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Abstract 

Background:  Monitoring the body temperature of premature infants is vital, as it 
allows optimal temperature control and may provide early warning signs for severe 
diseases such as sepsis. Thermography may be a non-contact and wireless alternative 
to state-of-the-art, cable-based methods. For monitoring use in clinical practice, auto-
matic segmentation of the different body regions is necessary due to the movement of 
the infant.

Methods:  This work presents and evaluates algorithms for automatic segmentation of 
infant body parts using deep learning methods. Based on a U-Net architecture, three 
neural networks were developed and compared. While the first two only used one 
imaging modality (visible light or thermography), the third applied a feature fusion of 
both. For training and evaluation, a dataset containing 600 visible light and 600 ther-
mography images from 20 recordings of infants was created and manually labeled. In 
addition, we used transfer learning on publicly available datasets of adults in combina-
tion with data augmentation to improve the segmentation results.

Results:  Individual optimization of the three deep learning models revealed that 
transfer learning and data augmentation improved segmentation regardless of the 
imaging modality. The fusion model achieved the best results during the final evalua-
tion with a mean Intersection-over-Union (mIoU) of 0.85, closely followed by the RGB 
model. Only the thermography model achieved a lower accuracy (mIoU of 0.75). The 
results of the individual classes showed that all body parts were well-segmented, only 
the accuracy on the torso is inferior since the models struggle when only small areas of 
the skin are visible.

Conclusion:  The presented multi-modal neural networks represent a new approach 
to the problem of infant body segmentation with limited available data. Robust results 
were obtained by applying feature fusion, cross-modality transfer learning and classical 
augmentation strategies.
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Introduction
As a preterm infant’s development inside the mother’s womb may not be fully completed, 
preterm birth can lead to serious health issues [1]. Globally, premature birth is the single 
most common cause of death among children below the age of five and accounts for over 
one million deaths per year [2]. If the infants survive, they are at increased risk of various 
physical and psychological illnesses, both short and long-term. These include, for exam-
ple, respiratory, neurological, or cognitive conditions [3]. Since about 10% of children are 
born prematurely worldwide, this affects over 15 million infants each year. Nevertheless, 
the exact causes of premature births remain unknown. Therefore, there are few means 
for prevention, and the global number of premature births has even increased over the 
past years [4, 5].

On the other hand, neonatal intensive care and especially technical equipment in the 
Neonatal Intensive Care Unit (NICU) has continuously improved in the past decades 
[6]. Different technologies assist premature infants in their first weeks of life. They lie 
in incubators while respiration, heart rate and partial pressure of CO2 and O2 are moni-
tored in order to detect potential health issues and counteract them [1]. In particular, 
for the infant’s survival, it is crucial to maintain a physiological body temperature [7]. At 
the same time, premature infants also lose heat to their surroundings faster than term 
newborns or adults due to their thinner skin and missing subcutaneous fat layer [8]. 
Therefore, the body temperature must be monitored continuously, and the heat supply 
in the incubators must be regulated precisely [9]. Additionally, it is essential to distin-
guish between peripheral and central body temperature. Hypothermia is first manifested 
by a drop in peripheral temperature, while the central temperature can still be kept con-
stant by metabolic activity. An increased central–peripheral temperature difference may 
also be an early symptom of late-onset sepsis, one of the most common complications in 
neonatal care. Therefore, for early detection of cold stress or emerging sepsis, it is useful 
to continuously monitor the central–peripheral temperature difference [10].

Nowadays, the temperature of premature infants is commonly monitored by wired 
thermistors attached to the skin with strong adhesives. However, this can have adverse 
effects and lead to bacterial growth, skin damage, and irritations. Also, skin tears are 
possible during removal, which impair the skin’s barrier function [11]. In addition to the 
consequences of direct skin contact, the cables are a disturbing factor. Transport is made 
more difficult. and optimal positioning is not always possible due to the large number 
of cables in the incubator. Furthermore, it has been shown that the sight of cabling can 
cause parents to feel inhibited when interacting with their child [12]. For these reasons, 
a wireless and contactless alternative for temperature monitoring is desirable. Infrared 
thermography is a promising approach, where the temperature is obtained by measuring 
the emitted infrared radiation of the skin. However, to extract the temperature distribu-
tion of the neonate, it is necessary to automatically segment the skin of the regions-of-
interest (ROI) since the location of these regions may vary due to movement.

