The Regulation of Brain Mitochondrial Calcium-Ion Transport

THE ROLE OF ATP IN THE DISCRIMINATION BETWEEN KINETIC AND

MEMBRANE-POTENTIAL-DEPENDENT CALCIUM-ION EFFLUX MECHANISMS

David G. NICHOLLS and Ian D. SCOTT Neurochemistry Laboratory, Department of Psychiatry, Ninewells Medical School, University of Dundee, Dundee DD1 95Y, Scotland, U.K.

(Received 20 August 1979)

Mitochondria from guinea-pig cerebral cortex incubated in the presence of P. or acetate

are unable to regulate the extramitochondrial free Ca²⁺ at a steady-state which is

<u> </u>	A

834	<u></u>	D. G. NICHOLLS AND I. D. SCOTT	
		N	
1			_
			F
5			
ł			
·)			
,			
β-1;			
•			
decrease to observe	potential-dependent efflux	Erra? mitachandria (i.a. thasa not contained	
۱ <u>۲</u> ۲			
•			
4			
<u>.</u>			
ц ц			
7 4 - 1			
u-			1

ATP AND Ca²⁺ TRANSPORT

1<u>.....</u>

•	· · · · · · · · · · · · · · · · · · ·		 	
de la				
i				
	2			
뗟	_	-		
ŧ.				

Į			
f			
<u></u>			
F (
,			
/			
1			
/			
3			
			1
ι			
A		÷	
7			
	, <u> </u>		
		*	
		-	

	'massive-loading' of the matrix with in excess of	to greatly enhance ΔpH and decrease Δw (see also
		N
	[5	
2		
1-74		
}		
• 		
n		
	2 	
		••••
	1967). Because of the high Ca ²⁺ concentrations used	time-dependent loss of Ca^{2+} from the matrix. Δw
	in massive-loading experiments, and because of the	continues to decrease. from 106 mV to 92 mV (Fig. 3
_	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	finding that added adenine nucleotides were not	of Ramachandran & Bygrave. 1978). These mem-
· · · · · · · · · · · · · · · · · · ·		·
J		
A		

12

ATP AND Ca²⁺ TRANSPORT

×

are less than 0.2 nmol of Ca ²⁺ /min ner mo of narticle	Lehninger, A. L., Carafoli, E. & Rossi, C. S. (1967) Adv.
1	
· · ·	
، م	
A <u></u>	
(i	
<u></u>	
د الم	
•	