expert’s objective and subjective assess-

ments, provide valuable information on clinical outcomes, and thus

have great potential to inform clinical prediction models.25,32,33,42

We curate the threshold for our best RNN model to achieve a

discriminative power with sensitivity 0.443 and PPV 0.092 using the

National Early Warning Score (0.395, 0.152) and Advanced Alert

Monitoring (0.489,0.162) as benchmarks.40 The former is an expert

opinion-based algorithm while the latter is a discrete-time logistic

regression model derived from a database of 21 hospitals, and both

have been in actual use in clinical settings. However, we are not able

to directly compare our model against these benchmarks because

those models require measurement values to compute and were vali-

dated on distinct study cohorts.

Clinical data is full of missing data and is irregularly measured.

These characteristics have been a major challenge in longitudinal

data analysis.43 Many EWS studies apply discrete time survival anal-

ysis on longitudinal data that completely exclude these characteris-

tics as biases.10,40,44–46 Numerous RNN models incorporate

information about missing data and irregularity as additional fea-

tures.47–50 Our novel approach discretizes data into a multivariate

time series representing the frequency and co-occurrence of clinical

data entry. Consequently, we are able to preserve the irregularity

characteristics as well as the missingness without adding additional

artifacts and noise to the dataset. Finally, our results suggest that the

dataset of timesteps of 60 minutes has sufficient granularity to repre-

sent the patterns of different clinical processes 36 hours before out-

comes.

Time is an important component in clinical data because health-

care is not static.51 Observational measurements are often made

when patients are ill. Clinicians make decisions based on their obser-

vations and previous understandings of their patients. Documenta-

tion of these observations, above and beyond regulatory

requirements, are often made when clinicians are concerned about

the result of a specific measurement or a patient’s clinical status.25,27

In the literature, the temporal pattern of lab orders also provides ad-

ditional information on clinical outcomes regardless of the

results.52,53 By exploiting time, we can capture this nonlinear re-

cording process and positive feedback loop where measurement and

health status affect each other.30,31,51 Our results have shown that

time-to-outcome information further boosts RNN models’ AUPRC

scores when compared to the baseline logistic regression model.

Table 3. Characteristics of study complete dataset

Admissions Counts/Values

Unique ICU admission, n 6720

Age at admission, years-old Range: 19–89

Mean: 64.8

Quartiles Values (57, 67, 76)

Male, n (%) 3931 (58.5%)

First adverse event in episode

None, n (%) 6559 (97.60%)

Composite outcomes, n (%) 161 (2.40%)

Observations Total Counts Unique Patient Counts Average Counts per Patient STD

Heart rate entered 175 812 6446 26.16 10.45

Respiratory rate entered 137 342 6302 20.44 11.27

Blood pressure entered 156 471 6441 23.28 10.32

Body temperature entered 65 705 6448 9.78 8.71

Oxygen saturation entered 159 431 6443 23.72 11.53

Single vital sign measurement 10 851 3502 1.61 4.16

Complete set of vital signs mea-

surement

47 210 6174 7.03 7.12

One-time medication order 34 653 6078 5.16 4.26

Medication withhold 26 154 5886 3.89 3.33

Heart rate comments 308 237 0.05 0.28

Respiratory rate comments 120 103 0.02 0.16

Blood pressure comments 1140 708 0.17 0.70

Body temperature comments 136 104 0.02 0.21

Oxygen saturation comments 351 296 0.05 0.27

Notes 14 894 5972 2.22 1.49
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Figure 3 demonstrates the difference of temporal patterns between

ICU stays with outcomes and those without. The RNN models are

able to learn these temporal patterns of different healthcare pro-

cesses. We hypothesize that the time-of-day dataset provides addi-

tional information, indicative of records that happened in the rare

hour of the day, which could further increase the model’s perfor-

mance. However, our RNN models including the time-of-day infor-

mation don’t achieve better performance. One explanation is that

our method does embed the time-of-day information into the dataset

but renders the original sequence of healthcare processes which

affects our RNN models’ ability to recognize patients with higher

risk.

There are several limitations in this study. Our analysis ran on a

relatively small dataset from a healthcare system in Northeast US.

This composite dataset includes various types of ICUs where the data

represent different clinical processes and documentation patterns

within the system. However, potential biases could derive from dis-

tinct patient population, healthcare process, regional practice, and, fi-

nally, individual clinician’s care pattern. Our results might not be

generalizable to other healthcare systems. As a result, we plan to con-

duct further investigations on a larger dataset to verify the reproduc-

ibility of these findings and to externally validate our models.

Secondly, our analysis only includes data from 36 to 12 hours before

outcomes which limits our models’ ability to predict outcome in clini-

cal practice. A future study will include model derivation on a

forward-facing time window so that our models can be validated in a

more realistic clinical setting. Moreover, our models don’t include

measurement values that contain the information about the patho-

physiological status of a patient. Therefore, we can’t directly compare

our models with other well-established benchmark EWSs which re-

quire such values. A future study will include measurement values in

order to validate our model against other benchmarks. Finally, our

models are trained on timestamps of the underlying clinical data.

