



**Figure S1. The majority of SAGA-bound UASs is bound by all SAGA-subunits, Related to Figures 1 and 2.** (A) ChEC-seq mapping of SAGA at CDC19 (top panel) and YEF3 (bottom panel). Signal tracks showing cleavage of genomic DNA by Spt3- (red), Spt7- (cyan), Spt8- (green), Ubp8-MNase (dark blue), and a PSpt3-MNase control (black) 5 and 15 min after addition of CaCl2. (B) Pairwise correlations of SAGA subunits as indicated above the graphs. The Spearman's rank correlation coefficient r for each pairwise comparison is shown. (C) More than 99% of genes bound by SAGA are also bound by TFIID. Genes with at least 5% ChEC-seq signal compared to the gene with the highest signal for the respective SAGA- or Taf1-MNase variants were analyzed.



Figure S2. Loss of SAGA leads to increased mRNA half-lives, Related to Figure 3. (A-L) Measurement of RNA half-life using transcription inhibition with thiolutin in  $spt7\Delta$  (AF) or  $spt20\Delta$  strains (G-L). Comparison between half-lives reported elsewhere and the ones obtained in this experiments.



Figure S3. FRB strain characterization and validation of Spt7 nuclear depletion, Related to Figure 5. (A) SPT7-FRB strain does not present a growth phenotype in comparison to the parental strain. Exposure to rapamycin eventually promotes a slower growth phenotype, as observed for the corresponding constitutive deletion strain. (B) Cell fraction depicting efficient nuclear depletion of Spt7 upon exposure to rapamycin. (C) Upon 30 min of exposure to rapamycin viability of cells in log-phase is not affected, in comparison to its counterpart with vehicle only. (D-E) Fusion of FRB domain to Spt7 does not affect RNA Pol II transcription by itself, both at the steady-state (D) or newly-synthesized RNA (E) levels. Expression values (mean  $\pm$  SD of three independent experiments) were normalized to spiked-in *S. pombe* signal.



Figure S4. Nuclear depletion of Spt7 decreased transcription of both SAGA- and TFIIDdominated genes, Related to Figure 5. (A-E) Time course analysis of changes in steady-state and newly- synthesized RNA for SAGA-dominated genes (A, B), TFIID-dominated genes (C, D) and a SAGA- and TFIID-dominated gene (E) upon Spt7 nuclear depletion. Expression values (mean  $\pm$  SD of three independent experiments) were normalized to spiked-in *S. pombe* signal and set to 1 in the untreated sample.



Figure S5. cDTA analysis for several SAGA mutants, Related to Figure 6. (A-F, G-H, J-K) Volcano plots showing changes in steady-state (A, C, E, G and J) and newly-synthesized mRNA levels (B, D, F, H and I) between mutant and wild-type *S. cerevisiae* cells relative to their significance (*p*-value). Fold changes (FC) were calculated as the log2 of the ratio of the expression value of each gene after normalization to *S. pombe* signal in the *gcn5* $\Delta$  (A, B), *ubp8* $\Delta$ *gcn5* $\Delta$  (C, D), *spt3* $\Delta$ *gcn5* $\Delta$  (E, F), *ubp8* $\Delta$  (G, H) and *spt8* $\Delta$  (J, K) strains versus the expression value of the same gene in wild-type *S. cerevisiae*. (I and L) For all analyzed genes, changes in synthesis rates were plotted against the changes in mRNA decay rates. Changes were calculated as the Log2 of the ratio between *ubp8* $\Delta$  (I) or *spt8* $\Delta$  (L) and wild-type. 90% of genes are contained within the outer contour. Yellow and red dots correspond to 60% of genes. For each strain, results were obtained from at least two independent biological replicates.





Figure S6. SAGA complex characterization upon deletion of one or more subunits, Related to Figure 6. Upon deletion of  $spt3\Delta$ ,  $spt7\Delta$ ,  $spt20\Delta$ ,  $ubp8\Delta gcn5\Delta$  and  $spt3\Delta gcn5\Delta$  SAGA purification was performed by immunoprecipitation of two subunits (Taf10 and Ada1). Eluates were separated by SDS-PAGE and shown are quantitative Western blot analyses of the IP blotted against Taf5, Taf6, Taf10, Ada1, Spt3 and Gcn5.



