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Detailed Methods 
 
CRISPR-Cas9 targeting of POU5F1. The samples that we analysed correspond to single cells or 
trophectoderm biopsies from human preimplantation embryos that were CRISPR-Cas9 genome edited 
in our previous study (1) plus an additional 56 samples used in the present work. Briefly, in vitro fertilised 
zygotes that were donated as surplus to infertility treatment were microinjected with either a sgRNA-
Cas9 ribonucleoprotein complex or with Cas9 protein alone and cultured for 5-6 days (targeted and 
control samples, respectively). The sgRNA was designed to target exon 2 of the POU5F1 gene and 
experiments performed as previously described (1). Genomic DNA from Cas9 control and OCT4-
targeted human embryos was isolated from either an individual single cell or a cluster of 2-5 cells from 
trophectoderm biopsies from embryos that developed to the blastocyst stage, as well as blastomeres 
from earlier stage embryos (Table S2 and S3) using the REPLI-g Single Cell Kit (QIAGEN, 150343) 
according to the manufacturer’s guidelines. Since these samples were originally isolated for further 
processing by G&T-seq (2) or whole genome amplification, they are identified by a G, T or W prefix in 
Tables S2 and S3. DNA samples isolated for cytogenetic analysis were amplified with the SurePlex Kit 
(Rubicon Genomics) and are identified by an L prefix (Table S1). 
 
Cytogenetic analysis. To determine the chromosome copy number of samples in Table S1, their 
genomic DNA was subjected to low-pass whole genome sequencing (depth of sequencing < 0.1x). 
Libraries were prepared using the VeriSeq PGS Kit (Illumina) or the NEB Ultra II FS Kit (Table S1) and 
sequenced with the MiSeq platform as previously described (1) or with Illumina HiSeq 4000, 
respectively. Sequenced reads were aligned to the human genome hg19 using BWA version 0.7.17 (3) 
and the digital karyotypes were generated with the R package QDNAseq version 1.24.0 (4). We used 
bins of size 100kb and filtered out samples with a strong difference between the measured and 
expected standard deviations of the generated profile (Fig. S2A and S2B). The expected standard 
deviation (Eσ) is defined as √1/N, where N is the average number of reads per bin. The measured 
standard deviation (σ) is calculated from the data with a 0.1%-trimmed first-order estimate (4). 
 
PCR primer design and testing. The 15 PCR primer pairs were designed with the Primer3 webtool 
(http://bioinfo.ut.ee/primer3/) across the POU5F1 locus (chr6:31,157,800-31,178,600 on hg38, Table 
S4). We also designed a control primer pair in exon 4 of the gene ARGFX, which is on a different 
chromosome (chr3:121,583,621-121,586,438, Table S4). We restricted the product size to the 150-
500bp range and used the following primer temperature settings: Min=56, Opt=58, Max=60. We 
selected primer pairs with similar melting temperature, length, the lowest possible GC percentage and 
with amplicons containing at least one common human variation as reported by dbSNP 1.4.2 
(https://www.ncbi.nlm.nih.gov/variation/docs/glossary/#common). We tested all primers using 1uL of 
genomic DNA from H9 human ES cells in a PCR reaction containing 12.5 uL Phusion High Fidelity PCR 
Master Mix (New England Biolabs, M0531L), 1.25 uL 5 uM forward primer, 1.25 uL 5 uM reverse primer 
and 9 uL nuclease-free water. Thermocycling settings were: 95°C 5min, 35 cycles of 95°C 30s, 58°C 



30s, 72°C 1min, and a final extension of 72°C 5min. We confirmed that the size of the PCR products 
corresponded to the expected amplicon size (Table S4) by gel electrophoresis. 
 
PCR amplification. In preparation for PCR amplification, the DNA isolated from samples in Table S2 
was diluted 1:100 in nuclease-free water. To expedite the processing of our 2192 samples (16 target 
fragments for each of the 137 DNA templates), we used the QIAgility robot (QIAGEN, 9001531) for 
master mix preparation (see above) and distribution to 96-well plates using the layout depicted in Table 
S5 for a total of 24 plates. Then, the Biomek FX liquid handling robot (Beckman Coulter, 717013) was 
used to transfer 1uL of DNA at once to the master mix plates using a 96-multichannel pipetting head 
and to mix the reagents. The PCR reaction was run with the thermocycling settings described above. 
PCR products were cleaned with the Biomek FX robot using the chemagic SEQ Pure20 Kit 
(PerkinElmer, CMG-458) as per manufacturer’s instructions. 
 