Body part segmentation (Human Parsing) is a field of intensive research, with bench-
marks having improved significantly over the past years [13–15]. However, the research 
on body parts segmentation of neonates, whose body proportions are significantly dif-
ferent from those of adults, is still not well examined. Chaichulee et al. [16], Dossso et al. 
[17] and Villaroel et al. [18] each segmented the skin of neonates in their work but did 
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not distinguish between body parts. Zhang et al. [19] segmented body parts in videos of 
infants to detect possible neurological maldevelopment from the children’s movements. 
However, due to the small size of their dataset, their Neural Network was not able to 
robustly segment videos of children the network had never seen before.

Hoog Antink et al. [20] used a neural network for segmenting the body parts of neo-
nates with a dataset of 643 manually annotated RGB and near infrared (NIR) images. 
They aimed to extract the infants’ heart rates without skin contact and achieved robust 
segmentation results, especially for the head, with a mean Intersection-over-Union of 
0.82. However, these results were only obtained by pre-training the network on larger 
datasets for Human Parsing of adults. Training a network on 81 near infrared (NIR) 
images yielded significantly worse and unreliable results for the neonate segmentation.

Asano et  al. combined a U-Net with a Generative Adversarial Network (GAN) and 
Self-Attention (SA) for body part segmentation in long-wave infrared (LWIR) images 
[21]. Opposite to Hoog  Antink et  al., they did not pre-train their neural network but 
only used a dataset containing 400 images of neonates.

In all the presented research, only one image modality was used for the body part 
segmentation. However, the fusion of different modalities has shown great success in 
other research fields. Farahnakian et al. [22] applied early, hybrid, and late fusion strate-
gies for maritime vessel detection and compared the results to architectures only using 
images from visible light (RGB—red, green, blue) or LWIR. The fusion networks all 
achieved better results than the unimodal ones, with the RGB architectures being more 
accurate than LWIR networks. Early fusion approaches combine the information from 
two images on the pixel level before the images are processed further. This can, e.g., be 
done by concatenating an RGB and an LWIR image to form a four-channel image, which 
serves as the input of a neural network. Late fusion, in contrast, fuses the information 
on the decision or classification level. Separate neural networks thus process RGB and 
LWIR images, and the outputs are concatenated or merged afterwards [23]. The success 
of fusion strategies was also confirmed by Sun et al. [24]. They applied a feature fusion 
strategy using two encoders and one decoder to a semantic segmentation task fusing 
RGB and LWIR images of urban scenes.

To the best of our knowledge, there is no approach that directly compares the use of 
RGB images, LWIR images or a fusion of multiple image modalities for body part seg-
mentation. In this work, we present a multi-modal approach for body part segmenta-
tion of infants. For this purpose, we solely used the information from RGB and an LWIR 
camera. With this data, we compared three approaches for the body part segmenta-
tion based on the robust and established U-Net architecture. First, the information 
from either the RGB or the LWIR camera was used for the segmentation by applying 
an encoder–decoder architecture. Additionally, we examined a hybrid fusion approach. 
The use and comparison of new transfer learning strategies for infant segmentation and 
especially segmentation in thermal images as well as a multi-modal approach for the 
problem of body part segmentation have so far not been reported in the literature, and 
are considered a novel contribution.
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Results
In the following, both unimodal and fusion networks were first optimized using the pre-
sented transfer learning and augmentation methods. Subsequently, the best models were 
trained incorporating all previous findings and evaluated on the left-out test data. Every 
training was set to run for 30 epochs for each fold with a batch size of 2, a learning rate 
of 0.0001, and a scheduled learning rate decay.

Unimodal models

For the optimization of the RGB Model, we first examined the influence of trans-
fer learning by pre-training on the Pascal–Freiburg dataset and the CIHP dataset. In a 
next step, the impact of data augmentation was investigated. The results of the different 
classes are depicted as box plots in Fig. 1.

As shown in Fig. 1, the models pre-trained on the CIHP dataset achieve a higher IoU 
for each class than the model that only uses the Chennai dataset for training. In con-
trast, the model pre-trained on the Pascal–Freiburg dataset even has worse results for 
the head and torso classes. In particular, the model pre-trained on the CIHP dataset 
achieves much better results on all body parts than the model pre-trained on the Pascal–
Freiburg dataset. While the results for the head, arms, and legs only differ by a few per-
centage points, the CIHP dataset especially improves the segmentation of the torso. In 
addition, the standard deviation is reduced compared to the model with no pre-training. 
Due to the superior segmentation results, only the CIHP dataset is used for pre-training 
the models in the following. The model achieves an even better result when combin-
ing transfer learning and data augmentation, resulting in a mean IoU of 0.86. The aug-
mentations improve all classes and decrease the std of the folds, resulting in an overall 
good segmentation of the infants when only using the RGB images. Only the torso is 
segmented suboptimal with an mIoU of 0.65.