**Figure S7. Transcriptional changes observed in SAGA mutants do not correlate with the slow growth phenotype gene expression signature, Related to Figure 6.** Transcriptional profiles for SAGA mutants were compared with the slow-growth transcriptional signature obtained elsewhere. The shaded regions on the scatter plots correspond to the threshold applied for each of the studies as a cut-off for either up- or down-regulation. The color code of the tables indicates the degree of correlation between the results obtained in this work and the slow-growth signature (red indicates positive correlation and blue indicates negative correlation).

| Name                 | Genotype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Approach | Source                                |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------|
| SGY95                | ade2A::hisG his3A200 leu2A0 lys2A0 met15A0 trp1A63<br>ura3A0 SPT3-3FLAGMNase(83-231)-kanMX6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ChEC-seq | This study                            |
| SGY96                | ade2 $\Delta$ ::hisG his3 $\Delta$ 200 leu2 $\Delta$ 0 lys2 $\Delta$ 0 met15 $\Delta$ 0 trp1 $\Delta$ 63<br>ura3 $\Delta$ 0 SPT7-3FLAGMNase(83-231)-kanMX6ChEC-s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | This study                            |
| SGY98                | ade2Δ::hisG his3Δ200 leu2Δ0 lys2Δ0 met15Δ0 trp1Δ63<br>ura3Δ0 SPT8-3FLAGMNase(83-231)-kanMX6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ChEC-seq | This study                            |
| SGY99                | ade2Δ::hisG his3Δ200 leu2Δ0 lys2Δ0 met15Δ0 trp1Δ63<br>ura3Δ0 UBP8-3FLAGMNase(83-231)-kanMX6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ChEC-seq | This study                            |
| FY406                | MATa (hta1-htb1)Δ::LEU2 (hta2-htb2)Δ::TRP1 leu2Δ1<br>ura3-52 lys2Δ1 lys2-128δ his3Δ200 trp1Δ63 [pSAB6-<br>(HTA1-HTB1, URA3)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cDTA     | Hirschhorn<br>et.al., 1995            |
| WT<br>yH2B           | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | Bonnet <i>et</i><br><i>al.</i> , 2014 |
| FY406<br>ubp8∆- hH2B | MATa ubp $8\Delta$ ::KANMX4 (hta1-htb1) $\Delta$ ::LEU2 (hta2-<br>htb2) $\Delta$ ::TRP1 leu $2\Delta$ 1 ura3-52 lys $2\Delta$ 1 lys2 128 $\delta$ his3 $\Delta$ 200<br>trp1 $\Delta$ 63 [pRS413-(HTA1-Flag-HTB1,CEN, HIS)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cDTA     | Bonnet <i>et</i><br><i>al.</i> , 2014 |
| FY406<br>gcn5∆       | MATa gcn5 $\Delta$ ::HPH (hta1-htb1) $\Delta$ ::LEU2 (hta2-<br>htb2) $\Delta$ ::TRP1 leu2 $\Delta$ 1 ura3-52 lys2 $\Delta$ 1 lys2-128 $\delta$ his3 $\Delta$ 200<br>trp1 $\Delta$ 63 [pRS413-(HTA1-Flag-HTB1,CEN, HIS)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cDTA     | Bonnet <i>et</i><br><i>al.</i> , 2014 |
| FY406<br>spt7∆       | $ \begin{array}{c} 6 \\ \mathbf{M} \\ \mathbf{A} \\ \mathbf{M} \\ \mathbf{A} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{A} \\ \mathbf{M} \\ \mathbf$ |          | Bonnet <i>et</i><br><i>al.</i> , 2014 |
| FY406<br>spt20∆      | $ \begin{array}{c} \text{MATa spt20} \Delta:: \text{HPH (hta1-htb1)} \Delta:: \text{LEU2 (hta2-} \\ \text{htb2)} \Delta:: \text{TRP1 leu2} \Delta 1 \text{ ura3-52 lys2} \Delta 1 \text{ lys2-128} \delta \text{ his3} \Delta 200 \\ \text{trp1} \Delta 63 \text{ [pRS413-(HTA1-Flag-HTB1,CEN, HIS)]} \\ \end{array} \right. \begin{array}{c} \text{cDTA,} \\ \text{mRNA} \\ \text{half-life} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | Bonnet <i>et</i><br><i>al.</i> , 2014 |
| FY406<br>ubp8∆gcn5∆  | MATa ubp8 $\Delta$ ::KANMX6;gcn5 $\Delta$ ::HPH (hta1-<br>htb1) $\Delta$ ::LEU2 (hta2-htb2) $\Delta$ ::TRP1 leu2 $\Delta$ 1 ura3-52 lys2 $\Delta$ 1<br>lys2-128 $\delta$ his3 $\Delta$ 200 trp1 $\Delta$ 63 [pRS413-(HTA1-Flag-<br>HTB1,CEN, HIS)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cDTA     | This study                            |
| FY406<br>spt3∆       | MATa spt $3\Delta$ ::KANMX6 (hta1-htb1) $\Delta$ ::LEU2 (hta2-<br>htb2) $\Delta$ ::TRP1 leu $2\Delta$ 1 ura3-52 lys $2\Delta$ 1 lys $2$ -128 $\delta$ his $3\Delta$ 200<br>trp1 $\Delta$ 63 [pRS413-(HTA1-Flag-HTB1,CEN, HIS)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cDTA     | This study                            |

