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RNA extraction 

Tumor and adjacent liver tissues were macro-dissected from 10 micron formalin-fixed, 

paraffin-embedded (FFPE) tissue sections. Absence of microvascular tumor invasion 

in the adjacent liver tissue was confirmed using H & E staining of consecutive 

sections. Using 3-4 sections for each sample, total RNA was extracted using the High 

Pure RNA Paraffin kit (Roche) as directed by the manufacturer (training set) or 

TRIzol LS reagent (Invitrogen) in a semi-automated 96-well plate format based on the 

manufacturer’s instructions (validation set). 

 

Gene expression arrays for FFPE tissues 

DASL assay 

To profile randomly fragmented mRNA extracted from FFPE tissue (FFPE-RNA), we 

employed the cDNA-mediated Annealing, Selection, extension and Ligation (DASL) 

assay (Illumina)
1, 2

. Briefly, fragmented FFPE-RNA is converted into cDNA using 

random primers. For each target site on the cDNA, a pair of query oligos separated by 

a single nucleotide is annealed to the cDNA, and, the gap between the query oligos is 

extended and ligated to generate a PCR template. A pair of universal PCR primers is 

then used for amplification, and linearly amplified PCR products are hybridized to a 

bead microarray. The array was then scanned by a BeadArray Reader (Illumina). 

 

Number of microarray probes assigned to each gene 

Missing signals due to RNA degradation is one of the major concerns in profiling 

FFPE tissues. For this reason, a commercially available panel of 502 cancer-related 

genes for DASL assay (Cancer Panel, Illumina) assigns 3 independent probes to each 

gene, with the expectation that this would maximize data quality. However, the use of 

multiple probes per gene diminishes the number of transcripts that can be assayed per 

array (given a fixed number of probes per array). We therefore sought to 

experimentally determine the effect of reducing the number of probes per gene, so as 

to facilitate covering a larger number of genes with the same total number of probes.  

We randomly picked a single probe from among the 3 probes assigned to each gene, 

and evaluated how the single probe dataset performed in sample clustering and 

marker gene selection analyses. 

 

First, by picking a single probe for each gene, 5~7% of measurements fell below the 
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level of negative control probes, suggesting either missing signals due to RNA 

degradation or suboptimal probe sequence (Supplementary Figure 1A). However, 

we found that such probe drop-out had little effect on overall performance of the 

arrays. For example, a prostate cancer vs. normal distinction was not affected by the 

single probe picking (Supplementary Figure 1B). This suggests that profiling 

100s~1000s genes can compensate for the slight increase in noise caused by RNA 

degradation. In marker gene analysis, only a small number of genes were dropped 

from the top marker gene list (indicating a small number of false negatives), and no 

genes came to the top of the marker list in the single probe data but were absent in the 

dataset using 3 probes per gene (indicating no false positives) (Supplementary 

Figure 1C). 

 

Designing a 6,000-gene DASL assay 

We sought to identify ~ 6,000 maximally informative transcripts that could be used 

for genome-wide discovery on the DASL platform (configured as 4 x 1536 assays 

utilizing one probe per gene).  To address this, we analyzed a large collection of 

Affymextrix transcriptome datasets profiling cancer and normal tissues.
3, 4

 This 

analysis revealed that the expression signals from ~ one third of the genes on most 

genome-wide arrays were “absent” (Supplementary Figure 8). This suggests that a 

substantial proportion of the genome is infrequently expressed, and therefore might be 

omitted without great consequence. By excluding such genes, we aimed to define a 

generic minimum subset of genome representing the global structure of the entire 

transcriptome.  

 

We designed a set of query oligos (i.e., probes) to profile transcriptionally informative 

genes that might be useful for signature discovery and validation. To this end, we 

selected genes with the largest variation across samples in a large collection of 

previously generated Affymetrix microarray datasets spanning 24 studies, 2,149 

samples, and 15 tissue types (Supplementary Table 8). After filtering out genes with 

less than a 3-fold difference and less than 100 units between the maximum and 

minimum signals across the dataset, the coefficient of variation (CV) was calculated 

and summarized onto the NCBI’s RefSeq gene IDs to compute a priority score for 

each gene, and genes were rank-ordered according to this score (Supplementary 

Figure 9A). An examination of published marker genes from recent studies indicated 
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that our list of 6,000 genes represented 70-90% of these genes, indicating that the 

6,000 gene array was more informative than a random collection of 6,000 genes 

(which might be expected to capture only ~ 25% of reported markers)  

(Supplementary Figure 9B). We then designed query oligos for the top informative 

6,100 genes (NCBI’s Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/, 

platform ID GPL5474). 

 

Quality assessment of DASL profile 

As a quality measure of the DASL gene expression profile, we calculated the 

proportion of gene probes with a “present” signal (%P-call), which is expected to be 

similar across samples of a given tissue type (e.g. HCC). (Of note, the “present” call 

rate drops precipitously when degraded RNA typical of FFPE tissues is analyzed on 

conventional microarrays such as Affymetrix arrays). The “present” call was 

computed based on built-in negative control probes (GenePattern, IlluminaDASL 

pipeline). In a pilot experiment performed on 10 prostate cancer tissues, we 

observed %P-call of ~ 75% in 2 samples fixed 24 years before RNA extraction, which 

was comparable to a sample fixed 7 years ago (Supplementary Figure 9C), 

indicating that data quality is not directly correlated with age of the sample. 

 

Poor quality profiles were detected and removed as follows. We set a “median” array 

as a representative sample in a dataset by calculating the median for each gene. The 

poor quality, outlier profiles were defined based on dissimilarity to the “median” array 

measured by Pearson correlation coefficient. In the plot of the correlation to %P-call, 

we observed that the correlation sharply started to drop as %P-call became smaller 

than a certain value. This likely indicates that the samples with %P-call smaller than 

this value have severe RNA degradation affecting sensitivity of gene expression 

signal detection. Based on this plot, we set a quality threshold of %P-call for each 

tissue type to assure a minimum correlation coefficient of 0.7 for the majority of the 

samples (we set the %P-call quality thresholds of 65% and 70% for tumor and 

adjacent liver tissues, respectively, Supplementary Figure 10). Failure of the 

profiling, i.e., %P-call less than 70% in adjacent liver set, was not associated with 

clinical variables including age (p=0.49), sex (p=0.78), existence of cirrhosis (p=1.00), 

Child-Pugh stage (p=0.11), HCC etiology (p>0.70), or age of the FFPE block (>10 

years, p=0.30).  

http://www.ncbi.nlm.nih.gov/geo/
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The same %P-call threshold was applied for the validation set. After eliminating 

samples with poor quality data, the raw data were normalized using the cubic spline 

algorithm
5
 using the IlluminaDASL pipeline within GenePattern. Only gene probes 

with a minimal 3-fold differential expression and absolute difference >500 units 

across the samples were included after applying floor and ceiling values of 200 and 

80,000 units, respectively. 