There is often a delay when clinical data are entered into EHR which

could lead to another bias if our models run on timestamps from

EHR. However, our data preprocessing pipeline discretizes data into

multivariate time series instead of using timestamps directly, which

could potentially mitigate the bias created by the discrepancy between

Table 4. Model validation

Algorithm Length of

Timestep

AUPRC

(95 CI)

F-Score

(95 CI)

Sensitivity

(95 CI)

PPV

(95 CI)

Specificity

(95 CI)

NPV

(95 CI)

AUROC

(95 CI)

Time-of-day Dataset

GRU 60 0.082 (0.051,

0.108)

0.122 (0.05,

0.156)

0.354 (0.035,

0.524)

0.084 (0.053,

0.15)

0.888 (0.794,

0.992)

0.982 (0.976,

0.985)

0.7 (0.656,

0.724)

GRU 30 0.074 (0.046,

0.102)

0.118 (0.0,

0.157)

0.376 (0.0,

0.548)

0.076 (0.0,

0.122)

0.88 (0.751,

0.996)

0.982 (0.975,

0.986)

0.703 (0.627,

0.733)

GRU 15 0.07 (0.044,

0.097)

0.118 (0.025,

0.152)

0.384 (0.023,

0.548)

0.072 (0.019,

0.095)

0.874 (0.778,

0.989)

0.982 (0.975,

0.986)

0.694 (0.615,

0.723)

LSTM 60 0.077 (0.049,

0.104)

0.117 (0.0,

0.175)

0.336 (0.0,

0.524)

0.083 (0.0,

0.194)

0.89 (0.788,

0.999)

0.981 (0.975,

0.985)

0.696 (0.609,

0.74)

LSTM 30 0.071 (0.044,

0.091)

0.102 (0.0,

0.163)

0.294 (0.0,

0.524)

0.08 (0.0,

0.18)

0.897 (0.743,

1.0)

0.98 (0.975,

0.985)

0.69 (0.614,

0.734)

LSTM 15 0.067 (0.044,

0.093)

0.101 (0.0,

0.16)

0.282 (0.0,

0.548)

0.074 (0.0,

0.135)

0.9 (0.751,

0.997)

0.98 (0.975,

0.985)

0.683 (0.603,

0.727)

Algorithm Length of

Timestep

AUPRC F-Score Sensitivity PPV Specificity NPV AUROC

Time-to-outcome Dataset

GRU 60 0.101 (0.06,

0.137)

0.142 (0.068,

0.203)

0.443 (0.083,

0.619)

0.092 (0.059,

0.175)

0.873 (0.766,

0.982)

0.984 (0.976,

0.988)

0.717 (0.649,

0.752)

GRU 30 0.087 (0.045,

0.117)

0.137 (0.012,

0.184)

0.421 (0.011,

0.608)

0.088 (0.013,

0.138)

0.884 (0.784,

0.992)

0.984 (0.975,

0.988)

0.714 (0.626,

0.754)

GRU 15 0.086 (0.047,

0.116)

0.139 (0.0,

0.188)

0.459 (0.0,

0.608)

0.084 (0.0,

0.114)

0.875 (0.787,

0.993)

0.985 (0.975,

0.988)

0.722 (0.615,

0.766)

LSTM 60 0.084 (0.048,

0.114)

0.121 (0.0,

0.185)

0.396 (0.0,

0.56)

0.076 (0.0,

0.141)

0.868 (0.771,

0.997)

0.983 (0.975,

0.986)

0.7 (0.61,

0.746)

LSTM 30 0.085 (0.062,

0.109)

0.128 (0.036,

0.186)

0.408 (0.024,

0.584)

0.088 (0.053,

0.161)

0.875 (0.756,

0.992)

0.983 (0.975,

0.986)

0.708 (0.663,

0.747)

LSTM 15 0.086 (0.055,

0.112)

0.127 (0.0,

0.188)

0.413 (0.0,

0.608)

0.08 (0.0,

0.135)

0.88 (0.8,

0.999)

0.983 (0.975,

0.988)

0.706 (0.635,

0.746)

Algorithm Length of

Timestep

AUPRC F-Score Sensitivity PPV Specificity NPV AUROC

Dataset of Single Datapoint

Logistic Regression N/A 0.093 (0.09,

0.096)

0.14 (0.134,

0.144)

0.451 (0.429,

0.452)

0.083 (0.079,

0.085)

0.872 (0.866,

0.876)

0.984 (0.984,

0.984)

0.718 (0.712,

0.724)

Random Forest N/A 0.064 (0.055,

0.073)

0.128 (0.103,

0.153)

0.276 (0.214,

0.333)

0.083 (0.067,

0.1)

0.922 (0.914,

0.93)

0.98 (0.979,

0.982)

0.66 (0.628,

0.698)

The GRU model has the best AUPRC of 0.101 (0.060, 0.137) and F-score of 0.142 (0,068, 0.203) on the time-to-outcome dataset of 60 minutes timestep.

Abbreviations: GRU, gated recurrent unit; LSTM, long short-term memory.
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the timestamps of clinical data and EHR data. This discretization

method also gives our model the potential to be implemented in real-

time settings. Our models can generate predictions at any chosen time-

step and requires no data imputation.

CONCLUSION

Clinicians’ recording and documentation patterns result in complex

and diverse EHR data collection processes. This characteristic is

seen by many as bias and is consequently overlooked in most clinical

prediction modeling.21 Still, we believe it can also be exploited to

yield valuable information for prediction model. This study demon-

strates that our RNN models, using only timestamps of longitudinal

EHR data that reflect healthcare processes, achieve well-performing

discriminative power.
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