Table S1. Genotypes of the yeast strains used in this study, Related to STAR Methods.

| FY406<br>spt8∆               | $\begin{array}{l} MATa \ spt8\Delta::KANMX6 \ (hta1-htb1)\Delta::LEU2 \ (hta2-htb2)\Delta::TRP1 \ leu2\Delta1 \ ura3-52 \ lys2\Delta1 \ lys2-128\delta \ his3\Delta200 \ trp1\Delta63 \ [pRS413-(HTA1-Flag-HTB1,CEN, HIS)] \end{array} \qquad cD7$ |                | This study |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|
| FY406<br>spt3∆gcn5∆          | MATa spt3Δ::KANMX6;gcn5Δ::HPH (hta1-<br>htb1)Δ::LEU2 (hta2-htb2)Δ::TRP1 leu2Δ1 ura3-52 lys2Δ1<br>lys2-128δ his3Δ200 trp1Δ63 [pRS413-(HTA1-Flag-<br>HTB1,CEN, HIS)]                                                                                 | cDTA           | This study |
| BY4742<br>SPT7-FRB           | MATα; tor1-1; fpr1del; RPL13A-FKBP12-NAT; MET15;<br>his3-1; leu2; lys2; ura3; SPT7-FRB::Hygro                                                                                                                                                      | Ancho-<br>away | This study |
| BY4742                       | MATα; his3D1; leu2D0; lys2D0; ura3D0 Pare strain.                                                                                                                                                                                                  |                | Euroscarf  |
| BY4742<br>3HA-TBP            | BY4742; MATα; ura3Δ0; leu2Δ0; his3Δ1; lys2Δ0;<br>URA3::3HA::SPT15                                                                                                                                                                                  | ChIP           | This study |
| BY4742<br>spt3∆              | <b>3Y4742</b><br>spt3 $\Delta$ BY4742; MAT $\alpha$ ; ura3 $\Delta$ 0; leu2 $\Delta$ 0; his3 $\Delta$ 1; lys2 $\Delta$ 0;<br>URA3::3HA::SPT15 spt3::KanMX6ChIP                                                                                     |                | This study |
| BY4742<br>spt3∆; 3HA-<br>TBP | BY4742; MATα; ura3Δ0; leu2Δ0; his3Δ1; lys2Δ0;<br>URA3::3HA::SPT15 spt3::KanMX6                                                                                                                                                                     | ChIP           | This study |

| Table S2. List of | plasmids used | in this study, | <b>Related to</b> | <b>STAR Methods.</b> |
|-------------------|---------------|----------------|-------------------|----------------------|
|                   |               |                |                   |                      |