Since the optimization of the RGB model has already shown that pre-training on 
the CIHP dataset yields the best results, transfer learning is only examined with a 
grayscale version of this dataset for the LWIR model. In total, four models were evalu-
ated. Two models were solely trained on the Chennai dataset, with and without data 

Fig. 1  Box plot for cross-validation of the RGB model with (1) only the raw Chennai dataset (blue); (2) 
Pascal–Freiburg (P–F) pre-training (orange); (3) CIHP pre-training (green); (4) data augmentation and CIHP 
pre-training (red)
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augmentation. In addition, two models were pre-trained on the CIHP dataset, also 
with and without data augmentation. The results in Fig. 2 show the comparison of the 
classes and the standard deviation of the five folds.

Even though pre-training was performed only on a grayscale version of the CIHP 
dataset, the transfer learning improved the IoU by almost three percentage points 
compared to just training on the LWIR images of the Chennai dataset. Data augmen-
tation further improves the training, resulting in an mIoU of 0.67. When comparing 
the training with augmentation and no pre-training, it is noticeable that the transfer 
learning even resulted in an improvement of 5 percentage points (from 0.62 to 0.67). 
Similar to the RGB model, inferior results were obtained for torso segmentation (IoU 
of 0.56). The remaining classes were segmented relatively well, with an IoU between 
0.66 and 0.76.

Fusion model

In the following, the modality fusion model is evaluated. Since data augmentation 
showed great success in the unimodal networks, it was used for all training of the 
fusion model. To optimize the combination of RGB and LWIR images, the four differ-
ent pre-training strategies are evaluated. The results in Fig. 3 show the comparison of 
the classes with box plots.

As can be seen in Fig. 3, the model pre-trained only on the CIHP dataset combined 
with the established data augmentation methods already achieves good results with 
an mIoU of 0.86. Using the decoder weights of the unimodal networks does not fur-
ther improve the segmentation results. In this case, the torso is detected even worse 
compared to only pre-training on the CIHP dataset. The best segmentation was 
achieved using the unimodal encoder weights and the pre-trained CIHP decoder 
weights. Here, the torso was segmented well with an IoU of 0.74, leading to an IoU 
improvement of 4 percentage points compared to only pre-training on the CIHP 
dataset. In total, the fusion of LWIR and RGB images as input for the neural network 
resulted in a mean IoU of 0.87.

Fig. 2  Box plot for cross-validation of the LWIR model with (1) only the raw Chennai dataset (blue); (2) data 
augmentation (orange); (3) CIHP pre-training (green); (4) data augmentation and CIHP pre-training (red)
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Evaluation on test set

Combining the findings from the previous sections, the three final models were trained 
on all training data and evaluated on the test set. The LWIR and RGB models were first 
pre-trained on the CIHP dataset (the grayscaled CIHP dataset, respectively) and data 
augmentation was applied. The encoder weights of both unimodal models were then 
used as a baseline for the final evaluation of the fusion model. The decoder weights were 
taken from pre-training on the CIHP dataset. The final evaluation results for the three 
networks can be seen in Fig. 4, depicted as box plots.

We note that the fusion model achieves the best result with a mean IoU of 0.87, closely 
followed by the RGB model with an mIoU of 0.84. However, the LWIR model achieved 
worse segmentation results, with an mIoU of 0.75. Looking at the individual classes, it is 
evident that the head was segmented best by all three networks, followed by arms and 
legs. The torso was detected with the lowest accuracy, similar to the cross-validation 
Here, significant outliers were present, resulting in a big difference between median IoU 
and mean IoU. For example, the difference between the fusion model is 0.90 (Median 
IoU) and 0.69 (Mean IoU). In total, the fusion model achieved similar or better results 

Fig. 3  Box plot for cross-validation of fusion model with data augmentation and different fusion pre-training 
strategies for encoder (Enc.) and decoder (Dec.) (UNI = weights taken from unimodal RGB and LWIR encoders 
and used for the fusion model)

Fig. 4  Box plot for the evaluation of the three different networks on the test set (with pre-training and 
augmentations), mean is marked with a dot
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than the RGB model for all classes, with the LWIR model being between 3 and 15 per-
centage points worse. Qualitative examples of the segmentation results are shown in 
Fig. 5.

