Skip to main content
Genetics logoLink to Genetics
. 1991 Sep;129(1):285–295. doi: 10.1093/genetics/129.1.285

Genetic Analysis of the Morphological Differences between Maize and Teosinte

J Doebley 1, A Stec 1
PMCID: PMC1204577  PMID: 1682215

Abstract

Molecular marker loci were used to investigate the inheritance of morphological traits that distinguish maize (Zea mays ssp. mays) from a closely related wild relative, teosinte (Z. mays ssp. mexicana). Regression and interval mapping analyses gave largely congruent results concerning the numbers of loci controlling the morphological traits and the magnitudes of their effects; however, interval mapping tended to give larger estimates for the magnitudes of the effects of the morphological trait loci. This tendency was exaggerated for traits that were non-normally distributed. Variation for most inflorescence traits is controlled by one or two regions of the genome with large effects plus several other regions with relatively small effects. As such, the data are congruent with a mode of inheritance for most traits involving one or two major loci plus several minor loci. Regions of the genome with large effects on one trait consistently had smaller effects on several other traits, possibly as a result of pleiotropy. Most of the variation for the dramatic differences in inflorescence morphology between maize and teosinte is explained by five restricted regions of the genome. One of these regions encompasses a previously described gene, tb1 (teosinte branched), and the effects of this region on inflorescence architecture are similar to the known effects of tb1. Implications of this work for the genetic basis of morphological evolution in plants are discussed.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. H., Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–370. doi: 10.1146/annurev.ge.23.120189.002005. [DOI] [PubMed] [Google Scholar]
  2. Bonierbale M. W., Plaisted R. L., Tanksley S. D. RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato. Genetics. 1988 Dec;120(4):1095–1103. doi: 10.1093/genetics/120.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doebley J., Stec A., Wendel J., Edwards M. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci U S A. 1990 Dec 15;87(24):9888–9892. doi: 10.1073/pnas.87.24.9888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edwards M. D., Stuber C. W., Wendel J. F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics. 1987 May;116(1):113–125. doi: 10.1093/genetics/116.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lande R. The minimum number of genes contributing to quantitative variation between and within populations. Genetics. 1981 Nov-Dec;99(3-4):541–553. doi: 10.1093/genetics/99.3-4.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  8. Langham D G. The Inheritance of Intergeneric Differences in Zea-Euchlaena Hybrids. Genetics. 1940 Jan;25(1):88–107. doi: 10.1093/genetics/25.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Paterson A. H., DeVerna J. W., Lanini B., Tanksley S. D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics. 1990 Mar;124(3):735–742. doi: 10.1093/genetics/124.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  11. ROGERS J. S. The inheritance of inflorescence characters in maize-teosinte hybrids. Genetics. 1950 Sep;35(5-1):541–558. [PMC free article] [PubMed] [Google Scholar]
  12. Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith J. M. Macroevolution. Nature. 1981 Jan 1;289(5793):13–14. doi: 10.1038/289013a0. [DOI] [PubMed] [Google Scholar]
  14. Suiter K. A., Wendel J. F., Case J. S. LINKAGE-1: a PASCAL computer program for the detection and analysis of genetic linkage. J Hered. 1983 May-Jun;74(3):203–204. doi: 10.1093/oxfordjournals.jhered.a109766. [DOI] [PubMed] [Google Scholar]
  15. Wendel J. F., Edwards M. D., Stuber C. W. Evidence for multilocus genetic control of preferential fertilisation in maize. Heredity (Edinb) 1987 Apr;58(Pt 2):297–301. doi: 10.1038/hdy.1987.44. [DOI] [PubMed] [Google Scholar]
  16. Zeng Z. B., Houle D., Cockerham C. C. How informative is Wright's estimator of the number of genes affecting a quantitative character? Genetics. 1990 Sep;126(1):235–247. doi: 10.1093/genetics/126.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES

  NODES
twitter 2