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Simple Summary: As a primary hepatic tumor, hepatocellular carcinoma (HCC) is the most prevalent
kind. Recent developments in magnetic resonance imaging (MRI) and computed tomography (CT)
have the potential to enhance detection, segmentation, discrimination from HCC mimics, and tracking
of therapy response. Radiomics, artificial intelligence (AI), and related methods have already been
used with promising results in other diagnostic imaging fields. In this review, we briefly cover the
radiomics and AI clinical applications for the identification, segmentation, and management of HCC.
In addition, we also look into their potential to improve HCC diagnosis and provide appropriate
treatment planning. Finally, overall limitations and future directions of the research in this field
are outlined.

Abstract: Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks
to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is
potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of
therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been
applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss
the current clinical applications of radiomics and AI in the detection, segmentation, and management
of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to
guide proper treatment planning.

Keywords: deep learning; machine learning; AI; computed tomography; hepatocellular carcinoma

1. Introduction

The most prevalent hepatic malignant tumor in the world is hepatocellular carcinoma
(HCC). It has a high morbidity and mortality rate, being the fourth most common cause
of cancer death [1]. Predisposing factors include chronic liver disease, cirrhosis, prior
infection with hepatitis B or C virus, and ingestion of aflatoxins [2]. Initial diagnosis of such
neoplasms and further monitoring of therapeutic response is achieved through several
imaging modalities, along with serum biomarkers such as alpha-fetoprotein (AFP). In the
majority of cases, triphasic computed tomography (CT) or dynamic magnetic resonance
imaging (MRI) provides an accurate diagnosis, and pathological analysis is only carried out
in the minority of patients in which imaging features are ambiguous or not specific. In recent
years, artificial intelligence (AI) has become involved in almost all diagnostic and prognostic
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programs, to increase accuracy, eliminate human errors, and save time and money. Current
AI models are trained on large amounts of derived imaging data, known as radiomics. Such
data are usually acquired in five steps: (a) image acquisition, (b) segmentation, (c) feature
extraction, (d) exploratory analysis, and (e) modeling [3]. Therefore, radiomics is simply
the use of computer-based algorithms to extract quantitative features from a conventional
image, followed by a correlation of these features with pathology or clinical response [4].

Although the terms AI and machine learning (ML) are used interchangeably in the
area of imaging-based medical systems, AI is defined as a broad concept of how a computer
methodology can imitate human intelligence. ML is a subset of AI in which computer mod-
els are trained on large sets of data and then adapt as new data is presented. Digitization
of radiological images is now the medical standard in developed countries, and imaging
data are stored in picture archives and communication systems (PACS). The clinical image
interpretations are stored in radiology information systems. Additionally, AI advancements
in the area of image processing, increased computer processing capacity, low-cost data
storage, and fast data transfer rates have played an important role in the widespread of
use AI-based applications in addressing various radiology-based challenges. This has led
to an increased number of publications using AI for medical image analysis, including
disease identification, segmentation, classification, and outcome prediction. Because the
data archived in radiology departments is commonly unstructured and patient-centered,
the data conglomerate cannot be used for training AI, and implementing AI projects re-
quires a pipeline consisting of multiple steps which begin with the identification and
extraction of relevant imaging data and clinical reports. The main role of the radiologist
with regard to commercial AI products is to be an informed user of these tools. In or-
der to be an informed customer, radiologists must understand the clinical need for AI
tools in particular clinical use cases, conduct systematic evaluations of AI tools prior to
implementing them in practice, and apply clinical experience while avoiding the pitfalls of
over-reliance on technology.

In this article, we present a thorough review of research spanning the last two decades
on AI- and ML-based methods in the management of HCC. The reviewed data were
available from different search engines, including ResearchGate, PubMed, and Google
Scholar. In the twenty-year range from 2002 to 2022, we focused on manuscripts primarily
concerned with HCC. In our search, we used different combinations of the following terms:
hepatocellular carcinoma, HCC, deep learning, machine learning, artificial intelligence,
computed tomography, magnetic resonance, detection, segmentation, management, treat-
ment response, radiomics , etc., resulting in a total of >130 studies that met our inclusion
criteria. Studies that utilized AI or ML and satisfied the aforementioned inclusion criteria
received higher priority in the search. To the best of our knowledge, no reliable AI-based
algorithms exist that can be used as a standalone gold standard for segmentation, detection,
or management of HCC. By analyzing the included studies, we intend to pave the way for
future research into the development of precise AI-based diagnosis and prediction systems
for the best possible personalized HCC treatment.

The next section presents a background on the different techniques of AI and radiomics
models. Section 3 reviews studies that combine different markers with AI and ML to
build computer-aided models for hepatic segmentation. Section 4 outlines the different
techniques used for differentiation of HCC from other hepatic observations. Section 5
reviews the different AI techniques for management of HCC. Section 6 summarizes the
limitations of this study and describes future perspectives. Finally, Section 7 concludes the
paper. A summary of the different applications of AI and radiomics in the field of HCC is
illustrated in Figure 1.
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Figure 1. A summary of different applications of Artificial Intelligence and Radiomics in the field
of HCC.

2. Background on AI and Radiomics Techniques
2.1. Artificial Intelligence (AI)

The term “artificial intelligence (AI)” refers to the computational capacity to carry out
tasks that are comparable to those carried out by humans, with varying degrees of auton-
omy, to process unique raw data (inputs) and produce useful information (outputs) [5].
While the foundations of AI were laid decades ago, it was not until the advent of modern
powerful computational technology, coupled with the ability to capture and store massive
data quantities, that it became possible to realize AI capabilities in the tasks most impor-
tant to radiology, such as pattern recognition/identification, preparation, object/sound
recognition, problem-solving, disease prognostication, assessing the necessity of therapy,
and providing patients and clinicians with prognostic data on treatment outcomes. Despite
the fact that healthcare is a daunting area in which to apply AI, medical image analysis
is becoming a very important application of this technology [6]. From the outset, it has
been obvious that radiologists could benefit from the powerful capabilities of computers
to augment the standard procedures used for disease detection and diagnosis. The use of
computer-aided diagnosis (CAD) systems, which were forerunners to modern AI, has been
encouraged to help radiologists detect and analyze potential lesions in order to distinguish
between diseases, reduce errors, and increase efficiency [7]. As the nature of CAD systems
is that they are tailored to a specific task, their variable reliability and the possibility of false
positive results require that a qualified radiologist confirm CAD findings [7]. Consequently,
continuous efforts are being made to improve the efficiency and accuracy of CAD and to
promote the assistance that it can offer in routine clinical practice. The development of
artificial neural networks (ANN) in the middle of the 20th century [8] and their subsequent
progression, which has brought forth the concepts of machine learning (ML), deep learning
(DL), and computational learning models, are the primary reasons for the rise of AI.