The top row shows an example for a superior result of the fusion model. While the 
RGB model does not detect the left leg and the LWIR model has problems with the seg-
mentation of the torso, the fusion model achieves good results in segmenting both the 
legs and the torso. An example of the superior results of the RGB model can be seen in 
the middle row of Fig. 5. It is the only one of the three models that segments most of the 
head and the arms correctly.

Lastly, the bottom row provides an example where the LWIR model produced the best 
results. In contrast to the RGB and fusion network, the LWIR network segments the 
torso skin, providing a good result.

Discussion
Hyperparameter tuning

The cross-validation from “Unimodal models” section shows that the transfer learning 
results are superior to the networks only trained on the Chennai dataset. Moreover, the 
CIHP dataset is found to be better suited for our application than the Pascal–Freiburg 
dataset that was previously used by Hoog Antink et al. [20]. Even though the legs are only 
visible in about every fourth image of the CIHP dataset, this disadvantage is compen-
sated by the ten times larger size of the CIHP dataset compared to the Pascal–Freiburg 

Fig. 5  Qualitative results of the three models evaluated on the test set
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dataset. In fact, the corresponding segmentation results on the legs were better than that 
of the arms and are still better than the results achieved by the model pre-trained on the 
Pascal–Freiburg dataset.

In contrast to Asano et al. [21] we also used transfer learning when training the neural 
network on LWIR images. Even though, in this case, transfer learning was performed 
with a grayscaled version of the CIHP Dataset, it also improved the results significantly. 
This indicates that for semantic segmentation and body part segmentation, respectively, 
cross-modality transfer learning is possible and can help to achieve better results. Nev-
ertheless, it would be desirable to have a larger LWIR image dataset of infants/adults.

In addition to transfer learning, the used data augmentation strategy also improved 
the segmentation results for every trained neural network, ranging between 5 and 10 
percentage points depending on the model. In contrast, the results from Hoog Antink 
et al. [20] even deteriorated slightly when data augmentation was applied. They assumed 
that their network might be able to generalize better when augmentations are used, but 
this may not be necessary to achieve good results on the validation data from their rela-
tively small dataset with a total of 563 RGB images.

Similarly, the Chennai dataset is only slightly bigger than the dataset used by 
Hoog Antink et al., with variations of color, brightness, camera position, etc., not being 
vast. This may introduce a bias to, e.g., the skin color. We conducted additional experi-
ments (not shown in “Results” section) to determine the influence of data augmentations 
such as color/brightness/saturation variations on the skin. This resulted in the same 
accuracy than without any augmentations, which indicates a bias in terms of skin color 
in the Chennai dataset. However, data augmentations such as color/brightness varia-
tions are necessary when applying the neural network in real-world scenarios or to new 
data with larger variations in skin color, brightness, etc. This needs to be evaluated with 
more data in future work. Furthermore, we used the grayscale RGB images of the CIHP 
dataset to perform transfer learning on the LWIR model. Since there are no large ther-
mography databases with labeled body parts, this was the only feasible option, which 
improved the results, even though the modalities are different. In the future, it would be 
beneficial to generate more thermography data or even artificial image data to enhance 
transfer learning.

In this work, we chose a DenseNet121 as the backbone for the neural network. How-
ever, a DenseNet is often less memory/speed efficient as other network structures. Since 
this work is the basis for non-contact temperature measurement, the interference time is 
not as important as in other applications. Nevertheless, new backbones such as Repvgg 
by Ding et al. [25] should be investigated in the future for segmentation tasks. This can 
improve the interference time and enable other applications such as camera based vital 
sign measurement.

Image fusion

The results from “Evaluation on test set” section are similar to Farahnakian et al. [22]. 
The fusion model achieves the best results compared to unimodal models. In addition, 
the RGB models perform better than the LWIR models.

In contrast to Farahnakian et  al., our fusion model achieved only slightly better 
results than the unimodal ones, with some classes even being segmented worse. This is 
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counterintuitive, since the fusion models can rely on more information to solve the task. 
Farahnakian et al. [22] did, in fact, find that the fusion models all performed at least as 
good or better than the unimodal ones. However, they worked on detecting maritime 
vessels using RGB and LWIR images with a distance between targets and cameras of sev-
eral tens or hundreds of meters. In this scenario, the differences in perspectives due to 
the use of two separate cameras are less relevant than when the cameras are only a maxi-
mum of two meters away from the objects to be segmented, as is the case here. Similarly, 
Ha et al. [26], Li et al. [27], Sun et al. [24], Wang et al. [28] and Zhang et al. [23] all fused 
multi-modal images but used images with targets being significantly further away from 
the cameras than the babies in the Chennai dataset (e.g., landscapes, ship traffic, satellite 
images, urban scenes, etc.). Ha et al. [26] and Sun et al. [24] further used images taken 
by a single camera that can record both RGB and thermal images simultaneously. Even 
though the improvement due to image fusion is marginal, it is still reasonable to use 
both modalities for segmentation, since the results will be used for the application of 
skin temperature measurement of infants. Hence, a thermal imaging camera is required 
in the measurement setup anyway.