 

Comparison of gene expression profiles between intact and FFPE-RNA 

First, we evaluated the extent of correlation of gene expression profile of FFPE tissue 

with that of fresh tissue at the level of individual genes. To ensure a uniform 

population of cells being subjected to the fresh and fixed analysis, we used cell lines 

(as opposed to tissues, which have greater intra-tissue variability which would 

become a confounding factor in these analyses).  DHL4 and Hela cell lines were 

cultured, harvested, and split into two halves. Total RNA was immediately extracted 

from one half, and the other half was fixed with formalin and embedded in a paraffin 

block. Total RNA was also extracted from the FFPE block using the protocol 

described in the Methods section. All RNA samples were profiled using the DASL 

assay, and fold changes were calculated for each gene in a comparison between DHL4 

and Hela cell lines. The plot of the fold changes for the intact and FFPE cell lines 

showed moderate correlation (Pearson correlation coefficient 0.61, p<0.001, 

Supplementary Figure 11). At the higher fold changes in the fresh RNA profiles, the 

vast majority of the genes showed concordant gene expression changes in the FFPE 

profiles (Supplementary Table 9). 

 

Next, we determined whether the DASL profile of FFPE tissue recapitulates the 

biologically relevant information observed in the profile of fresh frozen tissue. For 

this analysis, we turned to prostate cancer, for which there exists an abundance of 

published microarray data derived from frozen tumor and normal tissues. We 

identified 200 marker genes that reflect the tumor vs. normal prostate distinction 

based on a meta-analysis of 7 published frozen sample-based microarray datasets 

collected in a cancer transcriptome database (Oncomine, http://www.oncomine.org). 

Among those genes, 180 genes (90%) are included in our 6,100 informative gene 

panel. Based on the expression pattern of those marker genes, we classified a 

http://www.oncomine.org/
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collection of FFPE tumor and normal prostate samples using a nearest template 

prediction method (see Data analysis section). We observed 100% accurate prediction 

with statistical significance (false discovery rate <0.05, Supplementary Figure 12), 

indicating that the 6,000-gene DASL assay robustly identifies biologically meaningful 

patterns in FFPE tissues. We also performed a meta-analysis of 3 independent frozen 

sample-based HCC datasets including 232 samples to define common subclasses of 

HCC, and found that the molecular subclasses identified in the frozen tissues were 

also seen in the profiles of 118 FFPE HCC tissues profiled by DASL (manuscript in 

preparation). We therefore conclude that our 6,000-gene DASL assay accurately 

recapitulates the gene expression profile of fresh frozen tissues in archived, FFPE 

material. 

 

Data availability 

Microarray datasets are available through Gene Expression Omnibus (GSE10143) or 

our web site at http://www.broad.mit.edu/cancer/pub/HCC. 

 

Data analysis 

Definition of clinical outcome 

While HCC is the cause of death in most patients with the disease, some patients die 

of liver failure or other causes attributable to cirrhosis in the absence of progressive 

HCC (7 of the 39 deaths in our study died of non-HCC causes). Accordingly, we 

chose HCC-related mortality (disease-specific death) as the principal clinical endpoint 

for the survival-predictive signature discovery, defined as follows: (1) tumor 

occupying more than 80% of the liver, (2) portal venous tumor thrombus (PVTT) 

proximal to the second bifurcation, (3) obstructive jaundice due to tumor, (4) distant 

metastasis, or (5) variceal hemorrhage with PVTT proximal to the first bifurcation. 

The commonly used definition of “late recurrence” was tumor recurrence appearing 

more than 2 years after surgery
6, 7

. For late recurrence prediction, early recurrences 

were treated as censored observations. 

 

Prognostic prediction 

Most outcome prediction studies discretize outcome in a binary fashion, creating two 

classes of patients:  those with good outcome, and those with bad outcome.  

Unfortunately, this approach requires creating a boundary between the two groups that 

http://www.broad.mit.edu/cancer/pub/HCC
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is often not obvious, and the approach works poorly with patients of intermediate 

outcome.  In this study, we used non-discretized, censored survival time to select 

signature genes in order to not sacrifice sample size and to avoid the problem of 

setting an arbitrary cut-off of survival time. In addition, we sought to determine 

whether the expression of poor- and good-prognosis signature genes were 

coordinately regulated in a given sample. That is, it was expected that the poor 

signature genes would be ON (or up) and the good signature genes would be OFF (or 

down) in a “poor” survival sample. To evaluate this, we designed a simple nearest 

neighbor-based method assessing a sample’s proximity to a hypothetical 

representative sample (template) of poor or good survival. This approach allowed us 

to perform single sample-based outcome prediction. The details of the method are 

described below. 

 

Genes positively or negatively correlated with HCC-related survival or 

time-to-recurrence were selected using the Cox score
8, 9

 using the following formula. 
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x x m . Prediction analysis was performed by evaluating the expression 

status of the signature using the nearest template prediction (NTP) method as 

implemented in the NearestTemplatePrediction module of the GenePattern analysis 

toolkit.  Briefly, a hypothetical sample serving as the template of “poor” outcome 

was defined as a vector having the same length as the predictive signature. In this 

template, a value of 1 was assigned to “poor” outcome-correlated genes and a value of 

-1 was assigned to “good” outcome-correlated genes, and then each gene was 

weighted by the absolute value of the corresponding Cox score. The template of 

“good” outcome was similarly defined. For each sample, a prediction was made based 

on the proximity measured by the cosine distance to either of the two templates. 

Significance for the proximity was estimated by comparison to a null distribution 

generated by randomly picking (1,000 times) the same number of marker genes from 
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the microarray data for each sample, and correcting for multiple hypothesis testing 

using the false discovery rate (FDR)
10

. A sample closer to the template of “poor” 

outcome with an FDR <0.05 was predicted as having poor outcome. 

 

Study design to define outcome-predictive signature 

Tumor and adjacent non-tumor liver tissues from the training set were profiled 

separately to define an outcome-predictive signature (Figure 1). The signature was 

first internally validated in the training set using a leave-one-out cross-validation 

prediction procedure. A single sample was left out one-by-one and an 

outcome-correlated signature was selected from the remaining samples (selecting 

marker genes based on permutation test p-value less than 0.05). A predicted label was 

assigned to the left-out sample based on the closest “template” using NTP algorithm. 

Only genes selected in each of the leave-one-out trials were included in the 

outcome-predictive signatures tested on the validation set.  

 

Gene Set Enrichment Analysis 

Functional annotation of the survival signature was performed by Gene Set 

Enrichment Analysis (GSEA)
11

. We evaluated two categories of annotated gene sets: 

target genes of experimental perturbation (473 sets) and literature-based curated 

pathway gene sets (150 sets) collected in our molecular signature database (MSigDB, 

http://www.broad.mit.edu/gsea/msigdb/index.jsp). 

 

Survival data analysis 

Survival difference was evaluated by the log-rank test, and survival association of 

clinical variables and the signatures was assessed by Cox regression analysis 

(Survival Analysis modules, GenePattern). First, we evaluated well-accepted clinical 

predictors of HCC outcome
6, 12

: AFP, multinodularity, and vascular invasion, by 

univariate analysis. Only variables with statistical significance (p<0.05) were further 

evaluated by multivariate analysis. The hazard rate for tumor recurrence was 

calculated as previously described
7, 13

 to estimate the pattern of HCC recurrence over 

time after surgery. GenePattern modules and pipeline used in this study are available 

from http://www.broad.mit.edu/cancer/software/genepattern/. All other clinical data 

analyses were performed using the R statistical package (http://www.r-project.org).  

