Skip to main content
. 2022 Oct 14;13(11):5813–5835. doi: 10.1364/BOE.472176

Table 1. The quantitative comparisons of our approach and other state-of-the-art methods for binary-class and multi-class DR grading tasks on Messidor and EyePACS datasets. “-” denotes no results reported in corresponding works. The best results were shown in bold. a .

Methods Parameters Messidor
EyePACS
AUC Acc Pre Recall F1-score Kappa Kappa Acc
Our DACNN 157.86M 0 . 985 0.938 0.946 0.907 0.926 0.879 0.886 0.880
CABNet [12] 25.19M 0.969 0.931 0.929 0.902 0.915 - 0.868 0.862
LAT [9] 75.5M 0.979 - - - - 0.851 0.884 -
CANet [11] 29.03M 0.963 0.926 0.906 0.920 0.913 - - -
DR|GRADUATE [58] 7.82M 0.910 0.912 0.933 0.614 0.741 0.710 0.740 0.536
ResNet-50 [30] 25.54M 0.880 0.929 0.857 0.796 0.826 0.781 0.653 0.815
MobileNet-1.0 [59] 3.2M 0.867 0.927 0.872 0.764 0.815 0.769 0.513 0.798
Inception-v3 [60] 21.77M 0.876 0.932 0.883 0.780 0.828 0.786 0.657 0.824
a

AUC: the area under the receiver operating characteristic (ROC) curve; Acc: accuracy; Pre: precision

  NODES
Note 1