
File 7: The Argos algorithm: Exhaustive motif count

Argos is designed to evaluate if a given sequence S (typically a few hundred bases long) has
repeated motifs which are very unlikely in the light of genome wide statistics. Sequence motifs
are modelled by consensus sequences of length l with m mutations. Typically, we work with motif
lengths between 6 and 11 nucleotides and up to 4 mutations. The first step is to establish back-
ground counts for all motifs:
Background counts: The task is to count all motifs in the genome. This is done by (a) counting all
n-mers in the genome (b) computing all possible mutations of each n-mer. Thus, the copy number
of any given motif in the genome is computed. Some thought about efficient data structures using
the STL library in C++ allows convenient runtime performance, for example the Drosophila genome
can be evaluated in a few hours. Argos has options to adjust the overlap between motifs in (a) and
to treat the reverse complement. In this case, there is a problem with motifs which have some degree
of palyndromicity. These motifs would be counted twice. The problem is solved by computing the
volume of the overlap (in hamming space) of any two motifs related by reverse complimency and
subtracting it from their total volume.

The second step then is to score a putative module S against the background counts:
Scoring modules: Similar to the computation for the background procedure explained above, all
copy numbers of all motifs are computed for S. Then, Argos computes from the background counts
(which are read from flat files) the expected number Eh of copies of any motif h in S and sorts
all motifs in S by their Poisson score − log(prob(x ≥ Eh)) in S. When also allowing for reverse
complement motifs, the code maximizes (for each motif) probabilities, i.e. it will decide whether the
single strand model or the double strand model is more significant.

The problem is that many of the significant motifs will be related to each other, for example by
mutations or by shifts. We employ a greedy algorithm to resolve these dependencies. The top motif
eliminates all motifs which are related to it (up to an optional number of mutations or shifts) from
the list; then the second highest motif eliminates all other related motifs, and so on. The algorithms
stops when more than M top motifs are produced. Typically it turned out to be useful to work with
a fixed motif lengths of 8, to allow 2 mutations in the consensus, to eliminate all motifs which are
related by less than 4 mutations and/or shifts, and to set M = 5. The overall score for S is then the
sum of all Poisson scores of the top motifs. Since Argos needs to be run over potentially hundreds
of millions of sequences, care was taken to implement it efficiently. Efficiency was achieved by two
technical points. First, we work with a fixed minimum significance threshold. This makes it possible
to precompute the minimum copy number needed for each motif to be significant. It is then easy
to compute the list of significant motifs. Second, we use a sliding window (typically sliding by 1
nucleotide ) to score each sequence S in a genomic region (or the whole genome). Our data data
structures allow to efficiently compute the differences in all counts between sucessive windows, thus
greatly speeding up run time.