 

http://www.broad.mit.edu/gsea/msigdb/index.jsp
http://www.broad.mit.edu/cancer/software/genepattern/
http://www.r-project.org/
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Clonality analysis 

We profiled 5 pairs of primary and recurrent HCC tumors, 2 pairs of adjacent 

non-tumor liver tissues, and Hela cells for SNPs using the LinkagePanel beadarray 

(Illumina) according to the manufacturer’s instructions
14

. Genotype calls were 

generated using BeadStudio software (Illumina). In order to address whether primary 

tumors and recurrences likely derived from the same clone, we analyzed the pattern of 

heterozygosity in each of the samples. In particular, we counted how many loci 

appeared homozygous in the primary tumor, yet were called as heterozygous at 

recurrence. Such cases would suggest that primaries and recurrences derived from 

different clones, given that regions of LOH in a primary tumor (appearing 

homozygous on SNP arrays) would likely appear the same in recurrences if the 

recurrences derived from the same clone (Supplementary Table 7A). We similarly 

analyzed pairs of primary and recurrence/metastasis tumor tissues in endometrial 

(n=3), ovarian (n=4), lymphoma (n=6) and renal (n=3) cancers to estimate the same 

measure of clonality in other, non-HCC tumor types (Supplementary Table 7B).  

Strikingly, the HCC pairs showed a significantly higher proportion of loci that 

appeared homozygous in the primary tumor, yet appeared heterozygous at recurrence 

(p=0.008, Wilcoxon rank sum test). Similarly, there were more loci that were 

heterozygous in the HCC primary and homozygous at recurrence, compared to other 

tumor types (p=0.001) (Supplementary Figure 7).  

 

Outcome prediction using HCC tissue data 

We determined whether other machine-learning classifiers based on the binary classes 

(i.e., “good” and “poor” prognosis) predict outcome in the profiles of HCC tissues. 

We tested multiple classification methods including Classification of Regression Tree 

(CART), k-nearest neighbor (k-NN), weighted voting (WV), and support vector 

machine (SVM), but as shown in Supplementary Table 10, these methods also failed 

to yield statistically significant predictions (p=0.34 for survival and p=0.92 for 

recurrence. Log-rank test). This result indicates that the failed HCC tissue-based 

outcome prediction by our method is not due to selection of classification algorithm. 

 

Survival signature in fresh frozen non-tumor liver 

We confirmed that the survival signature was readily detectable in a publicly available, 

independent dataset of fresh frozen non-tumor liver tissues (GSE6764) 
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(Supplementary Figure 13). Prediction was performed using the nearest template 

prediction method (see description in Supplementary Appendix).  

 

Patient survival in validation set according to geographic site 

A trend toward survival separation was also seen within each geographic site in the 

validation set (i.e., U.S., Spain and Italy), although this did not reach statistical 

significance due to the small sample size and/or insufficient follow-up time in each 

site (Supplementary Figure 14). 
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Supplementary Table 1
Univariate Cox regression of clinical variables for patient survival (Training set)

Variable Category Hazard   95% confidence interval p-value
ratio low high

Age ≥ 60 0.75 0.37 1.49 0.40
Sex (male) male 0.41 0.14 1.16 0.09
HBV 0.61 0.23 1.57 0.30
HCV 2.18 0.84 5.69 0.11
Alcohol 2.60 0.79 8.59 0.12
BCLC stage B (vs. 0/A) 1.45 0.44 4.77 0.54

A/B (vs. 0) 1.90 0.86 4.20 0.11
Tumor diameter (cm) ≥ 3cm 1.21 0.60 2.43 0.60
Tumor differentiation Moderate (vs. Well 0.84 0.39 1.85 0.67

Poor (vs. Well) 0.67 0.23 2.02 0.48
Vascular invasion 2.11 0.50 8.94 0.31
Cirrhosis 1.90 0.78 4.58 0.16
AFP (ng/mL) ≥ 100 0.95 0.47 1.94 0.89
Platelet count (× 109/L) < 10.0 1.68 0.86 3.28 0.13
HB: hepatitis B, HCV: hepatitis C virus, AFP: alpha-fetoprotein



Supplementary Table 2
Survival signature genes defined in adjacent liver tissue (defined in Training set)

Genes correlated with poor survival
Probe ID GeneID Gene symbol Description Cox score

DAP1_5052 2488 FSHB follicle stimulating hormone, beta polypeptide 4.80
DAP1_0153 6456 SH3GL2 SH3-domain GRB2-like 2 4.21
DAP1_2390 23029 RBM34 RNA binding motif protein 34 4.19
DAP3_3833 23397 NCAPH non-SMC condensin I complex, subunit H 4.02
DAP1_0623 1950 EGF epidermal growth factor (beta-urogastrone) 3.97
DAP1_5926 7204 TRIO triple functional domain (PTPRF interacting) 3.90
DAP3_3842 1293 COL6A3 collagen, type VI, alpha 3 3.87
DAP1_0171 3983 ABLIM1 actin binding LIM protein 1 3.86
DAP3_0607 3680 ITGA9 integrin, alpha 9 3.81
DAP4_5449 4922 NTS neurotensin 3.78
DAP3_1324 5055 SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 3.69
DAP3_1228 4316 MMP7 matrix metallopeptidase 7 (matrilysin, uterine) 3.59
DAP3_4010 5593 PRKG2 protein kinase, cGMP-dependent, type II 3.44
DAP4_1888 9170 EDG4 endothelial differentiation, lysophosphatidic acid G-protein-coupled 3.40
DAP3_0208 4843 NOS2A nitric oxide synthase 2A (inducible, hepatocytes) 3.33
DAP1_4004 2043 EPHA4 EPH receptor A4 3.25
DAP4_2216 6672 SP100 SP100 nuclear antigen 3.19
DAP2_0010 2326 FMO1 flavin containing monooxygenase 1 3.04
DAP3_2729 2877 GPX2 glutathione peroxidase 2 (gastrointestinal) 3.02
DAP3_5508 496 ATP4B ATPase, H+/K+ exchanging, beta polypeptide 2.99
DAP1_5176 8870 IER3 immediate early response 3 2.98
DAP4_5988 7456 WIPF1 WAS/WASL interacting protein family, member 1 2.98
DAP1_3877 3489 IGFBP6 insulin-like growth factor binding protein 6 2.93

DAP1_0897 1501 CTNND2 catenin (cadherin-associated protein), delta 2 (neural plakophilin-related 
arm-repeat protein) 2.92

