Abstract
Thiol/disulfide oxidoreductases like thioredoxin, glutaredoxin, DsbA, or protein disulfide isomerase (PDI) share the thioredoxin fold and a catalytic disulfide bond with the sequence Cys-Xaa-Xaa-Cys (Xaa corresponds to any amino acid). Despite their structural similarities, the enzymes have very different redox properties, which is reflected by a 100,000-fold difference in the equilibrium constant (K(eq)) with glutathione between the most oxidizing member, DsbA, and the most reducing member, thioredoxin. Here we present a systematic study on a series of variants of thioredoxin from Escherichia coli, in which the Xaa-Xaa dipeptide was exchanged by that of glutaredoxin, PDI, and DsbA. Like the corresponding natural enzymes, all thioredoxin variants proved to be stronger oxidants than the wild-type, with the order wild-type < PDI-type < DsbA-type < glutaredoxin-type. The most oxidizing, glutaredoxin-like variant has a 420-fold decreased value of K(eq), corresponding to an increase in redox potential by 75 mV. While oxidized wild-type thioredoxin is more stable than the reduced form (delta deltaG(ox/red) = 16.9 kJ/mol), both redox forms have almost the same stability in the variants. The pH-dependence of the reactivity with the alkylating agent iodoacetamide proved to be the best method to determine the pKa value of thioredoxin's nucleophilic active-site thiol (Cys32). A pKa of 7.1 was measured for Cys32 in the reduced wild-type. All variants showed a lowered pKa of Cys32, with the lowest value of 5.9 for the glutaredoxin-like variant. A correlation of redox potential and the Cys32 pKa value could be established on a quantitative level. However, the predicted correlation between the measured delta deltaG(ox/red) values and Cys32 pKa values was only qualitative.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachmann B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972 Dec;36(4):525–557. doi: 10.1128/br.36.4.525-557.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bushweller J. H., Aslund F., Wüthrich K., Holmgren A. Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14----S) and its mixed disulfide with glutathione. Biochemistry. 1992 Sep 29;31(38):9288–9293. doi: 10.1021/bi00153a023. [DOI] [PubMed] [Google Scholar]
- Chivers P. T., Laboissière M. C., Raines R. T. The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. EMBO J. 1996 Jun 3;15(11):2659–2667. [PMC free article] [PubMed] [Google Scholar]
- Chivers P. T., Prehoda K. E., Raines R. T. The CXXC motif: a rheostat in the active site. Biochemistry. 1997 Apr 8;36(14):4061–4066. doi: 10.1021/bi9628580. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Forman-Kay J. D., Clore G. M., Gronenborn A. M. Relationship between electrostatics and redox function in human thioredoxin: characterization of pH titration shifts using two-dimensional homo- and heteronuclear NMR. Biochemistry. 1992 Apr 7;31(13):3442–3452. doi: 10.1021/bi00128a019. [DOI] [PubMed] [Google Scholar]
- Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci. 1994 Aug;19(8):331–336. doi: 10.1016/0968-0004(94)90072-8. [DOI] [PubMed] [Google Scholar]
- Gan Z. R., Sardana M. K., Jacobs J. W., Polokoff M. A. Yeast thioltransferase--the active site cysteines display differential reactivity. Arch Biochem Biophys. 1990 Oct;282(1):110–115. doi: 10.1016/0003-9861(90)90093-e. [DOI] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Grauschopf U., Winther J. R., Korber P., Zander T., Dallinger P., Bardwell J. C. Why is DsbA such an oxidizing disulfide catalyst? Cell. 1995 Dec 15;83(6):947–955. doi: 10.1016/0092-8674(95)90210-4. [DOI] [PubMed] [Google Scholar]
- Holst B., Tachibana C., Winther J. R. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum. J Cell Biol. 1997 Sep 22;138(6):1229–1238. doi: 10.1083/jcb.138.6.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huber-Wunderlich M., Glockshuber R. A single dipeptide sequence modulates the redox properties of a whole enzyme family. Fold Des. 1998;3(3):161–171. doi: 10.1016/S1359-0278(98)00024-8. [DOI] [PubMed] [Google Scholar]
- Jacobi A., Huber-Wunderlich M., Hennecke J., Glockshuber R. Elimination of all charged residues in the vicinity of the active-site helix of the disulfide oxidoreductase DsbA. Influence of electrostatic interactions on stability and redox properties. J Biol Chem. 1997 Aug 29;272(35):21692–21699. doi: 10.1074/jbc.272.35.21692. [DOI] [PubMed] [Google Scholar]
- Jeng M. F., Campbell A. P., Begley T., Holmgren A., Case D. A., Wright P. E., Dyson H. J. High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure. 1994 Sep 15;2(9):853–868. doi: 10.1016/s0969-2126(94)00086-7. [DOI] [PubMed] [Google Scholar]
- Kallis G. B., Holmgren A. Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli. J Biol Chem. 1980 Nov 10;255(21):10261–10265. [PubMed] [Google Scholar]
- Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
- Katti S. K., Robbins A. H., Yang Y., Wells W. W. Crystal structure of thioltransferase at 2.2 A resolution. Protein Sci. 1995 Oct;4(10):1998–2005. doi: 10.1002/pro.5560041005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kortemme T., Creighton T. E. Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J Mol Biol. 1995 Nov 10;253(5):799–812. doi: 10.1006/jmbi.1995.0592. [DOI] [PubMed] [Google Scholar]