Targeted deep sequencing. Clean PCR amplicons from the same DNA sample were barcoded and 
pooled to generate 137 barcoded libraries that were submitted for targeted deep sequencing by Illumina 
MiSeq v3 (300bp paired end reads). 
 
SNP-typing. We trimmed the MiSeq paired-end reads with DADA2 (5) to remove low-quality regions 
(function filterAndTrim with parameters trimLeft=5, truncLen=c(150,150), truncQ=2, maxN=0 and 
maxEE=c(5, 5)). Then, we corrected substitution errors in the trimmed reads with RACER (6) and 
mapped the corrected reads to the human genome hg38 with BWA version 0.7.17 (3) in multi-threaded 
mode using the mem algorithm with default settings. Subsequently, SAM files were converted to the 
BAM format and post-processed (sorting, indexing and mate fixing) using Samtools version 1.3.1(7). 
SNP calling was performed with BCFtools version 1.8 (8) using the mpileup (--max-depth 2000 -a 
‘AD,DP,ADF,ADR’ -Ou) and call (-mv -V ‘indels’ -Ov) algorithms in multi-threaded mode. Since the 
average length of our amplicons is 300bp and the trimmed reads ended up having length ~145, at least 
10 reads are needed to achieve a 5x coverage at each amplicon. Therefore, SNPs supported by less 
than 10 reads and with mapping quality below 50 were filtered out. To control for allele overamplification, 
we revisited the homozygous SNP calls in search for reads supporting the reference allele at those 
positions. We changed these homozygous SNPs to heterozygous if the fraction of reads supporting the 
reference allele was at least 6% of the total (9). This threshold corresponds to the median of the 
distribution of the fraction of reads supporting the reference allele across samples. The resulting VCF 
files were then indexed and inspected in the Integrative Genomics Viewer (10). 
 
scRNA-seq data analysis. scRNA-seq reads from G&T-seq samples (Table S3) were aligned to the 
human reference genome GRCh38 using TopHat2 version 2.1.1 (11). Samples with a breadth of 
sequencing below 0.05 were not considered for any downstream analysis (Fig. S13A-C). Read counts 
per gene were calculated using HTSeq 0.12.4 (12) and normalised using TPM units (13). Differential 
gene expression analysis was carried out with DESeq2 v1.10.1(14). For digital karyotyping based on 



gene expression, we adapted the method described in (15) to identify gains or losses of chromosomal 
arms. Briefly, after removal of no-show, mitochondrial, sex chromosome and PAR genes, the TPM 
expression of all genes mapping to the p-arm of chromosome i was summed and compared to the 
average sum for the same chromosome and arm across samples via the calculation of a z-score. Z-
scores with values below -1.65 and above 1.65 were considered segmental losses and gains, 
respectively. Chromosome arms with values in between were considered to be normal. The same 
procedure was repeated for the q-arm of each chromosome. For digital karyotyping based on SNP 
expression, we applied the eSNP-Karyotyping pipeline with default parameters (16). eSNP-Karyotyping 
identifies loss-of-heterozygosity in a chromosome arm when the ratio of heterozygous to homozygous 
SNPs in that arm is significantly lower compared to the other chromosome arms. For this, the pipeline 
employs the GATK best practices for SNP calling using RNA-seq data and compares called 
heterozygous variants with homozygous variants reported on dbSNP 1.4.2 (16). eSNP-Karyotyping is 
very sensitive to depth and breadth of sequencing, so we selected samples for our scRNA-seq analyses 
based on the quality of the eSNP-Karyotyping profiles (Fig. S13A-C and Table S3). 
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Fig. S1. Sample types and nomenclature used throughout the paper. We analysed low-pass whole genome sequencing (WGS) 
and transcriptome data from OCT4-targeted and Cas9 control single cells or trophectoderm (TE, precursor cells of the placenta) 
biopsies from human embryo samples. In addition, the genomic DNA (gDNA) isolated from single cells or TE biopsies subjected to the 
G&T-seq protocol or to whole genome amplification (WGA) was used for targeted deep sequencing across the POU5F1 locus. Sample 
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letter U. The embryo number of CRISPR-edited samples is preceded by a letter C. Prefix L_ corresponds to the low-pass WGS data, 
prefix W_ to gDNA that was amplified with the REPLI-g kit, prefix G_ to gDNA extracted with the G&T-seq protocol and prefix T_ to 
scRNA-seq data produced with G&T-seq
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Fig. S2. Selection of samples for cytogenetics analysis. (A) After the construction of copy number 
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Fig. S8. SNP profiles for single cells or trophectoderm biopsies from targeted embryos C3-C8. A type of loss-of-heterozygosity (LOH) event was assigned to samples with at least 10 amplicons sequenced 
at ≥ 5x depth of coverage. The ARGFX control amplicon (chr3:121,583,621-121,586,438) did not reach the 5x depth of coverage in samples marked with a *.