DAP3_5371 2200 FBN1 fibrillin 1 2.91
DAP4_5022 2629 GBA glucosidase, beta; acid (includes glucosylceramidase) 2.85
DAP1_4874 22858 ICK intestinal cell (MAK-like) kinase 2.85
DAP1_3085 10523 CHERP calcium homeostasis endoplasmic reticulum protein 2.81
DAP3_3881 9734 HDAC9 histone deacetylase 9 2.81
DAP3_1658 51406 NOL7 nucleolar protein 7, 27kDa 2.80
DAP3_0609 8826 IQGAP1 IQ motif containing GTPase activating protein 1 2.79
DAP3_3158 120 ADD3 adducin 3 (gamma) 2.79
DAP3_3933 306 ANXA3 annexin A3 2.78
DAP2_5915 10362 HMG20B high-mobility group 20B 2.76
DAP1_0174 6558 SLC12A2 solute carrier family 12 (sodium/potassium/chloride transporters), member 2.75
DAP2_3448 1282 COL4A1 collagen, type IV, alpha 1 2.75
DAP4_3126 1359 CPA3 carboxypeptidase A3 (mast cell) 2.74
DAP3_1093 3855 KRT7 keratin 7 2.74
DAP1_1741 5271 SERPINB8 serpin peptidase inhibitor, clade B (ovalbumin), member 8 2.69
DAP3_1042 4791 NFKB2 nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 2.67
DAP3_5816 165 AEBP1 AE binding protein 1 2.67
DAP3_3879 7041 TGFB1I1 transforming growth factor beta 1 induced transcript 1 2.66
DAP1_0509 2013 EMP2 epithelial membrane protein 2 2.63
DAP2_3497 596 BCL2 B-cell CLL/lymphoma 2 2.63

DAP3_2152 5698 PSMB9 proteasome (prosome, macropain) subunit, beta type, 9 (large 
multifunctional peptidase 2) 2.59

DAP3_6062 10097 ACTR2 ARP2 actin-related protein 2 homolog (yeast) 2.59
DAP1_6137 780 DDR1 discoidin domain receptor family, member 1 2.58
DAP2_3913 6541 SLC7A1 solute carrier family 7 (cationic amino acid transporter, y+ system), 2.56
DAP4_2003 5420 PODXL podocalyxin-like 2.56
DAP1_5750 1307 COL16A1 collagen, type XVI, alpha 1 2.55
DAP1_3284 10437 IFI30 interferon, gamma-inducible protein 30 2.55
DAP3_1596 9852 EPM2AIP1 EPM2A (laforin) interacting protein 1 2.55
DAP3_1678 301 ANXA1 annexin A1 2.53
DAP3_4123 6366 CCL21 chemokine (C-C motif) ligand 21 2.47
DAP3_1610 22856 CHSY1 carbohydrate (chondroitin) synthase 1 2.45
DAP1_4020 162 AP1B1 adaptor-related protein complex 1, beta 1 subunit 2.45
DAP4_2797 7004 TEAD4 TEA domain family member 4 2.39
DAP4_2406 54898 ELOVL2 elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)- 2.39
DAP1_0054 6925 TCF4 transcription factor 4 2.38
DAP3_1020 9819 TSC22D2 TSC22 domain family, member 2 2.38
DAP4_2418 1847 DUSP5 dual specificity phosphatase 5 2.36



DAP3_5242 8030 CCDC6 coiled-coil domain containing 6 2.36
DAP3_0973 962 CD48 CD48 molecule 2.35
DAP1_0901 10188 TNK2 tyrosine kinase, non-receptor, 2 2.35
DAP3_1032 1601 DAB2 disabled homolog 2, mitogen-responsive phosphoprotein (Drosophila) 2.35
DAP2_3941 4017 LOXL2 lysyl oxidase-like 2 2.34
DAP3_2205 6035 RNASE1 ribonuclease, RNase A family, 1 (pancreatic) 2.34
DAP4_2160 4026 LPP LIM domain containing preferred translocation partner in lipoma 2.33
DAP3_0038 7852 CXCR4 chemokine (C-X-C motif) receptor 4 2.33
DAP3_1608 6586 SLIT3 slit homolog 3 (Drosophila) 2.31
DAP3_0744 11259 FILIP1L filamin A interacting protein 1-like 2.25
DAP4_5839 6363 CCL19 chemokine (C-C motif) ligand 19 2.23
DAP3_5744 11214 AKAP13 A kinase (PRKA) anchor protein 13 2.23

Genes correlated with good survival
Probe ID GeneID Gene symbol Description Cox score
DAP3_4190 223 ALDH9A1 aldehyde dehydrogenase 9 family, member A1 -3.34
DAP4_0296 7276 TTR transthyretin (prealbumin, amyloidosis type I) -3.27
DAP1_5588 6018 RLF rearranged L-myc fusion -3.23
DAP4_3479 3612 IMPA1 inositol(myo)-1(or 4)-monophosphatase 1 -3.22
DAP3_2208 5207 PFKFB1 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 -3.22
DAP3_1951 6296 ACSM3 acyl-CoA synthetase medium-chain family member 3 -3.21
DAP4_2813 151 ADRA2B adrenergic, alpha-2B-, receptor -3.19
DAP1_3979 5771 PTPN2 protein tyrosine phosphatase, non-receptor type 2 -3.12
DAP3_1558 5691 PSMB3 proteasome (prosome, macropain) subunit, beta type, 3 -3.09
DAP3_2216 5502 PPP1R1A protein phosphatase 1, regulatory (inhibitor) subunit 1A -3.07
DAP3_0210 27346 TMEM97 transmembrane protein 97 -3.06
DAP2_4247 5313 PKLR pyruvate kinase, liver and RBC -3.01
DAP3_2434 9252 RPS6KA5 ribosomal protein S6 kinase, 90kDa, polypeptide 5 -3.00
DAP1_0453 1528 CYB5A cytochrome b5 type A (microsomal) -2.96
DAP4_3541 6447 SCG5 secretogranin V (7B2 protein) -2.93
DAP1_1650 25828 TXN2 thioredoxin 2 -2.90
DAP2_1608 5340 PLG plasminogen -2.88
DAP3_2733 6309 SC5DL sterol-C5-desaturase (ERG3 delta-5-desaturase homolog, S. cerevisiae)- -2.87

DAP4_3933 367 AR androgen receptor (dihydrotestosterone receptor; testicular feminization; 
spinal and bulbar muscular atrophy; Kennedy disease) -2.84

DAP3_5880 3479 IGF1 insulin-like growth factor 1 (somatomedin C) -2.84
DAP1_1983 8802 SUCLG1 succinate-CoA ligase, GDP-forming, alpha subunit -2.84
DAP3_5885 23498 HAAO 3-hydroxyanthranilate 3,4-dioxygenase -2.83
DAP2_6048 735 C9 complement component 9 -2.83

DAP4_1959 9013 TAF1C TATA box binding protein (TBP)-associated factor, RNA polymerase I, 
C, 110kDa -2.82