- Kortemme T., Darby N. J., Creighton T. E. Electrostatic interactions in the active site of the N-terminal thioredoxin-like domain of protein disulfide isomerase. Biochemistry. 1996 Nov 19;35(46):14503–14511. doi: 10.1021/bi9617724. [DOI] [PubMed] [Google Scholar]
- Krause G., Lundström J., Barea J. L., Pueyo de la Cuesta C., Holmgren A. Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin. J Biol Chem. 1991 May 25;266(15):9494–9500. [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Li H., Hanson C., Fuchs J. A., Woodward C., Thomas G. J., Jr Determination of the pKa values of active-center cysteines, cysteines-32 and -35, in Escherichia coli thioredoxin by Raman spectroscopy. Biochemistry. 1993 Jun 8;32(22):5800–5808. doi: 10.1021/bi00073a012. [DOI] [PubMed] [Google Scholar]
- Loferer H., Wunderlich M., Hennecke H., Glockshuber R. A bacterial thioredoxin-like protein that is exposed to the periplasm has redox properties comparable with those of cytoplasmic thioredoxins. J Biol Chem. 1995 Nov 3;270(44):26178–26183. doi: 10.1074/jbc.270.44.26178. [DOI] [PubMed] [Google Scholar]
- Lundström J., Holmgren A. Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Biochemistry. 1993 Jul 6;32(26):6649–6655. doi: 10.1021/bi00077a018. [DOI] [PubMed] [Google Scholar]
- Martin J. L. Thioredoxin--a fold for all reasons. Structure. 1995 Mar 15;3(3):245–250. doi: 10.1016/s0969-2126(01)00154-x. [DOI] [PubMed] [Google Scholar]
- Nelson J. W., Creighton T. E. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry. 1994 May 17;33(19):5974–5983. doi: 10.1021/bi00185a039. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- Qin J., Clore G. M., Gronenborn A. M. The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. Structure. 1994 Jun 15;2(6):503–522. doi: 10.1016/s0969-2126(00)00051-4. [DOI] [PubMed] [Google Scholar]
- ROST J., RAPOPORT S. REDUCTION-POTENTIAL OF GLUTATHIONE. Nature. 1964 Jan 11;201:185–185. doi: 10.1038/201185a0. [DOI] [PubMed] [Google Scholar]
- Rossmann R., Stern D., Loferer H., Jacobi A., Glockshuber R., Hennecke H. Replacement of Pro109 by His in TlpA, a thioredoxin-like protein from Bradyrhizobium japonicum, alters its redox properties but not its in vivo functions. FEBS Lett. 1997 Apr 14;406(3):249–254. doi: 10.1016/s0014-5793(97)00270-6. [DOI] [PubMed] [Google Scholar]
- Ruddock L. W., Hirst T. R., Freedman R. B. pH-dependence of the dithiol-oxidizing activity of DsbA (a periplasmic protein thiol:disulphide oxidoreductase) and protein disulphide-isomerase: studies with a novel simple peptide substrate. Biochem J. 1996 May 1;315(Pt 3):1001–1005. doi: 10.1042/bj3151001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
- Strobl S., Mühlhahn P., Bernstein R., Wiltscheck R., Maskos K., Wunderlich M., Huber R., Glockshuber R., Holak T. A. Determination of the three-dimensional structure of the bifunctional alpha-amylase/trypsin inhibitor from ragi seeds by NMR spectroscopy. Biochemistry. 1995 Jul 4;34(26):8281–8293. doi: 10.1021/bi00026a009. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
- Takahashi N., Creighton T. E. On the reactivity and ionization of the active site cysteine residues of Escherichia coli thioredoxin. Biochemistry. 1996 Jun 25;35(25):8342–8353. doi: 10.1021/bi960465v. [DOI] [PubMed] [Google Scholar]
- Weichsel A., Gasdaska J. R., Powis G., Montfort W. R. Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure. 1996 Jun 15;4(6):735–751. doi: 10.1016/s0969-2126(96)00079-2. [DOI] [PubMed] [Google Scholar]
- Weissman J. S., Kim P. S. Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature. 1993 Sep 9;365(6442):185–188. doi: 10.1038/365185a0. [DOI] [PubMed] [Google Scholar]
- Wunderlich M., Glockshuber R. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci. 1993 May;2(5):717–726. doi: 10.1002/pro.5560020503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wunderlich M., Otto A., Maskos K., Mücke M., Seckler R., Glockshuber R. Efficient catalysis of disulfide formation during protein folding with a single active-site cysteine. J Mol Biol. 1995 Mar 17;247(1):28–33. doi: 10.1006/jmbi.1995.0119. [DOI] [PubMed] [Google Scholar]
- Wunderlich M., Otto A., Seckler R., Glockshuber R. Bacterial protein disulfide isomerase: efficient catalysis of oxidative protein folding at acidic pH. Biochemistry. 1993 Nov 16;32(45):12251–12256. doi: 10.1021/bi00096a039. [DOI] [PubMed] [Google Scholar]
- Xia T. H., Bushweller J. H., Sodano P., Billeter M., Björnberg O., Holmgren A., Wüthrich K. NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins. Protein Sci. 1992 Mar;1(3):310–321. doi: 10.1002/pro.5560010302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Y. F., Wells W. W. Identification and characterization of the functional amino acids at the active center of pig liver thioltransferase by site-directed mutagenesis. J Biol Chem. 1991 Jul 5;266(19):12759–12765. [PubMed] [Google Scholar]
- Zapun A., Bardwell J. C., Creighton T. E. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry. 1993 May 18;32(19):5083–5092. doi: 10.1021/bi00070a016. [DOI] [PubMed] [Google Scholar]
- Zapun A., Cooper L., Creighton T. E. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry. 1994 Feb 22;33(7):1907–1914. doi: 10.1021/bi00173a038. [DOI] [PubMed] [Google Scholar]
- Zapun A., Missiakas D., Raina S., Creighton T. E. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry. 1995 Apr 18;34(15):5075–5089. doi: 10.1021/bi00015a019. [DOI] [PubMed] [Google Scholar]