| Plasmid           | Description                                                                                                | Source                 |
|-------------------|------------------------------------------------------------------------------------------------------------|------------------------|
| pGZ108            | pFA6a-based vector for C-terminal tagging with 3FLAG-MNase; kanMX6 marker                                  | (Zentner et al., 2015) |
| pFA6a-hphNT1      | Gene deletion cassette: marker pAgTEF-hph-<br>tScCYC1, selectable phenotype: hygromycin<br>resistance.     | Janke et al., 2004     |
| pFA6a-kanMX6      | Plasmid for yeast gene deletion using the kanMX selectable marker conferring kanamycin resistance.         | Bähler et al., 1998    |
| YIplac211-3HA-TBP | Yeast integrative plasmide containing 3HA-<br>TBP $\Delta$ C for N-terminal tagging of TBP; URA3<br>marker | Eyboulet et al., 2015  |

| Gene          | Name             | Sequence                | Approach    |  |
|---------------|------------------|-------------------------|-------------|--|
|               | PMA1_Forward     | CTCATCAGCCAACTCAAGAAA   |             |  |
| PMA1          | PMA1_Reverse     | CGTCATCGTCAGAAGATTCA    | - RT-qPCR   |  |
|               | BDF2 Forward     | CTGAAGAAAATGGAGGTTGAAT  |             |  |
| BDF2          | BDF2 Reverse     | CTTCCTCTTCCTTTCCTTCG    | RT-qPCR     |  |
|               | PGK1_Forward     | AGCGTGTCTTCATCAGAG      |             |  |
| PGKI          | PGK1_Reverse     | TGGCAAAGCAGCAACAA       | - RT-qPCR   |  |
|               | PDC1_Forward     | ATTCACCGACACCGAAG       |             |  |
| PDC1          | PDC1_Reverse     | TTACGCCGCTGATGGTT       | - RT-qPCR   |  |
|               | CDC19_Forward    | CCAAAGACCAACAACCC       |             |  |
| CDC19         | CDC19_Reverse    | ATTCGTAAGAACCGTGAGAG    | - RT-qPCR   |  |
|               | PHO84_Forward    | GTGTTGGTTTCTTGACAGATTC  |             |  |
| PHO84         | PHO84_Reverse    | GCATACTACCGTGCCAG       | RT-qPCR     |  |
|               | NPL3_Forward     | CACCACCGTCAAGAAGGA      |             |  |
| NPL3          | NPL3_Reverse     | CAAAGATTTCATTCAACTCGGAT | - RT-qPCR   |  |
| CUDI          | GNP1_Forward     | CGTAATGGGAAACATCGTC     |             |  |
| GNPI          | GNP1_Reverse     | TGGGCGGAATAATGAGGG      | - RT-qPCR   |  |
| WEDA          | YEF3_Forward     | AGAAGTTATCTGTTGCCACTG   |             |  |
| YEF3          | YEF3_Reverse     | TACCATTCAAGAAAGAAGCGAC  | - RI-qPCR   |  |
| GTES          | STE2_Forward     | GACTTACGCTCTCACCG       | DT DCD      |  |
| SIE2          | STE2_Reverse     | AGAAGCCACAAGAAGGAC      | RI-qPCK     |  |
| DDC2          | RPS3_Forward     | ATTGTTGAACGGTTTGGC      | DT DCD      |  |
| KP53          | RPS3_Reverse     | CCCTTAGCACCAGATTCCATA   | RI-qPCK     |  |
|               | HYP2_Forward     | TTGAAACTGCTGACGCT       |             |  |
| HYP2          | HYP2_Reverse     | TCTTGATGACAACGAAACCG    | RI-qPCK     |  |
| <b>DD</b> N59 | RDN58_Forward    | AACGGATCTCTTGGTTCTCG    | DT aDCD     |  |
| KDN58         | RDN58_Reverse    | GTGCGTTCAAAGATTCGATG    | RI-qPCK     |  |
| <b>DDN25</b>  | RDN25_Forward    | TGGCAGTCAAGCGTTCATAG    |             |  |
| KDN25         | RDN25_Reverse    | CGCTTACCGAATTCTGCTTC    | KI-qPCK     |  |
| an D6         | snR6_Forward     | CGAAGTAACCCTTCGTGGAC    |             |  |
| SNK6          | SNR6_Reverse     | TCATCCTTATGCAGGGGAAC    | KI-qPCK     |  |
| so <b>D</b> 1 | scR1_Forward     | CCTTTGGGCAAGGGATAGTT    |             |  |
| SCKI          | scR1_Reverse     | TTTACGACGGAGGAAAGACG    | KI-YFCK     |  |
| S. pombe      | Sp_Tubulin_F     | CCGCTGGTGGAAAGTATGTT    | RT-aPCR     |  |
| Tubulin       | Sp_Tubulin_R     | GCCAATTCAGCACCTTCAGT    |             |  |
| PMA 1         | PMA1_P1_Forward  | GATGGTGGGTACCGCTTATG    | ChIP_aPCR   |  |
|               | PMA1_P1_Reverse  | TTGGTGTTATAGGAAAGAAAGAG | Cim-qrCK    |  |
| CDC19         | CDC19_P1_Forward | CCTTTCCTTCCCATATGATGC   | ChIP-aPCR   |  |
|               | CDC19_P1_Reverse | ACTTTGAAAGGGGACCATGA    |             |  |
| PDC1          | PDC1_P1_Forward  | CAGCTTATGGTGATGGCACA    | - ChIP-qPCR |  |
|               | PDC1_P1_Reverse  | ACCCAAATCTGATTGCAAGG    |             |  |
| PGK1          | PGK1_P1_Forward  | GTTCGTTCGATCGTACTGTT    | ChIP-aPCR   |  |
| PGKI          | PGK1_P1_Reverse  | AAACTAAACCACCCCCTTGG    |             |  |