Additionally, in contrast to other multi-modal studies, our LWIR images often have a 
lower contrast between the segmented object and the background, which may compli-
cate the segmentation on this modality.

As described in “Image registration” section, manually transforming RGB and Ground 
Truth images does not provide a perfect registration. This may explain why the fusion 
model evaluated in this work partly performs worse than the unimodal networks. 
Whether better image transformations can further improve the segmentation results of 
the fusion models needs to be analyzed in future work. The transformation matrices can, 
for instance, be calculated automatically instead of manually. Calibrating the two cam-
eras using calibration objects, however, must be done before the images of the babies are 
recorded and cannot be done retrospectively.

We also tested out different fusion strategies in the form of concatenating the 
extracted feature of the different modalities. However, this resulted in the same IoU of 
0.87 during hyperparameter optimization. Since the operation of concatenating adds 
six million more weights to the fusion model, we chose the add operation instead. We 
also tested other fusion methods (early fusion and late fusion), but these also resulted in 
worse results.

Class prediction

The evaluation of all three models indicated good segmentation results for all classes, 
with the head being segmented best. However, all networks show that the worst results 
are consistently achieved for the torso. This may be due to the fact that clothes covered 

Table 1  Classwise percentage of pixels for the Chennai dataset

Class Background Head Torso Arms Legs

Percentage 83.4% 4.6% 1.8% 3.6% 6.5%
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the torso for most of the infants in the Chennai dataset. In Table 1, the average percent-
age of pixels of each class from the whole image can be seen.

On average, the torso skin accounts for only 1.8% of the total image. In fact, the torso 
skin was only well visible for six recorded infants. In the other images, the torso was 
either entirely covered by clothes or only small parts of the torso were visible. On these 
infants, the networks struggle to achieve good segmentation results.

Figure 6 illustrates that the IoU on the torso decreases as the size of the visible skin 
area decreases. However, in the context of temperature measurement, a certain size of 
skin area is necessary to obtain a reliable result. That is why the temperature cannot be 
taken from skin patches as small as the torso skin visible in some parts of the Chennai 
Dataset anyway. Therefore, it is reasonable to define a threshold for the size of visible 
skin areas from which temperatures are extracted. When this strategy is employed, sub-
optimal segmentation results on the torso become less relevant.

Conclusion
In this work, a deep learning model was developed that automatically segments the indi-
vidual body parts of infants. For this purpose, we compared three neural networks based 
on the widely known U-Net architecture that have either RGB or LWIR images as input 
or use a fusion of both image modalities. Furthermore, a dataset of infants comprising 
600 RGB and 600 corresponding LWIR images was manually annotated and used for 
training and evaluation. Individual optimization of the three models showed that trans-
fer learning with the CIHP dataset and data augmentation significantly improved the 
segmentation results, regardless of the imaging modality used as input. Surprisingly, 
cross-modality transfer learning also showed a significant improvement in the results of 
the LWIR model.

Combining all previous findings, final RGB, LWIR, and fusion models were evaluated 
on a separate test set. The fusion model produced the best segmentation results, with 

Fig. 6  Examples of images and respective ground truth/prediction for different qualities of torso 
segmentation
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the RGB model providing comparable results. Only the LWIR model achieved a lower 
accuracy. The fusion model especially performed better on frames in which the con-
trast between skin and clothes or background was low in the RGB but high in the LWIR 
images. This suggests that the fusion model may be superior to the RGB model, espe-
cially when the illumination is turned off (e.g., at night). However, there is no image data 
available for this case yet, even though the night makes up a substantial part of a 24-h 
monitoring cycle. Neural networks trained on the Chennai dataset are hence biased, and 
especially the RGB model is overfitted to good illumination. Therefore, a more extensive 
dataset needs to be created to further evaluate and improve the deep learning models 
developed in this work.

