Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 1;355(Pt 1):189–197. doi: 10.1042/0264-6021:3550189

Sphingosylphosphocholine is a naturally occurring lipid mediator in blood plasma: a possible role in regulating cardiac function via sphingolipid receptors.

K Liliom 1, G Sun 1, M Bünemann 1, T Virág 1, N Nusser 1, D L Baker 1, D A Wang 1, M J Fabian 1, B Brandts 1, K Bender 1, A Eickel 1, K U Malik 1, D D Miller 1, D M Desiderio 1, G Tigyi 1, L Pott 1
PMCID: PMC1221726  PMID: 11256963

Abstract

Blood plasma and serum contain factors that activate inwardly rectifying GIRK1/GIRK4 K+ channels in atrial myocytes via one or more non-atropine-sensitive receptors coupled to pertussis-toxin-sensitive G-proteins. This channel is also the _target of muscarinic M(2) receptors activated by the physiological release of acetylcholine from parasympathetic nerve endings. By using a combination of HPLC and TLC techniques with matrix-assisted laser desorption ionization-time-of-flight MS, we purified and identified sphingosine 1-phosphate (SPP) and sphingosylphosphocholine (SPC) as the plasma and serum factors responsible for activating the inwardly rectifying K+ channel (I(K)). With the use of MS the concentration of SPC was estimated at 50 nM in plasma and 130 nM in serum; those concentrations exceeded the 1.5 nM EC(50) measured in guinea-pig atrial myocytes. With the use of reverse-transcriptase-mediated PCR and/or Western blot analysis, we detected Edg1, Edg3, Edg5 and Edg8 as well as OGR1 sphingolipid receptor transcripts and/or proteins. In perfused guinea-pig hearts, SPC exerted a negative chronotropic effect with a threshold concentration of 1 microM. SPC was completely removed after perfusion through the coronary circulation at a concentration of 10 microM. On the basis of their constitutive presence in plasma, the expression of specific receptors, and a mechanism of ligand inactivation, we propose that SPP and SPC might have a physiologically relevant role in the regulation of the heart.