Machine learning (ML) is one of the most important applications of AI. The training
process, in which computer systems adapt to input data during a training cycle [9], is
the cornerstone of ML. Such models require large amounts of high-quality input data
for training. The creation and use of large datasets structured in such a way that they
can be fed into an ML model are sometimes referred to as “big data”. Through repeated
training cycles, ML models can adapt and improve their accuracy in predicting correct data
labels. When an appropriate level of accuracy is achieved, the model can be applied to
new cases which were not a part of the training stages [10,11]. ML algorithms can be either
supervised or unsupervised, depending on whether the input data are labeled by human
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experts or unlabeled and directly categorized by various computational methods [10,12].
An optimal ML model should include both the most important features needed to generate
desired outputs and the most generic features that can be generalized to the general
population, even though these features may not be defined in advance. Pattern recognition
and image segmentation, in which different meaningful regions of a digital image (i.e.,
pixels or segments) are identified, are two common ML tasks in radiology. Both have been
successfully used for a variety of clinical settings, diseases, and modalities [13–15].

Deep learning (DL) is a subtype of ML which uses multilayered artificial neural net-
works (ANNs) to derive high-level features from input data (similar to neuronal networks)
and to perform complex tasks in medical imaging. Specifically, DL is useful in classifi-
cation tasks and in automatic feature extraction, where it is able to solve the issues of
partial detectability and feature accessibility when trying to extract information from these
valuable data sources. The use of multilayered convolutional neural networks (CNNs)
improves DL robustness by mimicking human neuronal networks in the training phase.
If applied to unlabelled data, the automatic process of learning relies on image features
being automatically clustered based on their natural variability. Due to the challenge of
achieving completely unsupervised instruction, complex learning models are most com-
monly implemented with a degree of human supervision. The performance of CAD can
be increased using ML and CNNs. CAD systems utilizing ML can be trained on a dataset
from a representative population and then identify the features of a single lesion in order
to classify it as normal or abnormal [16]. Algorithms based on statistics are the major focal
point of both supervised and unsupervised learning [17]; however, there are important
variations. Classification (i.e., categorizing an image as normal or abnormal based on
labels provided in the training data) and regression (observing or finding new categories
using inference on training sets) are the two main applications of supervised learning.
Unlike supervised learning, unsupervised models use unlabelled/unclassified data. As a
result, latent pattern recognition is accomplished through dimensionality reduction and
feature clustering [17]. To determine the usefulness of this classification process, it must
first be validated. The capacity to link basic diagnostic patterns and features of medical
image modalities to a specific pathological and histological subtyping has led to the area
of radiomics by merging DL-based image processing with clinical, and when suitable,
pathological/histological data [18–20].

2.2. Radiomics

Radiomics is a recent translational field in which a variety of properties, including
geometry, signal strength, and texture, are extracted from radiological images in order
to record imaging patterns and categorize tumor subtypes or grades. Radiomics is typically
utilized in systems with various variants for prognosis, monitoring, and determining
how well a treatment is working [19,21]. “Images are more than pictures; they’re data.”
The basic concept of radiomics is beautifully illustrated by Robert Gillies and colleagues’
intuitive and precise description [4]. Radiomics is classified into two types, namely, feature-
based and DL-based radiomics, and is commonly used to analyze medical images at a
low computational cost. While clinical evaluations are subject to inter-observer variability,
results using radiomics are more accurate, stable, and reproducible, as automated radiomic
characteristics are either generated statistically from ML-based complicated computational
models during the training phases (DL-based) or computed using mathematical methods
(feature-based). However, in order to achieve a correct diagnosis, the input data must be
of high quality, with accurate labels (in the case of supervised learning) or a population-
representative sample (in the case of unsupervised learning) [22].

2.2.1. Feature-Based Radiomics

In order to perform feature-based radiomics, a segmented volume of interest (VOI)
for 3D data or region of interest (ROI) for 2D data is used. In order to avoid overfitting
(an erroneous reliance on clinically irrelevant features), feature selection algorithms exam-
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ine a subset of certain features after feature extraction and create robust prediction models.
Overfitting usually occurs in datasets that are too homogeneous and lack enough repre-
sentations of the target diseases. As a result, the chosen features may not be valid when
applied to different data sets. Selecting features from heterogeneous and representative
datasets decreases the likelihood of selecting narrowly applicable features and reduces
the risk of overfitting. Feature-based radiomics does not necessitate large datasets, as the
features are typically defined after only a short computation time. Notably, the majority of
extracted features are very complex, and often do not correlate to recognizable pysiologi-
cal or pathological features, limiting model interpretability. The feature-based radiomics
process contains the key processing stages listed below.

Image pre-processing is a basic step in radiomics in which useful features are ex-
tracted. The primary goal of radiomics is the generation of quantitative features from
radiology images [4,22–26]. The generated features and models should be both repeatable
and general, particularly when using multi-variate multi-model data (i.e., with differ-
ent scanners, modalities, and acquisition protocols), which is the case for most medical
imaging centers. Several pre-processing steps are necessary to achieve these objectives.
Correcting inhomogeneities in MRI images, reducing noise, spatial resampling, spatial
smoothing, and intensity normalization are all common pre-processing steps for radiomic
analyses [19,27,28].

Tumor segmentation is another extraction step in feature-based radiomics. Segmen-
tation of MR or CT images for different types of tumors is typically performed manually,
either in preparation for ML model development or in clinical practice for planning of
radiotherapy or volumetric evaluation of treatment response [26]. It takes a great deal of ef-
fort to carry out 3D manual segmenting of lesions that have necrosis, contrast enhancement,
and surrounding tissue. The contours have a direct effect on the radiomics analysis results,
as the segmented ROIs define the input for the feature-based radiomics process. To handle
this challenge, ML approaches are being developed for automatic tumor localization and
segmentation [29,30].

Feature extraction from medical images may lead to several quantitative traits, the ma-
jority of which are tumor heterogeneity. Although many features can be extracted, features
are typically divided into four subgroups:

• Shape characteristics, such as sphericity, compactness, surface area, and maximum
dimensions, reflect the geometric characteristics of the segmented VOI [26].

• First-order statistical features or histogram-based features describe how the intensity
signals of pixels/voxels are distributed over the segmented ROI/VOI. These features
neglect the spatial orientation and spatial relationship between pixels/voxels [23].

• Second-order statistical features or textural features are statistical relationships be-
tween the signal intensity of adjacent pixels/voxels or groups of pixels or voxels.
These features serve to quantify intratumoral heterogeneity. Textural features are
created by numerically characterizing matrices that encode the exact spatial connec-
tions between the pixels/voxels in the source image. The gray-level co-occurrence
matrix (GLCM) [31] is the most widely used texture analysis matrix. The GLCM
shows how many times two intensity levels appear in adjacent pixels or voxels within
a given distance and in a defined direction. Multiple textural characteristics, including
energy, contrast, correlation, variance, homogeneity, cluster prominence, dissimilar-
ity, cluster inclination, and maximum likelihood, can be measured using the GLCM.
The difference in intensity levels between one pixel/voxel and its 26-pixel 3D neigh-
borhood is represented by the neighborhood gray-level different matrix (NGLDM).
For each image intensity, the gray-level run length matrix (GLRLM) encodes the size
of homogeneous runs [32]. Long-run emphasis (LRE), short-run emphasis (SRE), low
gray-level run emphasis (LGRE), run percentage (RP), and high gray-level run empha-
sis (HGRE) can all be derived from the GLRLM. There are other matrices that capture
pixel-wise spatial relationships and can be used to compute additional texture-based
features [31].
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• Higher-order statistical features are quantified using statistical methods after apply-
ing complex mathematical transformations (filters), such as for pattern recognition,
noise reduction, local binary patterns (LBP), histogram-oriented gradients, or edge
enhancement. Minkowski functionals, fractal analysis, wavelet or Fourier transforms,
and Laplacian transforms of Gaussian-filtered images (Laplacian-of-Gaussian) are
examples of these mathematical transformations or filters [28].