When creating such a dataset, particular attention should be paid to some aspects. 
First, the dataset should contain images taken at night. Second, compared to the Chen-
nai dataset, a wider range of skin colors, body positions (especially prone) and clothing 
of the infants should be covered. Third, the transformation matrices used to transform 
the RGB and ground truth images to compensate for the different camera perspectives 
should be calculated automatically (e.g., using calibration objects). Overall, the results of 
this work demonstrate new methods for improving infant segmentation results and may 
help provide more insight into the problems and challenges of infant body part segmen-
tation, especially in light of the still limited amount of data available for this application.

Materials and methods
Dataset

The dataset used in this work was recorded by Lyra et al. [29] in the NICU of Saveetha 
Medical College & Hospital in Chennai, India. The study was approved by the institu-
tional ethics committee of Saveetha University (SMC/IEC/2018/03/067). The study 
included 19 stable patients with gestational age at birth ranging from 29 to 40 weeks. 
Since one patient was recorded twice, there are in total 20 different recordings. The 
weight varied from 1500 to 3010 g, and the age from 37 h to 56 days post-birth.

RGB images were obtained using a Grasshopper 3 GS3-U3-23S6C-C (FLIR, USA) with 
a frame rate of 60 Hz and a resolution of 1920 × 1200. Simultaneously, IR images were 
taken by a VarioCAM HD head 820 S (InfraTec, Germany) at 10 Hz and a resolution of 
1024 × 768. The spectral range of the thermal detector is 7.5 to 14.0 µm and, therefore, 
in the LWIR range. The neonates were recorded in an open incubator.

Since many images From these recordings, 30 images per recording (600 in total) were 
manually chosen, following three rules: 

1.	 Care was taken not to select images taken immediately after each other to ensure 
that images of the same recording are not redundant.

2.	 For each recording, the images were selected to include all body positions, move-
ments, and other activities, such as interaction with the clinician.

3.	 Since the cameras filmed at different frequencies, the chosen RGB and LWIR images 
were ensured to depict the same point in time.

Subsequently, the RGB images were labeled using the MATLAB Image Labeler app 
from The MathWorks, Inc. Opposite to other research [20, 30], where seven classes 
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“background”, “head”, “torso”, “left arm”, “right arm”, “left leg” are common, we did not 
distinguish between left and right. As described in “Introduction” section, the cen-
tral–peripheral temperature difference is mostly measured using only two temperature 
probes. Differentiating between left and right is not standard practice. Hence, we defined 
the following five classes: “background”, “head”, “torso”, “arm”, “leg”. Moreover, only vis-
ible skin was labeled as part of the body part classes, while clothing was labeled as back-
ground (see Fig. 8a). In the following, this dataset is referred to as the Chennai dataset.

Since the Chennai dataset only includes images of infants from a specific area in 
India, the dataset does not cover all possible human skin colors, and trained deep 
learning models may be biased in this respect. In addition, the radiant heaters of the 

Fig. 7  LWIR recordings with different contrasts due to the radiant heater

Fig. 8  a Manually labeled ground truth for the RGB image; b transformed RGB image and Ground Truth; c 
corresponding LWIR image
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incubators were turned on during the recordings of seven infants but switched off 
during the other recordings. Therefore, the contrast between body parts and back-
ground in the LWIR images varies between the infants. When the heaters were turned 
on, the surroundings of the infants were generally warmer than when the heaters were 
turned off. The warmer skin is thus better distinguishable from the background in the 
images taken when the heaters were turned off (see Fig.  7). For all thermal images, 
the gray values were mapped to the individual min. and max. temperature, ensuring a 
maximum contrast for the dataset.

Image registration

As the two cameras have different fields of view (FOVs) and also captured the infants 
from slightly different angles, an image registration is needed to match both modali-
ties. Furthermore, since the distance and angle of the camera setup varied for each 
infant, we conducted the image registration for each recording separately. For this 
purpose, we manually labeled six corresponding points of 5 image pairs, resulting in 
30 corresponding points per recording. These points were evenly selected over the 
entire image so that there is no bias towards a specific area. Since the open incubator 
and the individual cameras were exchanged or moved for each measurement, we had 
to find new correspondences for each recording.

In order to perform the registration of the RGB and Ground Truth image into the 
LWIR image, we used homogeneous coordinates, as it allows the transformation to be 
done with a single 3× 3 matrix. Instead of commonly used libraries like OpenCV, we 
found that applying the L1 loss yielded the best results for the training of the trans-
formation matrix. The L1 loss allows for better acceptance of outlier values inside the 
image data. However, since the amount of manually labeled training points is rather 
low, some protection against overfitting is important. That is why we also used the L1 
norm for regularization. This allows for a slightly higher variation in the transforma-
tion matrix, while at the same time having a regularization effect. An example of the 
transformation of the images can be seen in Fig. 8.