DAP4_2356 1371 CPOX coproporphyrinogen oxidase -2.82
DAP4_5179 7507 XPA xeroderma pigmentosum, complementation group A -2.82
DAP4_0915 3026 HABP2 hyaluronan binding protein 2 -2.81
DAP3_3625 2690 GHR growth hormone receptor -2.77
DAP4_1564 5105 PCK1 phosphoenolpyruvate carboxykinase 1 (soluble) -2.76
DAP2_1588 6718 AKR1D1 aldo-keto reductase family 1, member D1 (delta 4-3-ketosteroid-5-beta- -2.76
DAP3_1407 128 ADH5 alcohol dehydrogenase 5 (class III), chi polypeptide -2.75
DAP3_5846 16 AARS alanyl-tRNA synthetase -2.70
DAP4_1895 732 C8B complement component 8, beta polypeptide -2.69
DAP1_2114 51237 MGC29506 NA -2.67
DAP4_3262 10159 ATP6AP2 ATPase, H+ transporting, lysosomal accessory protein 2 -2.67
DAP4_2906 9732 DOCK4 dedicator of cytokinesis 4 -2.66
DAP4_4262 5627 PROS1 protein S (alpha) -2.66
DAP4_5591 7709 ZBTB17 zinc finger and BTB domain containing 17 -2.65
DAP1_2989 1603 DAD1 defender against cell death 1 -2.65
DAP4_0781 1678 TIMM8A translocase of inner mitochondrial membrane 8 homolog A (yeast) -2.65

DAP3_5291 3155 HMGCL 3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase 
(hydroxymethylglutaricaciduria) -2.65

DAP3_4919 725 C4BPB complement component 4 binding protein, beta -2.62
DAP4_5846 7189 TRAF6 TNF receptor-associated factor 6 -2.62
DAP1_0147 1967 EIF2B1 eukaryotic translation initiation factor 2B, subunit 1 alpha, 26kDa -2.61
DAP1_0559 3990 LIPC lipase, hepatic -2.60
DAP4_5383 10026 PIGK phosphatidylinositol glycan anchor biosynthesis, class K -2.60
DAP4_5653 80344 WDR23 WD repeat domain 23 -2.59
DAP4_0010 5982 RFC2 replication factor C (activator 1) 2, 40kDa -2.58
DAP4_5452 2915 GRM5 glutamate receptor, metabotropic 5 -2.56
DAP3_1646 6391 SDHC succinate dehydrogenase complex, subunit C, integral membrane protein, -2.55



DAP3_2354 2073 ERCC5
excision repair cross-complementing rodent repair deficiency, 
complementation group 5 (xeroderma pigmentosum, complementation 
group G (Cockayne syndrome))

-2.54

DAP1_2179 2158 F9 coagulation factor IX (plasma thromboplastic component, Christmas 
disease, hemophilia B) -2.54

DAP2_2062 157567 ANKRD46 ankyrin repeat domain 46 -2.54
DAP3_2994 417 ART1 ADP-ribosyltransferase 1 -2.54
DAP3_1761 1486 CTBS chitobiase, di-N-acetyl- -2.54
DAP3_3022 2542 SLC37A4 solute carrier family 37 (glucose-6-phosphate transporter), member 4 -2.53
DAP4_3697 211 ALAS1 aminolevulinate, delta-, synthase 1 -2.53
DAP4_5013 27072 VPS41 vacuolar protein sorting 41 homolog (S. cerevisiae) -2.51
DAP3_1312 2642 GCGR glucagon receptor -2.51
DAP1_5069 10694 CCT8 chaperonin containing TCP1, subunit 8 (theta) -2.51
DAP1_0656 25874 BRP44 brain protein 44 -2.50
DAP1_5381 2868 GRK4 G protein-coupled receptor kinase 4 -2.50
DAP4_1861 3336 HSPE1 heat shock 10kDa protein 1 (chaperonin 10) -2.50
DAP2_5268 79731 NARS2 asparaginyl-tRNA synthetase 2, mitochondrial (putative) -2.49
DAP1_5672 667 DST dystonin -2.49
DAP1_5518 27032 ATP2C1 ATPase, Ca++ transporting, type 2C, member 1 -2.48
DAP4_3497 10327 AKR1A1 aldo-keto reductase family 1, member A1 (aldehyde reductase) -2.48
DAP1_1085 2010 EMD emerin (Emery-Dreifuss muscular dystrophy) -2.47
DAP4_5050 799 CALCR calcitonin receptor -2.45
DAP3_4223 22839 DLGAP4 discs, large (Drosophila) homolog-associated protein 4 -2.45
DAP4_3111 6240 RRM1 ribonucleotide reductase M1 polypeptide -2.44
DAP4_3810 29937 NENF neuron derived neurotrophic factor -2.44
DAP1_3440 29887 SNX10 sorting nexin 10 -2.44
DAP3_5257 5372 PMM1 phosphomannomutase 1 -2.44
DAP1_5842 6999 TDO2 tryptophan 2,3-dioxygenase -2.43
DAP4_3363 2944 GSTM1 glutathione S-transferase M1 -2.43
DAP1_5123 6721 SREBF2 sterol regulatory element binding transcription factor 2 -2.42
DAP4_0140 26469 PTPN18 protein tyrosine phosphatase, non-receptor type 18 (brain-derived) -2.42
DAP3_1623 27163 ASAHL N-acylsphingosine amidohydrolase (acid ceramidase)-like -2.41
DAP2_4928 5336 PLCG2 phospholipase C, gamma 2 (phosphatidylinositol-specific) -2.41
DAP3_5959 3760 KCNJ3 potassium inwardly-rectifying channel, subfamily J, member 3 -2.40
DAP3_1753 5833 PCYT2 phosphate cytidylyltransferase 2, ethanolamine -2.40
DAP4_4304 2705 GJB1 gap junction protein, beta 1, 32kDa -2.39
DAP3_5067 7108 TM7SF2 transmembrane 7 superfamily member 2 -2.39
DAP4_5379 8991 SELENBP1 selenium binding protein 1 -2.38
DAP4_3066 316 AOX1 aldehyde oxidase 1 -2.37
DAP3_2882 10444 ZER1 zer-1 homolog (C. elegans) -2.37
DAP4_6012 130 ADH6 alcohol dehydrogenase 6 (class V) -2.36
DAP3_5076 2956 MSH6 mutS homolog 6 (E. coli) -2.36
DAP2_3569 8671 SLC4A4 solute carrier family 4, sodium bicarbonate cotransporter, member 4 -2.34
DAP3_3988 9097 USP14 ubiquitin specific peptidase 14 (tRNA-guanine transglycosylase) -2.34
DAP3_6123 727 C5 complement component 5 -2.32
DAP4_0949 5893 RAD52 RAD52 homolog (S. cerevisiae) -2.32
DAP4_0979 116496 FAM129A family with sequence similarity 129, member A -2.31
DAP4_2296 10458 BAIAP2 BAI1-associated protein 2 -2.31
DAP1_1550 6744 SSFA2 sperm specific antigen 2 -2.30
DAP2_6140 5446 PON3 paraoxonase 3 -2.30
DAP3_2198 2646 GCKR glucokinase (hexokinase 4) regulator -2.30
DAP3_3783 1385 CREB1 cAMP responsive element binding protein 1 -2.30
DAP3_3049 23316 CUTL2 cut-like 2 (Drosophila) -2.29
DAP1_5546 6427 SFRS2 splicing factor, arginine/serine-rich 2 -2.28
DAP4_0984 3156 HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A reductase -2.28
DAP3_5468 2677 GGCX gamma-glutamyl carboxylase -2.27
DAP2_5898 1555 CYP2B6 cytochrome P450, family 2, subfamily B, polypeptide 6 -2.26
DAP4_3279 7739 ZNF185 zinc finger protein 185 (LIM domain) -2.26
DAP3_1562 378 ARF4 ADP-ribosylation factor 4 -2.23
DAP4_3503 10965 ACOT2 acyl-CoA thioesterase 2 -2.22
DAP3_0889 513 ATP5D ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit -2.22
DAP2_4148 1369 CPN1 carboxypeptidase N, polypeptide 1 -2.20
DAP2_1935 5331 PLCB3 phospholipase C, beta 3 (phosphatidylinositol-specific) -2.20
DAP3_2137 3642 INSM1 insulinoma-associated 1 -2.18
DAP4_3027 5442 POLRMT polymerase (RNA) mitochondrial (DNA directed) -2.14
DAP3_5700 11145 HRASLS3 HRAS-like suppressor 3 -2.13