Feature selection is a helpful step used to refine the set of extracted features. For
implementation of image-based models for prediction and prognosis, the extracted quanti-
tative features might not have equal significance. Redundancy, overly strong correlation,
and feature ambiguity can cause data overfitting and increase image noise sensitivity in
the dependent predictive models. Overfitting is a methodological error in which the de-
veloped model is overly reliant on features specific to the radiological data used in the
training process (i.e., noise or image artifacts) rather than features of the disease in question.
Overfitting results in a model with deceptively high classification scores on the training
dataset and weak performance on previously unseen data. One way to reduce the risk of
overfitting is to employ feature selection prior to the learning phase [9]. Supervised and
unsupervised feature selection techniques are widely used in radiomics. Unsupervised
feature selection algorithms disregard class labels in favor of eliminating redundant spa-
tial features. Principal component analysis (PCA) and cluster analysis are widely used
techniques for this type of feature selection [19]. Despite the fact that these approaches
minimize the risk of overfitting, they seldom yield the best feature subset. Supervised
feature selection strategies, on the other hand, consider the relations between features and
class labels, which results in the selection of features based on how much they contribute to
the classification task. In particular, supervised feature selection procedures select features
that increase the discrimination degree between classes [26]. For supervised feature set
reduction, there are three common methods:

• Filter methods (univariate methods) examine how features and labels are related
without taking into account their redundancy, or correlation. Minimum redundancy
maximum significance, Student’s t-test, Chi-squared score, Fisher score, and the
Wilcoxon rank sum test are among the most commonly used filter methods. While
these feature selection methods are widely used, they do not take the associations and
interactions between features into account [33,34].

• Wrapper methods (multivariate methods), known as greedy algorithms, avoid the
filter method constraint by looking at the entire space of features and considering the
relationships between each feature and other features in the dataset. A predictive
model is used to evaluate the output of a group of features. The consistency of a given
technique’s output is used to test each new subset of features. Wrapper approaches are
computationally intensive, as they strive to find the best-performing functional group
of features. Forward feature selection, backward feature exclusion, exhaustive feature
selection, and bidirectional search are all examples of wrapper methods [33,34].

• Embedded approaches carry out the feature selection process as part of the ML model’s
development; in other words, the best group of features is chosen in the model’s
training phase. In this way, embedded approaches incorporate the benefits of both
the filter and wrapper methods. Embedded approaches provide more reliability than
filter methods, have a lower execution time than wrapper methods, and are not very
susceptibility to data overfitting, as they take into account the interactions between
features. The least absolute shrinkage and selection operator (LASSO), tree-based
algorithms such as the random forest classifier, and ridge regression are examples of
commonly used embedded methods [33,34].

Model generation and evaluation is the final step in feature-based radiomics. Follow-
ing feature selection, a predictive model can be trained to predict a predetermined ground
truth, such as tumor recurrence versus tissues changes related to treatment. The most
commonly used algorithms in radiomics include the Cox proportional hazards model for
censored survival data, support vector machines (SVM), neural networks, decision trees
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(such as random forests), logistic regression, and linear regression. To avoid overfitting
of ML models when using supervised methods, datasets are usually split into training
and validation subsets to ensure that these subsets maintain a sample distribution similar
to the class distribution; this is particularly important for small or unbalanced datasets.
After training and validating the model, a previously unseen testing subset of data is
introduced to test the model. Optimally, the testing data should be similar to the actual
data that the model will work on in real clinical settings, and should be derived from a
different source (e.g., a different institution or instrument) than the training data. As a
consequence, when testing a model’s performance, robustness, and reliability, the testing
dataset is the gold standard. Alternatively, statistical approaches such as cross-validation
and bootstrapping can be used for model output estimation without using an external
testing dataset, particularly for small datasets.

2.2.2. DL-Based Radiomics

ANNs that mimic the role of human vision are used in DL-based radiomics to auto-
matically generate higher-dimensional features from input radiological images at various
abstraction and scaling levels. DL-based radiomics is particularly useful for pattern recog-
nition and classification of high-dimensional and nonlinear data. The procedure is radically
different from the one described above. In DL-based radiomics, medical images are usually
analyzed using different network architectures or stacks of linear and nonlinear functions,
such as auto-encoders and CNNs, to obtain the most significant characteristics. With no
prior description or collection of features available, neural networks automatically identify
those features of medical images which are important for classification [35]. Across the
layers of a CNN, low-level features are combined to create higher-level abstract features.
Finally, the derived features are used for analysis or classification tasks. Alternatively,
the features derived from a CNN can be used to generate of other models, such as SVM,
regression models, or decision trees, as is the case when using feature-based radiomic
approaches. Feature selection is seldom used, because the networks produce and learn
the critical features from the input data; instead, techniques such as regularization and
dropout of learned link weights are used to avoid overfitting. Compared to feature-based
radiomics, larger datasets are required in DL-based radiomics due to the high correlation
between inputs and extracted features, which limits its applicability in many research fields
that suffer from restrictions in data availability (such as neuro-oncological studies). No-
tably, the transfer learning approach can be used to circumvent this obstacle by employing
pre-trained neural networks for a separate but closely related purpose [36]. Leveraging
the prior learning of the network can achieve reliable performance even with limited data
availability. These two types of radiomics and their different steps are illustrated in Figure 2.

2.3. Evaluation Metrics in AI and Radiomics Techniques

To evaluate the performance of AI and radiomic techniques, a number of different met-
rics can be used. With respect to model evaluation, TP denotes true positive, TN denotes
true negative, FN denotes false negative, and FP denotes false positive. The following
metrics are used over a number of repetitions to evaluate AI and radiomics techniques:

• Total Score: evaluation of different segmentation measures, namely, the overlap error,
the relative absolute volume difference, and the surface distance (in terms of mean,
RMS, and maximum).

• Dice similarity coefficient (Dice score) = 2TP/(2TP + FP + FN)
• Accuracy = (TP + TN)/(TP + TN + FP + FN)
• Sensitivity = TN/(TN + FP)
• Specificity = TP/(TP + FN)
• Area under the curve (AUC): the area under the receiver operating characteristics (ROC)

curve, which connects the true positive rate (sensitivity) and the false positive rate
(1-specificity); the AUC value ranges from 0 to 1, with 1 being the best performance.
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Figure 2. An illustration of the different types of radiomics and the steps involved.