For the evaluation of the transformation quality, the root-mean-square error 
(RMSE) for both spatial dimensions between all transformed RGB points and 
LWIR points of a separate test set was calculated. This resulted in an RMSE of 
(X ,Y ) = (6.3 px, 10.5 px) , respectively, (X ,Y ) = (3.15mm, 5.25mm) . In contrast, 
we also tested the OpenCV function for the generation of transformation matri-
ces, which resulted in a worse RMSE of (X ,Y ) = (15.6 px, 26.3 px) , respectively, 
(X ,Y ) = (7.8mm, 13.15mm).

However, the transformations are still improvable. Even though the perspectives of the 
two cameras only varied slightly during the recordings, small parts of the skin may, for 
instance, be obscured by clothes when viewed from the first but not from the second 
perspective. Furthermore, the points from which the transformation matrices are calcu-
lated, were selected manually and cannot coincide perfectly. In total, the label masks do 
not match the transformed LWIR images as well as they match the RGB images they are 
created from. Thus, the initial conditions for training a network on the LWIR images are 
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worse than for training a network on the RGB images. This needs to be considered when 
comparing performance on RGB and LWIR images, as well as the fusion of both.

Network architecture

Body part segmentation of infants is a semantic segmentation task in the medical 
field, with limited available data. Therefore, we chose a U-Net architecture in this 
work, since it was specifically developed for this kind of problem. Furthermore, the 
U-Net has shown success in a variety of similar semantic segmentation and/or image 
fusion applications in the past [31]. The proposed network architecture can be seen in 
Fig. 9.

Based on the U-Net, our neural network has an encoder–decoder structure. While 
the encoder branch extracts features from the input image, the decoder branch com-
bines the features and outputs the segmentation mask. In addition, the skip con-
nections add high-resolution features to the decoder. In contrast to the unimodal 
networks (LWIR or RGB images), where only one encoder branch is used, the hybrid 
fusion network consists of two individual encoder branches. The features of both 
branches are then fed into the decoder. The fusion is done by pixel-wise addition in 
order to reduce the number of parameters.

Our encoder structure is based on a DenseNet-121, proposed by Huang et  al. in 
2017 [32]. In contrast to the popular ResNet, a DenseNet concatenates the features 
instead of summing them. The basic structure can be divided into Dense Blocks 
and Transitional Layers. While the dimensions of the feature maps remain the same 
within a Dense Block, the number of features changes depending on the growth rate. 
The Dense Block structure with 4 layers and a growth rate of 32 can be seen in Fig. 10.

Each layer of the Dense Block has six consecutive operations:

•	 Batch normalization
•	 Rectifier unit (ReLu)
•	 1 × 1 Convolution (reduction to 128 filters)

a b c

Fig. 9  The modified U-Net architecture with a an LWIR encoder based on a DenseNet 121; b an RGB encoder 
based on a DenseNet 121; c the decoder fusing the outputs of both encoders
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•	 Batch normalization
•	 Rectifier unit (ReLu)
•	 3 × 3 Convolution with filter size determined by the growth rate.

The layers between the Dense Blocks are called Transitional Layers and are needed for 
the downsampling of the dimension and subsequently apply batch normalization, a ReLu 
activation, a 1 × 1 convolution, and finally, 2 × 2 average pooling.

This architecture has several advantages. The vanishing gradient problem is minimized 
by connecting every layer directly to the others with a skip connection. Additionally, the 
skip connection of the layers improves the feature propagation and allows a reduction of 
total parameters. We used a growth rate of 32 for our encoder, resulting in seven million 
trainable parameters (14 million parameters for hybrid fusion).

The decoder branch consists of five similar and sequential blocks. Each block con-
tains an up-convolutional layer followed by a 3 × 3 convolution layer, with batch nor-
malization and a ReLu activation being applied after both. The convolution layers have a 
maximum filter size of 256, which is halved after each block. In the last layer, a softmax 
activation is applied, which outputs the class probabilities of each pixel. The final seg-
mentation mask is then produced using an argmax function. The decoder structure has 
an additional seven million parameters, which results in a total of 14 million trainable 
parameters for the proposed network (21 million for the hybrid fusion network).

