
File 6: The Ahab algorithm: fitting multiple weightmatrices to sequence

The algorithm is based on a probabilistic segmentation of a sequence S in terms of background
and binding sites for a given set of transcription factors. The sequence motifs recognized by the
factors are modeled by weight matrices. There are many ways to partition a sequence and one
needs a systematic procedure to weight all possible tilings. Our model is that each tile (background
and weight matrices) has a probability pw and that the various drawings needed to cover the whole
sequence in a given tiling T are independent. The set of probabilities pw’s is fixed by maximizing
the likelihood to observe the sequence.

Specifically, let us denote by N(T ) the number of tiles needed to cover S in the tiling T . Its
likelihood is given by

P (T ) =
N(T )∏
k=1

pwkm(s|wk) , (1)

The weight m for a match between a subsequence s = (n1, . . . nl) and a weight matrix of the
same length follows from the very definition of weight matrix. Denoting by fj(n|w) the normalized
frequency of the nucleotide n at the j-th position in the weight matrix, we have

m(s|w) =
l∏

j=1

fj(n|w). (2)

Sequence which is not be covered by binding sites should be modelled as background sequence.
Obviously, background sequence could still be functional, for example it could be recognized and
bound by other transcription factors which are not part of our set. In any case one should assume
that background sequence has retained some correlations and use a Markov model of order M to
model it. First, we count the frequencies f (B) of all m + 1 tuples in the sequence. These counts
determine also the frequencies of all 1, ...,m tuples. Second, we calculate the weight m(n1|B) for
a nucleotide n1 to be drawn from background as the probability of n1 conditional to the couple
preceding it. For example, for a Markov model of order 3, n1 = C and the precedent couple AA we
have

m(n1|B) = f (B)(AAC)/[f (B)(AAA) + . . . f (B)(AAT )]. (3)

If n1 happens to be the beginning base of the sequence (or if there are unknown nucleotides in
the couple preceding it), the match is calculated similarly but using the frequencies of couples or
single-nucleotides. Note that the length L of S sets bounds on the order M of the Markov model
because one should have L >> 4m+1.

The likelihood Z to observe the sequence S given the set of probabilities pw is simply the sum
of (1) for all possible tilings :

Z =
∑
T

P (T ) . (4)

The optimal assignment of the pw’s is found by maximizing the likelihood Z or, equivalently, by
minimizing the free energy F = − logZ. The specific method which we have used is a conjugate
gradient method and therefore involves the calculation of the function F and its first derivatives.

Readers familiar with hidden Markov models (HMM) (see (1) and references therein) may find
it enlightening that Ahab (and Mobydick (2)) can be formulated as HMMs. The states of the
model are background and all possible positions within the various weight matrices. The transition
probabilities between the states are as follows. If the present state is the background or the final
position of a weight matrix, the next state will be the background or the beginning of a weight
matrix with probabilities given by the pw’s. If the present state is within a weight matrix, the next
one is bound to be the successive position within the same weight matrix. The emission probabilities
are simply given by the weight matrix frequencies and the conditional probabilities discussed above.

The number of possible segmentations of a sequence S increases factorially with its length L and
it would therefore be impossible to calculate (4) by brute force for any relevant length. However,
the Markovian nature of the model hints that dynamic programming techniques (“transfer matrix”



methods in statistical mechanics) are possible. Indeed, the likelihood for the sequence up to i obeys
the following recursion relation :

Z(1, i) =
∑
w

pwm(s|w)Z(1, i− lw) , (5)

where the sum w is over the background and each weight matrices and lw is the width of the
wth matrix in the sum. For each w the sequence s appearing in m(s|w) includes the bases (i, i −
1, . . . , i− lw+1) from the data being fit. The likelihood for S is Z = Z(1, L) and the initial condition
is Z(1, i ≤ 0) = 1. Equation (5) is the analog of the forward algorithm for HMMs. The only caveat
in (5) is that the sum is numerically prone to underflows. The well-known remedy is to use ratios,
e.g. to numerically implement the recursion for Z(1, i)/Z(1, i − 1). The free energy F is finally
calculated in a time which scales linear with L.

For the computation of the gradients the most convenient procedure is to calculate first the
derivatives with respect to the probabilities of all the relevant subsequences appearing in S and
then use the chain rule. Specifically, let the probability of a subsequence s be denoted by qs =∑
pwm(s|w). The derivative with respect to the q’s is calculated as :

∂F

∂qs
= − 1

Z

∂Z

∂qs
= −

L∑
i=1

G(i, ls)δs,si (6)

where the δ restricts the sum to the positions in the sequence where s is present and G(i, ls) =
Z(1, i− ls)Z(i+ 1, L)/Z(1, L). The backward likelihoods obey a recursive relation analogous to (5)
(but the sequence s appearing in m(s|w) now includes the bases (i, i+ 1, . . . , i+ lw − 1)):

Z(i, L) =
∑
w

pwm(s|w)Z(i+ lw, L) . (7)

This allows to calculate the G appearing in (6) and thus all the derivatives in O(L×lmax) operations,
where lmax denotes the maximum length among the weight matrices. The derivatives with respect
to the pw’s are finally calculated using the chain rule :

∂F

∂pw
=
∑ ∂F

∂qs
m(w, s) . (8)

Numerically, it is convenient to precompute the subsequences and their matches m(s|w). The sums
are restricted to subsequences and weight matrices having the same length.

The free energy and its derivatives are the input for the conjugate gradient method of optimization
(see (3) for a simple discussion of the method and the subroutines used). In some cases, it turns
out to be numerically convenient to start with a few preliminary steps in the direction of steepest
descent. Note that our optimization problem is constrained, i.e. the pw’s are restricted between zero
and one and normalized. However, these restrictions are easily lifted by the parametrization :

pw =
exp(−βw)∑

exp(−βw)
(9)

and by setting one the β’s to zero (for example for background).
The outcome of the optimization procedure is the converged set of probabilities pw and the

corresponding value of the free energy F . The latter is used to rate the density and the quality
of transcription factor binding sites by the log-score Q = FB − F . Here, FB is the free energy
in the absence of weight matrices and is the log likelihood that S comes only from background.
The converged set of pw’s is used in posterior decoding. Finally, at each position i = (1, . . . , L) in
S we calculate the posterior probability for the j-th position within the tile w (weight matrix or
background) as :

Pi(w, j|S) =
Z(1, i− j) pwm(s|w)Z(i+ lw + 1− j, L)

Z(1, L)
. (10)
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