2.4. Clinical Application of AI and Radiomic Techniques in Liver Cancer

Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, develops
in the the hepatocytes, the primary type of liver cell. Hepatoblastoma and intrahepatic
cholangiocarcinoma are two significantly less frequent kinds of liver cancer. Because HCC
is the most prevalent form of liver cancer, the next sections focuses on the different AI and
radiomics techniques for HCC segmentation, detection, and management.

3. Segmentation of Hepatic Focal Lesions

AI-based automatic segmentation of hepatic focal lesions is preferred to manual or
semi-manual segmentation, as the latter methods are liable to personal variations and are
far more time-consuming. Unfortunately, different models proposed for liver and HCC
automatic segmentation are less accurate than human-based methods. This is attributed to
the heterogeneity of the background hepatic parenchyma in cases of HCC in a cirrhotic liver,
which is the case for most HCC patients. The variable shape, size, density, and location of
hepatic lesions in CT or MR images contribute to inaccuracies in automated segmentation
methods. On CT, Hepatic tumors can appear hypodense, hyperdense, or be of mixed
density, with foci of hemorrhage, calcifications, and necrosis. In addition, there are different
patterns of enhancement after contrast injection in triphasic studies [37]. In addition to
variability related to tumor type, grade, stage, and imaging parameters (machine, imaging
protocol, type and timing of contrast), the appearance of focal hepatic lesions is subject to
individual variations from patient to patient. Older algorithms for automatic segmentation
have used adaptive thresholding, region growing, level set techniques [38–41], Grassman-
nian manifolds [42], and shape parameterization [43]. More recent algorithms use DL
methods to achieve more accurate results. Christ et al. [44] applied two cascaded U-net
models to perform liver and lesion segmentation in two separate processes within a liver
bounding box. Then, the final outcome was refined using a 3D conditional random field
(CRF). In 2017, the liver tumor segmentation (LiTS) challenge was organized. The top
winning algorithms were based on focal neural networks (FNN), which are designed to
learn features from data in an automatic way. A pair of U-net-like models with long and
short skip connections were proposed by the first-round winner. The initial model was only
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applied to coarse liver segmentation, while the second network was trained to segment
both liver and tumors in one step. The two models worked in 2.5D by receiving five
consequent slices to segment the middle one, and the final output was presented as 3D
context information [45]. Other promising methods were based on training two networks
for liver and tumor segmentation and on developing 3D information by training a 3D H-
DenseUNet utilizing original image data in addition to features from a 2D network [46,47].
More recently, Chlebus et al. [48] designed an automatic segmentation method based on a
2D CNN with an object-based postprocessing step. Their algorithm utilized two models,
a voxel-level one and an object-level one, that in turn reduced false positive results by
about 85% in comparison to other raw neural network outputs. Another more complex
algorithm based on a 3D dual-path CNN was introduced by Meng et al. [49]. They used
CRF to remove the false segmentation points in the segmentation results in order to refine
the final segmentation and improve the accuracy. Table 1 summarizes the state-of-the-art
hepatic lesions segmentation systems.

Table 1. Segmentation of Hepatic Focal Lesions.

Study Method CT Data Performance

Hame [38]
• Simple thresholding
• Fuzzy clustering and

deformable model
10 subjects Qualitative evaluation

Smeets et al. [39] Supervised statistical pixel
classification 10 subjects Total score = 69%

Choudhary et al. [40] Adaptive multi-thresholding 10 subjects Total score = 70%

Moltz et al. [41] • Adaptive thresholding
• Shape analysis 10 subjects Total score = 72%

Kadoury et al. [42]
Appearance analysis using
discriminant grassmannian
manifolds

43 subjects Dice score = 91

Linguraru et al. [43] Morphology-based
parameterization 101 subjects AUC = 0.85

Christ et al. [44] CNN 100 subjects Dice score = 94%

Han [45] Deep CNN 200 subjects Dice score = 67%

Vorontsov et al. [46] Fully connected CNN 200 subjects Dice score = 77.3%

Li et al. [47] Hybrid CNN 221 subjects Dice score = 82.4%

Chlebus et al. [48] Fully connected CNN and
object-based refinement 131 subjects Accuracy = 77%

Meng et al. [49] CNN and post-refinement 131 subjects Dice score = 68.9%

Table 1 illustrates that the automatic segmentation of hepatic lesions is performed
using two main categories of techniques, namely, feature-based and DL-based. Extracting
numerous amounts of low- and high-level features through multiple covolutional layers
using DL-based techniques [44] leads to a significant improvement in segmentation perfor-
mance; however, it is limited by being suitable only for larger data cohorts. Recently, many
research studies have worked to address this issue using several techniques, including
transfer learning and semi-supervised deep learning.

4. Detection and Differentiation of HCC from Other Hepatic Masses

The application of AI in the field of abdominal imaging provides a potent tool to
help less experienced radiologists diagnose HCC more accurately and discriminate it from
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HCC mimics using specific CT or MR radiomics. Textural features are further classified
into statistical features (which deal with the distribution of grayscale values), model-
based (concerned with irregularity of the area), and transform-based (which turn spatial
data into frequency) [50]. In clinical practice, statistical features are the most commonly
used [26,51–53]. Nie et al. [54,55] designed a nomogram based on CT radiomics to differen-
tiate HCC from focal nodular hyperplasia (FNH) and hepatocellular adenoma (HA) in the
normal non-cirrhotic liver with high accuracy. Yasaka et al. [35] used a CNN to differentiate
HCC and other malignant lesions with radiological features not typical for HCC from
other indeterminate lesions, hemangiomas, and cysts, achieving a median accuracy of 0.84.
Wu et al. [28] extracted MR radiomics from pre-contrast images (in and out of phase T1WI,
T2 WI, and DWI) and then used four different types of classifiers to discriminate hepatic
hemangioma (HH) from HCC. Their results showed that their model had a diagnostic
performance that outperformed a less experienced radiologist (with two years of experience
as an abdominal radiologist), and nearly equaled to the performance of an experienced one
(ten years of experience). In the cirrhotic liver, differentiation between HCC and cirrhotic
nodules was achieved with high accuracy in the work of Morkos et al. [56]. Ponnoprat et al.
designed a two-step model to differentiate HCC from intrahepatic cholangiocarcinoma
(CC) with 88% accuracy [57]. Another more recent study [58] found that MRI radiomics
performed better than CT radiomics in the discrimination of combined HCC-CC from
either HCC or CC. They reported that post-contrast MRI, non-contrast CT, and the portal
venous phase of triphasic CT had the best results in differentiating HCC from CC or com-
bined HCC-CC. One interesting study [59] used a convolutional dense network (CDN) to
evaluate the accuracy of three models of CT imaging in differentiating HCC from other
focal hepatic lesions. They found that triphasic CT without pre-contrast images had the
highest accuracy (85%). Another study found that using multi-phase CDN models yielded
high accuracy and specificity in differentiating HCC, metastasis, non-inflammatory benign
focal masses, and hepatic abscesses from each other [60]. Regarding MRI-based approaches,
two consecutive studies [61,62] developed CNN models and highlighted feature maps
based on MRI radiomics to differentiate between six categories of hepatic masses. They
achieved higher sensitivity and specificity than experienced radiologists, especially in
the discrimination of HCC from other hepatic observations. Other researchers [63] de-
signed a DL system that collects data from clinical sources (clinical documentation and
laboratory results), non-contrast MRI, and post-contrast MRI images. Their results showed
that the diagnostic accuracy of the DL system was equivalent to the performance of three
experienced radiologists who were asked to classify malignant liver masses into seven
categories. They suggested that because their design performed well with non-contrast
images, future imaging protocols could avoid the use of intravenous contrast. Another
study proposed a deeply supervised cross-learning model, which was able to significantly
improve the characterization of HCC based on non-contrast MRI images [64]. A novel
article concluded that feature-based radiomics along with multiphasic post-contrast MRI
could detect microscopic juxta-early HCC [65]. A summary of recent studies utilizing AI in
the diagnosis of HCC is shown in Table 2.