Full Text

The Full Text of this article is available as a PDF (224.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An S., Bleu T., Huang W., Hallmark O. G., Coughlin S. R., Goetzl E. J. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 1997 Nov 17;417(3):279–282. doi: 10.1016/s0014-5793(97)01301-x. [DOI] [PubMed] [Google Scholar]
  2. Ancellin N., Hla T. Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J Biol Chem. 1999 Jul 2;274(27):18997–19002. doi: 10.1074/jbc.274.27.18997. [DOI] [PubMed] [Google Scholar]
  3. Banach K., Bünemann M., Hüser J., Pott L. Serum contains a potent factor that decreases beta-adrenergic receptor-stimulated L-type Ca2+ current in cardiac myocytes. Pflugers Arch. 1993 May;423(3-4):245–250. doi: 10.1007/BF00374402. [DOI] [PubMed] [Google Scholar]
  4. Banach K., Hüser J., Lipp P., Wellner M. C., Pott L. Activation of muscarinic K+ current in guinea-pig atrial myocytes by a serum factor. J Physiol. 1993 Feb;461:263–281. doi: 10.1113/jphysiol.1993.sp019513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bünemann M., Brandts B., zu Heringdorf D. M., van Koppen C. J., Jakobs K. H., Pott L. Activation of muscarinic K+ current in guinea-pig atrial myocytes by sphingosine-1-phosphate. J Physiol. 1995 Dec 15;489(Pt 3):701–707. doi: 10.1113/jphysiol.1995.sp021084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bünemann M., Liliom K., Brandts B. K., Pott L., Tseng J. L., Desiderio D. M., Sun G., Miller D., Tigyi G. A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine 1-phosphate in atrial myocytes. EMBO J. 1996 Oct 15;15(20):5527–5534. [PMC free article] [PubMed] [Google Scholar]
  7. Bünemann M., Pott L. Membrane-delimited activation of muscarinic K current by an albumin-associated factor in guinea-pig atrial myocytes. Pflugers Arch. 1993 Nov;425(3-4):329–334. doi: 10.1007/BF00374183. [DOI] [PubMed] [Google Scholar]
  8. Goetzl E. J., An S. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 1998 Dec;12(15):1589–1598. [PubMed] [Google Scholar]
  9. Goetzl E. J., Kong Y., Kenney J. S. Lysophospholipid enhancement of human T cell sensitivity to diphtheria toxin by increased expression of heparin-binding epidermal growth factor. Proc Assoc Am Physicians. 1999 May-Jun;111(3):259–269. doi: 10.1046/j.1525-1381.1999.99116.x. [DOI] [PubMed] [Google Scholar]
  10. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  11. Himmel H. M., Meyer Zu Heringdorf D., Graf E., Dobrev D., Kortner A., Schüler S., Jakobs K. H., Ravens U. Evidence for Edg-3 receptor-mediated activation of I(K.ACh) by sphingosine-1-phosphate in human atrial cardiomyocytes. Mol Pharmacol. 2000 Aug;58(2):449–454. doi: 10.1124/mol.58.2.449. [DOI] [PubMed] [Google Scholar]
  12. Honjo H., Kodama I., Zang W. J., Boyett M. R. Desensitization to acetylcholine in single sinoatrial node cells isolated from rabbit hearts. Am J Physiol. 1992 Dec;263(6 Pt 2):H1779–H1789. doi: 10.1152/ajpheart.1992.263.6.H1779. [DOI] [PubMed] [Google Scholar]
  13. Im D. S., Heise C. E., Ancellin N., O'Dowd B. F., Shei G. J., Heavens R. P., Rigby M. R., Hla T., Mandala S., McAllister G. Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J Biol Chem. 2000 May 12;275(19):14281–14286. doi: 10.1074/jbc.275.19.14281. [DOI] [PubMed] [Google Scholar]
  14. Lee M. J., Van Brocklyn J. R., Thangada S., Liu C. H., Hand A. R., Menzeleev R., Spiegel S., Hla T. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science. 1998 Mar 6;279(5356):1552–1555. doi: 10.1126/science.279.5356.1552. [DOI] [PubMed] [Google Scholar]
  15. Liliom K., Bünemann M., Sun G., Miller D., Desiderio D. M., Brandts B., Bender K., Pott L., Nusser N., Tigyi G. Sphingosylphosphorylcholine is a bona fide mediator regulating heart rate. Ann N Y Acad Sci. 2000 Apr;905:308–310. doi: 10.1111/j.1749-6632.2000.tb06567.x. [DOI] [PubMed] [Google Scholar]
  16. Liliom K., Guan Z., Tseng J. L., Desiderio D. M., Tigyi G., Watsky M. A. Growth factor-like phospholipids generated after corneal injury. Am J Physiol. 1998 Apr;274(4 Pt 1):C1065–C1074. doi: 10.1152/ajpcell.1998.274.4.C1065. [DOI] [PubMed] [Google Scholar]
  17. Meyer zu Heringdorf D., van Koppen C. J., Jakobs K. H. Molecular diversity of sphingolipid signalling. FEBS Lett. 1997 Jun 23;410(1):34–38. doi: 10.1016/s0014-5793(97)00320-7. [DOI] [PubMed] [Google Scholar]