Supplementary Table 3

Functional annotation of Survival signature by Gene Set Enrichment Analysis (Training set)

(For details of each gene set, click the name for the link to MSigDB gene set annotation page)

(a) Gene sets correlated with poor survival

Experimental perturbation gene set # genes NES FDR

IFNA_HCMV_6HRS_UP 56 2.30 0.000

CROONQUIST_IL6_STROMA_UP 34 2.19 0.003

SANA_IFNG_ENDOTHELIAL_UP 30 1.98 0.034

IFN_ALPHA_UP 30 1.96 0.029

SANA_TNFA_ENDOTHELIAL_UP 46 1.96 0.024

RADAEVA_IFNA_UP 29 1.96 0.020

ADIP_HUMAN_DN 18 1.95 0.018

IFNA_UV-CMV_COMMON_HCMV_6HRS_UP 33 1.94 0.019

O6BG_RESIST_MEDULLOBLASTOMA_DN 24 1.90 0.025

HADDAD_HSC_CD10_UP 165 1.86 0.034

TGFBETA_ALL_UP 50 1.85 0.035

ZUCCHI_EPITHELIAL_DN 34 1.83 0.038

BRG1_ALAB_DN 18 1.83 0.036

CROONQUIST_RAS_STROMA_DN 18 1.81 0.041

HINATA_NFKB_UP 91 1.71 0.087

Litrature-based pathway gene set # genes NES FDR

INFLAMMATORY_RESPONSE_PATHWAY 25 1.90 0.023

(b) Gene sets correlated with good survival

Experimental perturbation gene set # genes NES FDR

FETAL_LIVER_VS_ADULT_LIVER_GNF2 44 -2.20 0.002

Litrature-based pathway gene set # genes NES FDR

ANDROGEN_AND_ESTROGEN_METABOLISM 21 -2.17 0.001

FATTY_ACID_METABOLISM 57 -2.15 0.001

TRYPTOPHAN_METABOLISM 44 -2.08 0.002

BILE_ACID_BIOSYNTHESIS 17 -2.02 0.004

ELECTRON_TRANSPORT_CHAIN 48 -2.01 0.003

VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 23 -1.99 0.003

INOSITOL_PHOSPHATE_METABOLISM 19 -1.90 0.007

BUTANOATE_METABOLISM 20 -1.89 0.006

BETA_ALANINE_METABOLISM 21 -1.81 0.014

PYRUVATE_METABOLISM 26 -1.75 0.023

GLYCINE_SERINE_AND_THREONINE_METABOLISM 23 -1.74 0.023

GAMMA_HEXACHLOROCYCLOHEXANE_DEGRADATION 25 -1.71 0.028

GLYCEROLIPID_METABOLISM 27 -1.70 0.028

NES: normalized enrichment score, FDR: false discovery rate

http://www.broad.mit.edu/gsea/msigdb/cards/IFNA_HCMV_6HRS_UP.html
http://www.broad.mit.edu/gsea/msigdb/cards/CROONQUIST_IL6_STROMA_UP.html
http://www.broad.mit.edu/gsea/msigdb/cards/SANA_IFNG_ENDOTHELIAL_UP.html
http://www.broad.mit.edu/gsea/msigdb/cards/IFN_ALPHA_UP.html
http://www.broad.mit.edu/gsea/msigdb/cards/SANA_TNFA_ENDOTHELIAL_UP.html
http://www.broad.mit.edu/gsea/msigdb/cards/RADAEVA_IFNA_UP.html
http://www.broad.mit.edu/gsea/msigdb/cards/ADIP_HUMAN_DN.html
http://www.broad.mit.edu/gsea/msigdb/cards/IFNA_UV-CMV_COMMON_HCMV_6HRS_UP.html
http://www.broad.mit.edu/gsea/msigdb/cards/O6BG_RESIST_MEDULLOBLASTOMA_DN.html
http://www.broad.mit.edu/gsea/msigdb/cards/HADDAD_HSC_CD10_UP.html
http://www.broad.mit.edu/gsea/msigdb/cards/TGFBETA_ALL_UP.html
http://www.broad.mit.edu/gsea/msigdb/cards/ZUCCHI_EPITHELIAL_DN.html
http://www.broad.mit.edu/gsea/msigdb/cards/BRG1_ALAB_DN.html
http://www.broad.mit.edu/gsea/msigdb/cards/CROONQUIST_RAS_STROMA_DN.html
http://www.broad.mit.edu/gsea/msigdb/geneset_card.jsp?geneSetName=HINATA_NFKB_UP&keywords=hinata
http://www.broad.mit.edu/gsea/msigdb/cards/INFLAMMATORY_RESPONSE_PATHWAY.html
http://www.broad.mit.edu/gsea/msigdb/cards/FETAL_LIVER_VS_ADULT_LIVER_GNF2.html
http://www.broad.mit.edu/gsea/msigdb/cards/ANDROGEN_AND_ESTROGEN_METABOLISM.html
http://www.broad.mit.edu/gsea/msigdb/cards/FATTY_ACID_METABOLISM.html
http://www.broad.mit.edu/gsea/msigdb/cards/TRYPTOPHAN_METABOLISM.html
http://www.broad.mit.edu/gsea/msigdb/cards/BILE_ACID_BIOSYNTHESIS.html
http://www.broad.mit.edu/gsea/msigdb/cards/ELECTRON_TRANSPORT_CHAIN.html
http://www.broad.mit.edu/gsea/msigdb/cards/VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION.html
http://www.broad.mit.edu/gsea/msigdb/cards/INOSITOL_PHOSPHATE_METABOLISM.html
http://www.broad.mit.edu/gsea/msigdb/cards/BUTANOATE_METABOLISM.html
http://www.broad.mit.edu/gsea/msigdb/cards/BETA_ALANINE_METABOLISM.html
http://www.broad.mit.edu/gsea/msigdb/cards/PYRUVATE_METABOLISM.html
http://www.broad.mit.edu/gsea/msigdb/cards/GLYCINE_SERINE_AND_THREONINE_METABOLISM.html
http://www.broad.mit.edu/gsea/msigdb/cards/GAMMA_HEXACHLOROCYCLOHEXANE_DEGRADATION.html
http://www.broad.mit.edu/gsea/msigdb/cards/GLYCEROLIPID_METABOLISM.html