As shown in Table 2, depending on the aim and research question, each research study
develops its own methodology, selects unique characteristics, or makes use of various sets
of CNN and classifiers; thus, there is a lack of scalability. Radiomics-based diagnostic
models are developed using a variety of techniques, with no specific protocol followed.
Hence, developing an application that merges DL and clinical biomarkers in a way that
achieves generalization and adaptability is of great importance in the field of differentiation
of hepatic lesions. Development of such an application would require a very large dataset
in order to apply sufficient training/testing.
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Table 2. Detection and differentiation of HCC from other hepatic masses.

Study Aim Method Data Performance

Wu et al. [28] Discrimination of
HCC and HH

Radiomics-based
classification

Multi-
modal MRI
(446 lesions)

Sensitivity = 82.2%
and
Specificity = 71.4%

Yasaka et al. [35]

Differentiation of
typical HCC from
indeterminate
hepatic lesions,
HH, and cysts

CNN CE-CT
(560 Subject) Accuracy = 84%

Nie et al. [54] Discrimination of
HCC and FHN

Logistic regres-
sion analysis for
radiomics-based
features and
clinical markers

CE-CT
(119 subjects) AUC = 0.92%

Nie et al. [55] Discrimination of
HCC and HA

Logistic regres-
sion analysis for
radiomics-based
features and
clinical markers

CE-CT
(119 subjects) AUC = 0.94

Mokrane et al. [56] Detection of HCC Imaging features-
based classification

CE-CT
(178 subjects) AUC = 0.66

Ponnoprat et al.
[57]

Discrimination of
HCC and CC

Histogram-based
classification

CE-CT
(257 subjects) Accuracy = 88%

Liu et al. [58] Detection of com-
bined HCC-CC

Radiomics-based
classification

CT and MRI
(86 lesions) AUC = 0.77

Shi et al. [59] Detection of HCC 3 CDNs CE-CT
(342 subjects) Accuracy = 85.6%

Cap et al. [60]
Differentiation of
different types of
hepatic lesions

CDN CE-CT
(517 subjects) Accuracy = 81.3%

Hamm et al. [61]
Differentiation of
different types of
hepatic lesions

CNN CE-MRI
(494 subjects) Accuracy = 91.9%

Wang et al. [62]
Differentiation of
different types of
hepatic lesions

CNN-based inter-
pretation and fea-
ture maps

CE-MRI
(494 subjects) Accuracy = 88%

Zhen et al. [63]
Differentiation of
different types of
hepatic lesions

CNN MRI
(1411 subjects) AUC = 0.98

Jian et al. [64] Detection of HCC Transfer-learning CE-MRI
(150 subjects) Accuracy = 77%

Sun et al. [65] Detection of small
HCC lesions

Radiomics-based
classification

CE-MRI
(124 subjects) Accuracy = 90.40%

5. Managment of HCC

In this section, different clinical applications of AI and radiomics techniques for the
management of HCC are outlined, including the prediction of HCC histopathology, moni-
toring of locoregional therapeutic response, prediction of response to hepatic resection and
systemic treatment and/or immunotherapy, and the prediction of survival of HCC patients.
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5.1. Prediction of HCC Histopathology
5.1.1. Microvascular Invasion

Microvascular invasion (MVI) of HCC is considered an important predictor of tu-
mor recurrence; it is defined as the presence of tumor cells in the main portal vein or
one of its branches, hepatic veins, or large capsular veins [66]. Several studies have at-
tempted to find a correlation between CT radiomics and MVI [67–71]. These studies
have found that a combination of radiological scores (LiRADS) and clinical data (such as
prior infection with hepatitis B virus) with data obtained by nomogram yields the highest
accuracy (88%). A number of researchers have designed models combining data from
peri-tumoral and tumoral areas to predict MVI, as vascular invasion usually occurs at the
tumor margins [67,68,70]. Jiang et al. [72] designed models based on eXtreme Gradient
Boosting (XG Boost) and DL. Their first model combined radiomic features, imaging data,
and clinical data (RRC), while the second was a three-dimensional CNN model (3D CNN).
With an accuracy of 85.2%, the 3D CNN model outperformed the feature-based model
(accuracy = 84.0%). Another study [73] compared different radiomics approaches, and
reported that LASSO+GBDT models had the best diagnostic performance for prediction
of MVI. A recent meta-analysis concluded that while both ML and non-ML methods are
beneficial in predicting MVI, ML models have shown better overall results [74]. One recent
study proposed a deep learning framework composed of a 3D CNN and a loss function
deeply supervised net that extracted deep features from multi-phasic contrast-enhanced
MRI. Their combined model showed good performance (AUC = 0.926) in predicting MVI
when using data derived from all phases [75]. Another study [76] reported encouraging
results from analysis of the histogram of the peritumoral region in post-contrast arterial
phase MRI images to predict MVI in patients with single HCC lesions. On the contrary,
Dai et al. [77] concluded that a CNN model created using radiomic features derived from
the hepatobiliary phase of enhanced MRI images using a gradient boosting decision tree
(GBDT) classifier had the highest predictive accuracy regarding MVI. They found that
GBDT outperformed other classifiers (SVM, logistic regression with the least absolute
shrinkage and selection operator (LASSO), minimum redundancy maximum relevance
(mRMR)). Wang et al. [78] found that deep features extracted from diffusion-weighted
images (DWI) with a b-value of 600 were more accurate than those extracted at b0, b100,
or individually from the apparent diffusion coefficient (ADC) map. The highest prediction
performance was reached when combining data from DWI of the three b-values and ADC
map together. On the other hand, Meng et al. [79] reported that there was no significant dif-
ference in the accuracy of radiomics extracted from CT or MRI in pre-operative prediction
of MVI in patients with single HCC, apart from those with masses 2–5 cm, for whom MRI
showed higher accuracy. Table 3 presents a summary of the aforementioned studies.