  18. Olivera A., Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature. 1993 Oct 7;365(6446):557–560. doi: 10.1038/365557a0. [DOI] [PubMed] [Google Scholar]
  19. Pyne S., Pyne N. J. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J. 2000 Jul 15;349(Pt 2):385–402. doi: 10.1042/0264-6021:3490385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spiegel S., Merrill A. H., Jr Sphingolipid metabolism and cell growth regulation. FASEB J. 1996 Oct;10(12):1388–1397. doi: 10.1096/fasebj.10.12.8903509. [DOI] [PubMed] [Google Scholar]
  21. Spiegel S., Milstien S. Functions of a new family of sphingosine-1-phosphate receptors. Biochim Biophys Acta. 2000 Apr 12;1484(2-3):107–116. doi: 10.1016/s1388-1981(00)00010-x. [DOI] [PubMed] [Google Scholar]
  22. Sugiyama A., Aye N. N., Yatomi Y., Ozaki Y., Hashimoto K. Effects of sphingosine 1-phosphate, a naturally occurring biologically active lysophospholipid, on the rat cardiovascular system. Jpn J Pharmacol. 2000 Apr;82(4):338–342. doi: 10.1254/jjp.82.338. [DOI] [PubMed] [Google Scholar]
  23. Sugiyama A., Yatomi Y., Ozaki Y., Hashimoto K. Sphingosine 1-phosphate induces sinus tachycardia and coronary vasoconstriction in the canine heart. Cardiovasc Res. 2000 Apr;46(1):119–125. doi: 10.1016/s0008-6363(00)00013-4. [DOI] [PubMed] [Google Scholar]
  24. Tigyi G., Henschen A., Miledi R. A factor that activates oscillatory chloride currents in Xenopus oocytes copurifies with a subfraction of serum albumin. J Biol Chem. 1991 Nov 5;266(31):20602–20609. [PubMed] [Google Scholar]
  25. Tigyi G., Miledi R. Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. J Biol Chem. 1992 Oct 25;267(30):21360–21367. [PubMed] [Google Scholar]
  26. Van Brocklyn J. R., Gräler M. H., Bernhardt G., Hobson J. P., Lipp M., Spiegel S. Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood. 2000 Apr 15;95(8):2624–2629. [PubMed] [Google Scholar]
  27. Van Koppen C. J., Meyer Zu Heringdorf D., Zhang C., Laser K. T., Jakobs K. H. A distinct G(i) protein-coupled receptor for sphingosylphosphorylcholine in human leukemia HL-60 cells and human neutrophils. Mol Pharmacol. 1996 Jun;49(6):956–961. [PubMed] [Google Scholar]
  28. Wickman K., Nemec J., Gendler S. J., Clapham D. E. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron. 1998 Jan;20(1):103–114. doi: 10.1016/s0896-6273(00)80438-9. [DOI] [PubMed] [Google Scholar]
  29. Wright R. S. A reagent for the non-destructive location of steroids and some other lipophilic materials on silica gel thin-layer chromatograms. J Chromatogr. 1971 Jul 8;59(1):220–221. doi: 10.1016/s0021-9673(01)80033-9. [DOI] [PubMed] [Google Scholar]
  30. Xu Y., Zhu K., Hong G., Wu W., Baudhuin L. M., Xiao Y., Damron D. S. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol. 2000 May;2(5):261–267. doi: 10.1038/35010529. [DOI] [PubMed] [Google Scholar]
  31. Yamada M., Inanobe A., Kurachi Y. G protein regulation of potassium ion channels. Pharmacol Rev. 1998 Dec;50(4):723–760. [PubMed] [Google Scholar]
  32. Yamazaki Y., Kon J., Sato K., Tomura H., Sato M., Yoneya T., Okazaki H., Okajima F., Ohta H. Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem Biophys Res Commun. 2000 Feb 16;268(2):583–589. doi: 10.1006/bbrc.2000.2162. [DOI] [PubMed] [Google Scholar]
  33. Yatomi Y., Igarashi Y., Yang L., Hisano N., Qi R., Asazuma N., Satoh K., Ozaki Y., Kume S. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem. 1997 May;121(5):969–973. doi: 10.1093/oxfordjournals.jbchem.a021681. [DOI] [PubMed] [Google Scholar]
  34. Yatomi Y., Ruan F., Hakomori S., Igarashi Y. Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood. 1995 Jul 1;86(1):193–202. [PubMed] [Google Scholar]
  35. Zondag G. C., Postma F. R., Etten I. V., Verlaan I., Moolenaar W. H. Sphingosine 1-phosphate signalling through the G-protein-coupled receptor Edg-1. Biochem J. 1998 Mar 1;330(Pt 2):605–609. doi: 10.1042/bj3300605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van Koppen C., Meyer zu Heringdorf M., Laser K. T., Zhang C., Jakobs K. H., Bünemann M., Pott L. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J Biol Chem. 1996 Jan 26;271(4):2082–2087. doi: 10.1074/jbc.271.4.2082. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES

  NODES
twitter 2