LOH open-ended

CCHCR1 TCF19 POU5F1 PSORS1C3
Gene

23 24 8 E4 36 45-43 26

E1-2

19 21 22

9b E2b

cut-site

31,156 kb 31,158 kb 31,160 kb 31,162 kb 31,164 kb 31,166 kb 31,168 kb 31,170 kb 31,172 kb 31,174 kb 31,176 kb 31,178 kb 31,180 kb

24 kb

chr6

p25.1 p24.2 p22.3 p22.2 p21.32 p21.1 p12.3 p12.1 q11.1 q12 q13 q14.1 q14.3 q16.1 q16.3 q21 q22.1 q22.31 q22.33 q23.3 q24.2 q25.1 q25.3 q27

25 G1

G_C9.01

G_C9.02

G_C9.03

G_C9.04

G_C9.05

*G_C9.06

G_C9.09

W_C10.01

W_C10.02

W_C10.03

W_C10.06

W_C11.01

W_C11.02

W_C11.03

W_C11.04

W_C11.05

LOH open-ended

LOH open-ended

LOH bookended

LOH open-ended

LOH bookended

LOH open-ended

Fig. S9. SNP profiles for single cells of targeted embryos C9-C11. A type of loss-of-heterozygosity (LOH) event was assigned to samples with at least 10 amplicons sequenced at ≥ 5x depth of coverage.
The ARGFX control amplicon (chr3:121,583,621-121,586,438) did not reach the 5x depth coverage in samples marked with a *.
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Fig. S10. SNP profiles for single cells or trophectoderm biopsies from targeted embryos C12. A type of loss-of-heterozygosity (LOH) event was assigned to samples with at least 10 amplicons sequenced at ≥ 5x 
depth of coverage. The ARGFX control amplicon (chr3:121,583,621-121,586,438) did not reach the 5x depth of coverage in samples marked with a *.
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Fig. S11. SNP profiles for single cells of targeted embryos C13-C15, C18-C20 and C23. A type of loss-of-heterozygosity (LOH) event was assigned to samples with at least 10 amplicons sequenced at ≥ 5x depth
of coverage. The ARGFX control amplicon (chr3:121,583,621-121,586,438) did not reach the 5x depth of coverage in samples marked with a *.
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Fig. S12. SNP profiles for single cells of targeted embryos C16. A type of loss-of-heterozygosity (LOH) event was assigned to samples with at least 10 amplicons sequenced at ≥ 5x depth of coverage. 
The ARGFX control amplicon (chr3:121,583,621-121,586,438) did not reach the 5x depth of coverage in samples marked with a *.
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Fig. S13. Selection of samples for transcriptome-based analyses. (A) eSNP-karyotyping loss-of-

heterozygosity (LOH) profiles for two low quality scRNA-seq samples. (B) Distribution of scRNA-seq 

mapped reads across samples. Except for three outliers, most samples have ~25 million mapped 

reads. (C) Breadth of sequencing is in better agreement with the quality of the eSNP-karyotyping 

results than the number of mapped reads (see B) and the depth of sequencing. Therefore, we used a 

conservative threshold of 0.05 breadth of sequencing (red dashed line) to select samples for 

transcriptome-based analyses (note that eight good quality samples were discarded under this cut 

off). (D) Copy number profile of sample L_7 that highlights the agreement between the low-pass WGS 

(loss of chromosomes 4 and 14) and the transcriptome-based karyotypes shown in Fig. 4A and B 

(sample T_7.01). (E) Copy number profile of sample L_C16.02 that highlights the agreement between 

the low-pass WGS (loss of chromosome 16) and the transcriptome-based karyotypes shown in Fig. 

4A and B (sample T_C16.06).
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Fig. S14. Transcriptome-based karyotypes. (A) Digital karyotype based on the total gene expression deviation from the 
average of each chromosome arm (z-score-karyotyping). Chromosome 6 and two samples have been highlighted. (B) The 
loss-of-heterozygosity (LOH) profile of the two samples highlighted in A. These profiles were constructed with the eSNP-
Karyotyping pipeline, which is also transcriptome-based. Note that the chromosome losses identified by this method were 
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Fig. S15. eSNP-Karyotyping results. Loss-of-heterozygosity (LOH) profiles constructed with eSNP-Karyotyping for all
samples with good quality scRNA-seq data.