Supplementary Table 4

Gene expression-based survival prediciton and histological inflammation of the liver

(Training set)

                    Inflammation

Prediction None Mild Moderate Severe

Poor survival 2 11 9 5

Good survival 4 17 22 11

Fisher's exact test, p=0.89

Scored according to Batts K, Ludwig J. Am J Surg Pathol 19:1409,1995



Supplementary Table 5
Univariate Cox regression analysis of clinical risk factors (Validation set)

Early recurrence
Variable Hazard           95% CI p-value

ratio low high
Multinodularity 1.95 1.13 3.37 0.02
Vascular invasion 1.72 1.11 2.66 0.02
AFP > 100 ng/mL 1.94 1.21 3.12 0.006

Late recurrence
Variable Hazard           95% CI p-value

ratio low high
Multinodularity 2.10 0.73 6.06 0.17
Vascular invasion 0.85 0.38 1.92 0.70
AFP > 100 ng/mL 0.45 0.17 1.19 0.11

Survival
Variable Hazard           95% CI p-value

ratio low high
Multinodularity 1.66 0.77 3.59 0.19
Vascular invasion 2.05 1.12 3.76 0.02
AFP > 100 ng/mL 2.10 1.08 4.07 0.03
AFP: alpha-fetoprotein



Supplementary Table 6

Multivariate Cox regression: subgroup analysis (Validation set)

Late recurrence (longer follow-up patients, n=167)

Variable Hazard           95% CI p-value

ratio low high

Late recurrence signature 2.94 1.39 6.20 0.005

Late recurrence (BCLC  A, n=207)

Variable Hazard           95% CI p-value

ratio low high

Late recurrence signature 2.97 1.37 6.45 0.006

Survival (BCLC  A, n=207)

Variable Hazard           95% CI p-value

ratio low high

Survival signature 1.93 0.87 4.28 0.10

AFP > 100 ng/mL 2.30 1.04 5.05 0.04

Vascular invasion 1.80 0.84 3.88 0.13

Survival (longer follow-up patients, BCLC  A, n=154)

Variable Hazard           95% CI p-value

ratio low high

Survival signature 2.04 0.91 4.59 0.08

AFP > 100 ng/mL 2.13 0.95 4.76 0.07

Vascular invasion 2.01 0.92 4.36 0.08

AFP: alpha-fetoprotein



Supplementary Table 7A

Clonality analysis of paired primary and recurrent HCC

Case ID
"Heterozygous in recurrence" 

/ "Homozygous in primary"          

"Homozygous in recurrence" 

/ "Heterozygous in primary"           

Primary tumor 

subclass*

Recurrent tumor 

subclass*

hcc_018 26% (562/2167) 25% (268/1086) S2 S1

hcc_044 6% (178/2887) 13% (156/1200) S1 S3

hcc_082 1% (31/3244) 10% (123/1205) S3 S2

hcc_075 9% (218/2548) 15% (171/1168) S2 S1

hcc_101 8% (168/2063) 32% (310/967) S2 S2

hcc_104 - - S3 S1

*Molecular subclasses of HCC defined by a meta-analysis of published frozen sample-based microarray 

datasets (Hoshida et al. Manuscript in preparation).

"Heterozygous in recurrence" / "Homozygous in primary" in adjacent non-tumor liver tissues of hcc_082, hcc_075, and 

Hela cells were 0.1% (4/3759), 0.6% (20/3275), and 0.3% (10/3701), respectively. 

"Homozygous in recurrence" / "Heterozygous in primary" in adjacent non-tumor liver tissues of hcc_082, hcc_075, and 

Hela cells were 0.6% (11/1869), 2.3% (38/1676), and 0.7% (8/1216), respectively.



Supplementary Table 7B

Clonality analysis of paired primary and recurrent/metastatic non-HCC tumors

Cancer type
"Heterozygous in recurrence" / 

"Homozygous in primary"          

"Homozygous in recurrence" / 

"Heterozygous in primary"           

Endometrial 1 0.1% (19/40897) 0.8% (124/15033)

Endometrial 2 1.9% (1621/83369) 0.6% (160/24907)

Endometrial 3 0.2% (198/82423) 0.9% (229/26372)

Ovarian 1 1.9% (1686/90069) 1.7% (300/17747)

Ovarian 2 1.3% (1182/91547) 3.3% (549/16621)

Ovarian 3 0.3% (121/44828) 2.2% (218/10075)

Ovarian 4 0.2% (103/43429) 4.5% (441/9781)

Renal 1 1.6% (682/42699) 0.1% (13/13701)

Renal 2 1.9% (796/42753) 0.1% (9/12720)

Renal 3 0.1% (55/42518) 1.2% (157/13154)

DLBCL 1 1.1% (6503/605724) 2.8% (6001/216597)

DLBCL 2 0.9% (5361/598243) 2.2% (5089/228143)

DLBCL 3 0.4% (2216/625092) 0.6% (1402/239662)

DLBCL 4 1.0% (6377/618375) 2.0% (4525/222075)

DLBCL 5 1.8% (10689/582552) 2.5% (5697/232207)

DLBCL 6 0.6% (3773/600753) 6.1% (13368/219845)

DLBCL: diffuse large B-cell lymphoma

Endometrial, ovarian, and renal cancers were profiles on Afymetrix 500k SNP array.
DLBCL samples were profiled on Affymetrix SNP 6.0 array.



Supplementary Table 8

Datasets used to select Transcriptionally Informative Genes

Tissue type Disease # samples Reference

Brain Glioblastoma 50 Cancer Res 63;1602,2003

Medulloblastoma 60 Nature 415;436,2002

Medulloblastoma 23 Nature Genet 29;143,2001

Breast Breast cancer 73 Unpublished

Breast cancer 49 PNAS 98;11462,2001, Lancet 361;1590,2003

Breast cancer 40 Unpublished

Lung Lung cancer 62 PNAS 98;13790,2001

Lung cancer 86 Nature Med 8;816,2002

Stomach Gastric cancer 30 Cancer Res 62;233,2003

Liver Hepatocellular carcinoma 49 Cancer Res 64;7263,2004

Hepatocellular carcinoma 60 Lancet 361;923,2003

Ovary Ovarian cancer 113 Unpublished

Prostate Prostate cancer 102 Cacer Cell 1;203,2002

Prostate cancer 120 Unpublished

Prostate cancer 80 Unpublished

Hematopoetic Diffuse large B-cell lymphoma 176 Blood 105;1851,2005

Diffuse large B-cell lymphoma 210 Blood 102;3871,2003

Acute myeloid/lymphoblastic leukemia 52 Unpublished

Mixed-lineage leukemia 72 Nature Genet 30;41,2002

Skin Melanoma 115 Unpublished

Astrocyte Astrocytoma 13 Cancer Res 63;1865,2003

Cancer & normal tissues* Cancer & normal tissues 280 PNAS 98;15149,2001

Cancer tissues* Primary & metastatic cancers 76 Nature Genet 33;49,2003

Normal tissues* Normal tissues 158 PNAS 101;6062,2004

2149

*: Panel of multiple tissue types



Supplementary Table 9
Concordance in gene expression change (DHL4 vs. Hela cell lines) between intact and FFPE-RNA on DASL assay

All genes                  Fold change in fresh RNA
> 2-fold > 5-fold > 10-fold

# genes DHL4 > Hela in fresh RNA 3156 811 185 93
        # genes with concordant change in FFPE RNA 2282 (72%) 687 (85%) 180 (97%) 91 (98%)
        # genes with discordant change in FFPE RNA 874 (28%) 124 (15%) 5 (3%) 2 (2%)

# genes DHL4 < Hela in fresh RNA 2988 1056 339 138
        # genes with concordant change in FFPE RNA 2135 (71%) 905 (86%) 321 (95%) 137 (99%)
        # genes with discordant change in FFPE RNA 853 (29%) 151 (14%) 18 (5%) 1 (1%)



Supplementary Table 10

Leave-one-out cross-validation error rates for outcome

prediction using HCC tissue data (Training set).