 Table S3. List of primers used for RT-qPCR and ChIP-qPCR, Related to STAR Methods.

| 11 1/5 | ILV5_P1_Forward  | CACCCAGTATTTTCCCTTTCC         | ChIP aPCP   |  |
|--------|------------------|-------------------------------|-------------|--|
| ILVS   | ILV5_P1_Reverse  | GCGGCTTGAGTTCTCAACAT          | CIIIF-qFCK  |  |
| STI1   | STI1_P1_Forward  | CCAAAAGTCTGCTCCCAAAT ChIB aBC |             |  |
|        | STI1_P1_Reverse  | TGCAGCGTTACCTTGTTGTT          | Chir-qrCK   |  |
| RPS3   | RPS3_P1_Forward  | TCCGTAACATCCATACCTTTCC        | ChIP-qPCR   |  |
|        | RPS3_P1_Reverse  | TACCACTGCCCATGGGAGAAA         |             |  |
| NPL3   | NPL3_P1_Forward  | TTTTCTAACGGCCTGTGCTT          | ChIP-qPCR   |  |
|        | NPL3_P1_Reverse  | GCCACCAATTAGAAGGCTACTC        |             |  |
| EFB1   | EFB1_P1_Forward  | TCAGCACTGAAGAGTCCAACC         | ChIP aPCP   |  |
|        | EFB1_P1_Reverse  | TGACTTGTCAGCCAAAGAAGC         | Chir-qrCK   |  |
| DDS5   | RPS5_P1_Forward  | CCAAGAAAAGAGACTAGAAAT         | ChIP aPCP   |  |
| KP 55  | RPS5_P1_Reverse  | TGGAGTAGCCAAGACGACTG          | Chir-qrCK   |  |
| YEF3   | YEF3_P1_Forward  | CTTACGCTCTCTTTCTTTCCT         | ChID aDCD   |  |
|        | YEF3_P1_Reverse  | TTCTAGAACCTTAATGGA            | Chir-qrCK   |  |
| GAL1   | GAL1_P1_Forward  | ACATTTCCACACCCTGGAAC          | ChID aDCD   |  |
|        | GAL1_P1_Reverse  | TTCTTCGCGAGAACAATTCA          | Chir-qrCK   |  |
| HMR    | HMR_P1_Forward   | ACGATCCCCGTCCAAGTTATG         | ChID aDCP   |  |
|        | HMR_P1_Reverse   | CTTCAAAAGGAGTCTTAATTTCCCTG    | Chir-qrCK   |  |
| HSP42  | HSP42_P1_Forward | GGGAGGCCTCTGTGAAGTTA          | - ChIP-qPCR |  |
|        | HSP42_P1_Reverse | GCCTGAACGTGTCCCTATGT          |             |  |