5.1.2. HCC Grade and Molecular Signature

The pre-operative prediction of tumor grade is valuable in the prediction of long-term sur-
vival as well as therapeutic response. It may even play role in treatment planning, as high-grade
tumors may require more aggressive treatment and a wider safety resection margin [80–83].
Mao et al. [84] designed an ML model to predict high-grade HCC based on first-order, second-
order, higher-order, and shape features derived from arterial and venous phases of triphasic CT
utilizing recursive feature elimination and eXtreme Gradient Boosting (XGBoost). Their results
showed comparable accuracy between post-contrast CT-derived radiomics and clinical factors,
with the best prediction achieved when using combined models (AUC = 0.8014). On the other
hand, Wu et al. found that MR radiomics derived from non-contrast images outperformed
other clinical biomarkers in differentiating high-grade from low-grade HCC (AUC = 0.74 vs.
0.60, respectively), while a combination of MR radiomics and clinical/laboratory biomark-
ers showed the best performance (AUC = 0.8) [85]. Another study found that using an
artificial neural network (ANN) was more accurate than LR in classifying low- and high-
grade HCC based on fradiomic features extracted from the arterial phase, hepatobiliary
phase, or both [86]. A group of researchers created a 2D CNN model based on features
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extracted from 2D-log maps generated from DWI images of different b-values. They found
that their model performed better in grading HCC than other models that derived features
from ADC maps directly or from individual DWI of the 0, 100, and 600 b-values sepa-
rately [87]. The pre-operative detection of dual-phenotype HCC (DPHCC) is crucial for
treatment plans, as there is increasing scientific evidence that the expression of CK19 is
associated with more aggressive tumor behavior and resulting higher rates of invasion, pro-
liferation, migration, and tumor recurrence [88,89]. One study used radiomics derived from
gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced
images to detect DPHCC pre-operatively. They applied four types of classifiers (logis-
tic regression (LR), SVM, K-nearest neighbor (KNN), and multi-layer perception (MLP)),
and found that a combination of features extracted from multiple phases along with applica-
tions of multiple classifiers had the strongest diagnostic power [90]. Another study reported
significant correlation between tumor grade and expression of CK-7, CK19, and GPC-3
based on radiomic features extracted from susceptibility-weighted images (SWI). No such
correlation was found for MVI [91]. Wang et al. [92] found that DL models based on feature
radiomics derived from arterial and hepatobiliary phases of MRI could be considered as
reliable biomarkers of CK-19 expression. A multi-center study [93] proposed a radiomic
model with high accuracy in pre-operative prediction of CK-19 expression. Their model
was based on features extracted from multi-sequence gadoxetic acid-enhanced MR.

Table 3. Prediction of microvascular invasion.

Study Method Data Performance

Xu et al. [67] Radiomics-based
features CE-CT (619 subjects) AUC = 0.889

Bakr et al. [68] Morphological and
textural features CE-CT (28 subjects) AUC = 0.76

Peng et al. [69]
Radiomics-based
features and clinical
biomarkers

CE-CT (304 subjects) Qualitative
evaluation

Zheng et al. [70] Morphological features
and clinical biomarkers CT (120 subjects) AUC = 0.88

Cucchetti et al. [71] Clinical biomarkers
Radiology and
histopathology
(250 subjects)

Accuracy = 88%

Jiang et al. [72] Radiomics-based
features and CNN CE-CT (405 subjects) Accuracy = 85.2%

and AUC = 0.906

Ni et al. [73] Radiomics-based
features CE-CT (206 subjects) Accuracy = 84.4%

Zhang et al. [74] Statistical analysis CT or MRI (4759
subjects) AUC = 0.86

Zhou et al. [75] CNN CE-MRI (114 subjects) AUC = 0.926

Wang et al. [76]
Histogram-based
features and clinical
biomarkers

CE-MRI (113 subjects) AUC = 0.798

Dai et al. [77] Radiomics-based
features CE-MRI (69 subjects) AUC = 0.895

Wang et al. [78] CNN DW-MRI (97 subjects) AUC = 0.79
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One of the most favorable biomarkers used in the prognosis of HCC is k-67 expression.
A sophisticated study used Gd-EOB-DTPA radiomics in combination with clinical risk
factors to pre-operatively predict the expression of k67 in HCC. They picked features from
five imaging sequences (arterial phase, portal venous phase, delayed phase, hepato-biliary
phase, and T2-WI) and followed this with the application of LASSO to build a radiomic
score. Their results showed that the combination of radiomic scores obtained from the
arterial phase and serum AFP yielded the best predictive performance [94]. The different
models discussed above are summarized in Table 4.

Table 4. HCC grade and molecular signature.

Study Aim Method Data Performance

Mao et al. [84]
Discrimination of
high/low grade
HCC

Radiomics-based
features and clinical
biomarkers

CE-CT (297
subjects) AUC = 0.8014

Wu et al. [85]
Discrimination of
high/low grade
HCC

Radiomics-based
features and clinical
biomarkers

Multi-
modal
MRI (170
subjects)

AUC = 0.8

Zhou et al. [87]
Discrimination of
high/low grade
HCC

CNN DW-MRI
(98 subjects) Accuracy = 80%

Huang et al. [90] Detection of
DPHCC

Radiomics-based
classification

CE-MRI
(100 sub-
jects)

Accuracy = 79.8%

Geng et al. [91]
Differentiation of
four histopathol-
ogy grades

Radiomics-based
classification

SWI (53 sub-
jects) AUC = 0.8255

Yang et al. [92] Detection of CK-
19 HCC

Radiomics-based
classification

CE-MRI
(257 sub-
jects)

AUC = 0.758

Wang et al. [93] Detection of CK-
19 HCC

Radiomics-based
classification

CE-MRI
(227 sub-
jects)

AUC = 0.822

Fan et al. [94] Prediction of K-67 Radiomics-based
features

Multi-
modal
MRI (151
subjects)

AUC = 0.922

5.2. Monitoring of Locoregional Therapeutic Response

Locoregional therapy (LRT) of HCC includes several maneuvers, such as percuta-
neous ethanol injection (PEI), micro-wave ablation (MWA), radiofrequency ablation (RFA),
cryo-ablation, trans-arterial embolization (TAE), drug-eluting bead trans-arterial chemo-
embolization (DEB-TACE), trans-arterial radio-embolization (TARE), stereotactic body
radiotherapy (SBRT), and trans-arterial chemoembolization (TACE). These maneuvers aim
to improve prognosis and delay the progress of the neoplasm. They can act as a bridge
before a permanent cure through either surgical excision or liver transplant [95,96]. It is
crucial to determine whether these procedures successfully eradicate the tumor or whether
there is active tumor tissue remaining, as the latter necessitates further treatment sessions.
This is a challenging task, as each procedure has its own peculiar post-therapeutic changes,
including necrosis, hemorrhage, or retained embolic materials. AI has been introduced to
assist radiologists in the detection of volumetric measurements of viable tumor tissue as
well as prediction of the response. For usual radiological assessment, complete response
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after RFA, MWA, and PEA necessitates absent enhancement. However, thin peripheral
enhancement can persist for months after cryoablation, TAE, TACE, DEB-TACE, TARE,
and SBRT. Nodular enhancement can be present for a few months after TARE, while tu-
mors treated with SBRT may show what is called a pseudo-progression in both size and
enhancement for about three months post-therapy. This must be taken into consideration,
and should not reported as a persistent viable tumor [97–100]. It is obvious that accurate
assessment of tumor response to LRT necessitates great experience, as there are many
potentially ambiguous imaging findings. In addition, there is a large segment of patients
who undergo more than one type of LCT. Considering these complexities, the application
of AI to this problem could be valuable.