Prediction                   Outcome

algorithm Survival Recurrence

CART 40% 21%

k-NN, 1neighbor 41% 18%

k-NN, 3 neighbors 43% 18%

k-NN, 5 neighbors 31% 19%

k-NN, 7 neighbors 36% 19%

WV, 10 markers 38% 41%

WV, 50 markers 48% 45%

WV, 100 markers 49% 30%

SVM 43% 23%

CART: classification and regression trees,

k-NN: k-nearest neighbor,

WV: weighted voting,

SVM: support vector machine
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Supplementary Figure legends 

 

Supplementary Figure 1 

Effect of missing gene expression signals by reducing the number of probes for each 

gene in the DASL assay. A: Missing signals by reducing the number of probes 

assigned for each gene. Left panel shows expression levels of 502 cancer-related 

genes (Cancer Panel, Illumina) computed as average of 3 independent probes for each 

gene. Right panel shows signals falling below the level of negative control probes 

(black bars) by randomly picking a single probe from the 3 probes representing each 

gene. B: Hierarchical clustering using 5 datasets generated by randomly picking 1 

probe from the 3 probes. C: Comparison of rank of top HCC marker genes (top and 

bottom 20 genes) between 1-probe and 3-probe datasets. 

 

Supplementary Figure 2 

A: Leave-one-out cross validation-based survival prediction using FFPE HCC tissues. 

B: Previously reported survival-predictive signature (Lee, et al. Hepatology 

40:667,2004) recapitulated in the dataset (left panel) without association with survival 

(right panel). 

 

Supplementary Figure 3 

A: Leave-one-out cross validation-based survival prediction using publicly available 

gene expression dataset of fresh frozen HCC tissues (n=67, NCBI Gene Expression 

Omnibus dataset accession # GSE9843). B: Previously reported survival-predictive 

signature (Lee, et al. Hepatology 40:667,2004) recapitulated in the dataset (left panel) 

without association with survival (right panel). 

 

Supplementary Figure 4 

Smoothed tumor recurrence hazard over time after surgery for training (A) and 

validation (B) sets. There is no peak of early recurrence in training set. 

 

Supplementary Figure 5 

Survival curves according to the grade of hepatitis activity (based on Batts and 

Ludwig. Am J Surg Pathol 19:1409,1995) in the training set. 
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Supplementary Figure 6 

Overall recurrence curves in the validation set according to the prediction made by the 

late recurrence-predictive signature (132 genes, A) and the overall 

recurrence-predictive signature (174 genes, B). C: Correlation between survival- and 

late recurrence-predictive signatures: genes on microarray were rank-ordered 

according to their correlation with survival time, and subset of late recurrence 

signature genes associated with higher (upper panel) or lower (lower panel) risk of 

late recurrence was separately evaluated for its overrepresentation on poor survival or 

good survival side in the rank-ordered gene list, respectively, using Gene Set 

Enrichment Analysis (p<0.001, see Supplementary Appendix). Early recurrences (< 

2 years following resection) are censored in the analysis of late recurrence. Red and 

blue lines indicate prediction of higher and lower risk of late/overall recurrence, 

respectively. 

 

Supplementary Figure 7 

Assessment of clonality between primary and recurrent tumors. A: The panel shows 

how many homozygous loci in the primary tumors appear to be heterozygous in 

paired recurrent tumors. B: The panel shows how many heterozygous loci in the 

primary tumors appear to be homozygous in paired recurrent tumors. DLBCL: diffuse 

large B-cell lymphoma. 

 

Supplementary Figure 8 

“Present” gene expression signals in genome-wide microarray datasets profiling 

panels of multiple human tissue types. A: Panel of cancer tissues (PNAS 

2001;98:15149, http://www.broad.mit.edu/cancer/). B: Panel of normal tissues (PNAS 

2004;101;6062, http://www.gnf.org/). Red color indicates “present” (i.e., expressed) 

genes. 

 

Supplementary Figure 9 

Selection process for 6,000 transcriptionally informative genes in the DASL assay. A: 

In each of previously generated 24 microarray datasets, coefficient of variation (CV) 

was calculated for each gene and summarized on to the list of NCBI RefSeq ID. B: 

The top 6,000 genes cover 70-90% of genes in microarray-based signatures (375 gene 

http://www.broad.mit.edu/cancer/
http://www.gnf.org/
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sets) and literature-based molecular pathways (450 gene sets) collected in Molecular 

Signature Database (MSigDB), C: Age of FFPE blocks and %P-call in 10 prostate 

cancer samples. Red arrow head indicates samples fixed 24 years before RNA 

extraction; blue arrow head indicates a sample fixed 7 years before RNA extraction. 

 

Supplementary Figure 10 

Quality assessment of DASL profile based on the proportion of “present” (i.e., 

expressed) genes (%P-call) in the training set. Correlation coefficient of each array to 

the “median” array was plotted against %P-call for tumor (left) and adjacent liver 

(right) profiles from the training set. For each tissue type, quality threshold was 

defined as a %P-call where the correlation starts to drop. Green lines indicate %P-call 

threshold of 65% and 70% for tumor and liver profiles, respectively. The same quality 

threshold was applied to the profiles from validation set. 

 

Supplementary Figure 11 

Comparison of gene expression fold change between intact and FFPE-RNA. 

 

Supplementary Figure 12 

Prediction of prostate cancer using the DASL profile of marker genes defined by a 

meta-analysis of published 7 frozen sample-based microarray datasets. 

 

Supplementary Figure 13 

The survival signature in a publicly available independent dataset of fresh frozen 

non-tumor liver tissues (n=10). 

 

Supplementary Figure 14 

Survival curves for three geographic sites in the validation set: US (n=88, median 

follow-up 2.4 years), Spain (n=45, median follow-up 3.1 years), and Italy (n=92, 

median follow-up 1.9 years). A: Overall survival. B: Survival curves according to the 

survival prediction. Red lines indicate poor survival prediction; blue lines indicate 

good survival prediction. 
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Supplementary Figure 7
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Supplementary Figure 10
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Supplementary Figure 11 
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Supplementary Figure 12
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Supplementary Figure 14
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