5.2.1. Prediction of Response to Ablation Therapy (MWA & RFA)

An et al. [101] designed a deep learning-based deformable image registration (DIR)
technique to assess the ablation margin in HCC treated by MWA and correlate it with
local tumor progression (LTP). They compared post-contrast MRI images dated one month
prior and three months after MWA to measure the ablative margin, which was defined as
the distance between the original tumor and the deformed ablated region. They used an
unsupervised landmark-constrained CNN to correct misalignments between images. They
declared that an ablative margin equal to or less than 5 mm was an independent risk factor
for LTP. Hu et al. [102] developed a nomogram consisting of five features (AFP, tumor
number, peri-tumoral enhancement in arterial phase, hypointense SI in hepatobiliary phase
of Gadoxetic acid-enhanced MRI) to predict early recurrence in post-ablative therapy for
HCC. Their nomogram had high accuracy (AUC = 0.843). Linag et al. [103] developed an
SVM that was able to predict the recurrence of HCC in patients who were treated with
RFA with high specificity and accuracy (86% and 82% respectively). This approach could
be used to select patients with a high risk of recurrence for placement in a close follow-
up protocol. Another recent study involved developing a DL model based on radiomic
features extracted from contrast-enhanced ultrasound (US) images of patients who had
RFA or local hepatic segment resection as a treatment for HCC. They tested their model to
predict progression-free survival (PFS) and optimize treatment selection in patients having
very early or early-stage HCC. Their results showed that feature radiomics combined
with clinical biomarkers could predict PFS and help in treatment selection to improve
patient survival [104]. Table 5 summarizes these different studies targeting the prediction
of response to ablation therapy.

Table 5. Prediction of response to ablation therapy (MWA and RFA).

Study Aim Method Data Performance

An et al. [101] Prediction of MWA
response CNN CE-MRI (141

subjects) Qualitative evaluation

Hu et al. [102] Prediction of MWA
and RFA response

Radiomics-based
features and clini-
cal biomarkers

CE-MRI (160
subjects) AUC = 0.835

Liang et al. [103] Prediction of RFA
response

Clinical biomark-
ers

CT (83 sub-
jects) AUC = 0.69

Liu et al. [104] Prediction of RFA
response

Radiomics-based
deep learning

CE-US (419
subjects) Qualitative evaluation
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5.2.2. Prediction of Response to TACE

Several studies have reported the efficacy of CT and MRI radiomics in predicting
tumor response after TACE [105–116]. Morshid et al. [106] used quantitative features
from pre-operative CT in combination with clinical data to build an ML predictive model
that showed high accuracy (74.2%) in predicting tumor recurrence after TACE. Similarly,
Meng et al. [107] found that a combined clinical/radiomics model had the best predictive
performance. Peng et al. [108] created a DL model to predict complete/partial response or
stable/progressive disease in 562 patients who received TACE as a treatment for intermedi-
ate stage HCC. They extracted data from post-contrast CT, then applied transfer learning
techniques through a residual CNN (ResNet50). Their ML training model showed high
accuracy (84.3%), while the other two validated cohorts had accuracies of 85.1% and 81.8%.
Sun et al. [111] designed a predictive model based on MRI radiomics and found that the
highest predictive accuracy was achieved when radiomic features were extracted from
multiparametric MRI (AUC = 0.8), while models derived from radiomics of individual
sequences had the following results in descending order of accuracy: DWI b0 (AUC = 0.786),
DWI b500 (AUC = 0.729), T2-WI (AUC = 0.729), and finally ADC (AUC = 0.714). Several
studies [112–116] have found that predictive models based on MRI radiomics are compara-
ble to or even outperform those based on clinical biomarkers, with combinations of clinical
data and MR radiomics having the best predictive performance. Two recent studies have
reported promising results in monitoring response to combined MWA and TACE [117],
high-intensity focused US, and TACE [118] based on analysis of MR textural features.

5.3. Prediction of Response to Hepatic Resection

Regardless of the continuous progress of locoregional therapeutic modalities, resection
remains the gold standard ideal treatment for HCC [119]. However, as HCC is an aggres-
sive tumor, even post-resection patients have a high recurrence rate approaching 70% [120].
Thus, a predictive tool with high accuracy is necessary to evaluate patients pre-operatively
and select those with a low risk of local recurrence who can benefit from relatively invasive
and expensive procedures such as local hepatic resection. Additionally, such tools can
help in the planning of proper surveillance programs for high-risk groups [121,122]. Re-
searchers have proposed predictive models with high accuracy based on combinations of
CT radiomics and clinical risk factors to assess short- and long-term survival after surgical
resection of HCC [123,124]. One such study found that random survival forest (RSF) was
able to extract eight histogram textural features related to disease-free survival and ten
features related to overall survival (OS) [125]. Interestingly, several studies have reported
correlation between different textural features derived from pre- and post-contrast CT of
resectable HCC and survival [126–128]. Shan et al. [129] used peritumoral CT radiomics
(2 cm around the original tumor) to predict the recurrence of HCC after hepatectomy or ab-
lation. Their study showed that peritumoral CT radiomics were more accurate than tumoral
CT radiomics in the prediction of tumor recurrence. On the other hand, Kim et al. [130]
used peritumoral MR radiomics (3 mm from the tumoral edge) in building a pre-operative
predictive model that showed similar results to post-operative clinic-pathologic model. A
multi-center study proposed a pre-operative and a combined pre- and post-operative prog-
nostic model using multivariable Cox regression analysis. Their pre-operative model was
composed of radiomic signatures derived from post-contrast CT, tumor number, and serum
AFP level, while the post-operative model added satellite nodules and MVI to the afore-
mentioned factors. Models created with radiomics had better prognostic performance than
those depending only on clinical predictors [131]. Similarly, another multicenter study
found that a combined model composed of clinical data (AFP, albumin-bilirubin grade,
tumor margin, and liver cirrhosis) and three-feature radiomic signatures achieved high
prognostic performance in predicting recurrence in post-resection patients [132]. Wen et al.
developed a combined model with high accuracy (AUC = 0.981) composed of clinical risk
factors, radiologic features, and radiomic scores to predict early and late tumor recurrence
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in small HCC (3 cm and less) treated with either local resection or RFA [133]. Similar results
have been reported by other researchers, albeit with lower accuracy [134–139].

5.4. Prediction of Response to Systemic Treatment and/or Immunotherapy

Unresectable HCC is currently treated by targeted therapeutic agents as Sorafenib
(oral multikinase inhibitor of the vascular endothelial growth factor receptor, the platelet-
derived growth factor receptor) and Lenvatinib (inhibitor of VEGF receptors 1–3, FGF
receptors 1–4, PDGF receptor α, RET, and KIT) in addition to immunotherapeutic agents,
resulting in impressive clinical response [140–149]. The response of tumors to immunother-
apy is highly dependent on the immune status of the tumor itself and its immunopro-
filing [150]. Liao et al. [151] developed a radiomics-based biomarker derived from post-
contrast-enhanced CT that proved to be an accurate predictor of tumor cell infiltration
with CD8+T. Similarly, Yuan et al. [152] developed a CT radiomic/clinical nomogram with
high performance (AUC = 0.883) to predict anti-PD-1 treatment efficacy in patients with
advanced HCC. They incorporated eight CT radiomic features derived from enhanced
images of the whole tumor and peritumoral region, in addition to two clinical factors
(tumor embolus and ALBI grade). Hectors et al. [153] found that MRI feature radiomics can
predict HCC immunoprofiling well, and might help in risk stratification. Recent reports
have found that higher enhancement of intrahepatic HCC nodules in the hepatobiliary
phase of Gd-EOB-DTPA-enhanced MRI may reflect the activation of the Wnt/β-catenin
signaling pathway. Furthermore, it has been reported that the enhancement values could
be predictors of response to immune-checkpoint inhibitors (ICI) treatments [154–156].

5.5. Prediction of the Survival of HCC Patients

Various factors appear to influence the survival of HCC patients, with the most
recognizable factors including the initial status of the liver, presence of co-morbidities,
characteristic radiological and pathological features, and the presence or absence of certain
biological markers [157]. The traditional way of predicting survival is through survival
analysis and Cox proportional hazard models [158–160]. Recently ANNs have been used
to assess different clinical-pathological outcomes in patients with hepatectomy or other
locoregional procedures as treatment for HCC. An ANN is composed of an input layer that
receives data, multiple hidden layers to analyze the data, and an output layer that provides
the result. An ANN is capable of showing input and output data in pairs, which improves
reliability [161]. Hamamoto et al. [162] used a neural network to predict the outcome in
eleven patients who had undergone hepatectomy as treatment for HCC, and their method
showed 100% successful prediction. Other researchers have found ANNs to have better per-
formance in predicting the survival-free interval [163] and in-hospital mortality [164–166]
post-hepatectomy as compared to traditional logistic regression models. In line with the
results described in previous sections of this article, several studies have shown that models
derived from CT or MRI radiomics perform better than clinical nomograms in prediction
of tumor recurrence, and could therefore be a useful tool for individual patient progno-
sis and the selection of patients who might benefit from LRT, hepatectomy, or systemic
therapy [124,134,137,167–171].

Throughout this section, it is notable that the aforementioned studies concerned
with the management of HCC show that applying DL-based radiomics leads to higher
performance. On the other side, these approaches are limited by the fact that they need
to be connected to specific clinical markers in order to afford better understandability of
disease. Moreover, they are costly in terms of time and computing resources.
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6. Limitations and Future Perspectives

One of the most important limitations within the literature is that most of the afore-
mentioned studies were retrospective and included a relatively small number of patients.
Another limitation is the lack of generalization, as each study creates its own methods,
picks different features, and utilizes different sets of CNN layers and classifiers. There is no
fixed protocol to follow, and multiple different software applications are used to extract
radiomics features. Indeed, a large public open-access database, more multicenter studies,
and clinical trials would promote more validated techniques and procedures. One recent
multicenter study [172] standardized a set of 169 radiomics features, which in turn facili-
tated the validation of radiomics software. Another limitation that may hinder the wider
application of AI in routine imaging is the high cost of its complex processes. To build a
proper diagnostic or predicting model, images must pass through segmentation, feature ex-
traction, and application of classifiers, then modeling, which requires specialized software
packages and specialized personnel able to manage these software applications. Another
important issue to be highlighted is that most radiologists are not currently familiar with
the complexities of AI-based software.

However, AI-based models are becoming more widely used in the management of
HCC and many other illnesses to decrease interobserver variability and bias. Necessarily,
this requires wide-scale cooperation and effort to create the enormous high-quality datasets
required to train such models. Such cooperation, efforts, and larger datasets can enhance
the general application of the powers of AI for utilization with clinical biomarkers, and
could be used for different applications in the field of HCC.

7. Conclusions

AI, ML, and DL have been used to develop models that can improve the diagnosis
and management of HCC. In this article, we cover several techniques: detection and
differentiation of HCC from other hepatic masses, prediction of histological grading and
MVI, monitoring of therapeutic response, and prediction of survival. From approximately
130 studies, our conclusions show initial results for hepatic lesion segmentation with dice
scores ranging from 67% to 94%. For detection and differentiation of HCC from other
hepatic observations, the included AI-based models yield accuracies in the range of 77% to
91.9%. Moreover, microvascular invasion can be predicted with an AUC ranging from 0.76
to 0.90 using different approaches. Additionally, the included AI-based studies achieve
high performance in the prediction of HCC grade, therapeutic response, and survival.
Yet, these complex techniques lack the validation and standardization necessary for their
application in routine everyday work.

The performance of AI in HCC-related tasks cannot yet be regarded as a gold stan-
dard, despite its potential. However, AI models are becoming more reliable and broadly
applicable and attaining the capacity to anticipate novel scenarios, demonstrating that AI
can be used to design more precise and personalized management models that diminish
subjectivity-related biases.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC apparent diffusion coefficient
AFP alpha fetoprotein
AI artificial intelligence
ANN artificial neural network
AUC area under the curve
CAD computer-aided diagnosis
CC cholangiocarcinoma
CDN convolutional dense network
CNN convolutional neural network
CRF conditional random fields
CT computed tomography
DEB-TACE drug-eluting bead trans-arterial chemoembolization
DFS disease-free survival
DIR deformable image registration
DL deep learning
DPHCC dual-phenotype HCC
DWI diffusion-weighted images
FNH focal nodular hyperplasia
FNN Focal neural network
GBDT gradient boosting decision tree
Gd-EOB-DTPA gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid
GLCM gray-level co-occurrence matrix
HA hepatocellular adenoma
HCC hepatocellular carcinoma
HGRE high gray-level run emphasis
HH hepatic hemangioma
ICI immune-checkpoint inhibitors
KNN K-nearest neighbor
LASSO logistic regression with the least absolute shrinkage and selection operator
LBP local binary pattern
LCT locoregional therapy
LGRE low gray-level run emphasis
LiTS liver tumor segmentation
LR logistic regression
LRE long-run emphasis
LRT locoregional therapy
LTP local tumor progression
ML machine learning
MLP multi-layer perception
MRI magnetic resonance imaging
mRMR minimum redundancy maximum relevance
MVI microvascular invasion
MWA microwave ablation
NGLDM neighborhood gray-level different matrix
OS overall survival
PACS picture archives and communication systems
PCA principal component analysis
PEI percutaneous ethanol injection
PFS progression free survival
RFA radiofrequency ablation
ROC receiver operating characteristics
ROI region of interest
RP run percentage
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RRC CT radiomics, radiological data, clinical data
RSF random survival forest
SBRT stereotactic body radiotherapy
SRE Short-run emphasis
SVM support vector machine
SWI susceptibility weighted images
TACE trans-arteria chemoembolization
TARE trans-arterial radio-embolization
VOI volume of interest
XG Boost extreme gradient boost
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