Implementation

All networks were implemented in Python, using the Keras library. The Adam algo-
rithm proposed by Kingma et al. [33] with the default Keras parameters was chosen as 
optimizer. Adam complements the gradient descent approach by applying the concept 
of momentum. This concept aims to avoid converging into a local instead of the global 
minimum. To achieve this, the weights are updated not only based on the current gradi-
ent of the loss function. Instead, the gradients from previous steps are also taken into 
account when the weights for the next iteration are determined. This way, local min-
ima are more likely to be overcome [34]. Furthermore, we selected the commonly used 
cross-entropy as loss function.

32 64 96 128 160
Fig. 10  Dense Block with four layers and a growth rate of 32, as proposed by [32]
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Data augmentation

Since the Chennai dataset is relatively small, different augmentations were used to artifi-
cially extend it and thus improve the generalization ability of the neural networks. After 
extensive testing, we chose a combination of five augmentations. The maximum extent 
to which the augmentations are applied (e.g., the maximum scaling factor or the maxi-
mum rotation angle), as well as the probability (p) of application are specified for each 
augmentation separately:

•	 Images are randomly rotated by a maximum rotation angle of 30° (p = 0.9). In the 
task at hand, rotations may be helpful, as a broader range of angular positions of 
limbs can be covered this way.

•	 Randomly scaling images up or down by a factor between 0.8 and 1.2 (p = 0.9) may 
improve generalization, as the camera may not permanently be mounted at an iden-
tical distance from the infant.

•	 Images are randomly shifted horizontally and vertically (p = 0.9, relative shift limit 
= 0.2). Although individual filters in a convolutional neural network are invariant 
to translation, shifting an image may improve generalization. Since the infants can 
move, individual body parts may leave the area recorded by the camera. This, in turn, 
can be simulated by the shift augmentation.

•	 Horizontal flipping of the image (p = 0.5), as we do not distinguish between left and 
right body parts.

•	 Coarse dropout of rectangular regions in the image (max. holes =  12, min. holes 
= 4, min. height = 80, min. width = 80, max. height = 100, max. width = 100, p = 
0.8). This method, proposed by DeVries et al., is randomly masking out rectangular 
regions, which may help to improve the robustness of the neural network [35].

Transfer learning

In addition to the augmentations, we also applied transfer learning to face the challenges 
of the small Chennai dataset. As presented by Hoog Antink et al., the accuracy of infant 
segmentation improves when a neural network is pre-trained on data of adult persons 
[20].

In a first step, we used weights for the encoder pre-trained on the ImageNet dataset. 
It consists of 1,461,406 manually annotated images classified into 1000 different object 
classes [36]. This dataset was initially made for image classification rather than semantic 
segmentation. Nevertheless, neural networks for segmentation tasks often use weights 
pre-trained on the ImageNet dataset due to its large size and because the learned kernels 
can be transferred [31, 37].

In a next step, we used datasets of adults to pre-train our network for the task of body 
part segmentation. Hoog Antink et al. used a combination of the Freiburg Sitting People 
dataset [30] and the Pascal-Person-Part dataset [38], which is a subset of the VOC 2010 
dataset [39]. In the following, this combined dataset, consisting of 3733 manually labeled 
images, is only referred to as the Pascal–Freiburg dataset. Additionally, we used the 
Crowd Instance-level Human Parsing (CIHP) dataset for pre-training [40]. This data-
set contains 38,280 manually labeled images, making it more than ten times bigger than 
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the Pascal–Freiburg dataset. We merged the classes into head, torso, arm, leg, and back-
ground for both datasets, matching the classes of the Chennai dataset. In contrast to the 
Chennai and CIHP dataset, the Pascal–Freiburg dataset does not distinguish between 
visible skin and body parts with clothes. However, the infants of the Chennai dataset 
mostly do not wear clothes on the legs and arms. Therefore, the difference between 
the “leg skin” and the “leg skin and clothes” class may be slight. Only the torso is often 
covered by clothes, which leads to a significant difference between the “torso” and the 
“torso skin and clothes” classes. Nevertheless, since transfer learning is to be applied, the 
classes used for pre-training do not need to coincide with the classes eventually aimed 
at. An example for both adult datasets, including their ground truths, is shown Fig. 11.

As the adult datasets only contain RGB images, we transformed the datasets to a gray-
scale format for the pre-training of the LWIR model since no annotated dataset of LWIR 
images of adults is publicly available.

Fusion pre‑training

We compared different pre-training strategies to optimize the training of the fusion net-
work. The evident approach is pre-training the encoder and decoder weights on the adult 
dataset. However, since we use grayscale images for pre-training the LWIR encoder, this 
might not be optimal. By using the best weights from the unimodal networks, it might 
be possible to optimize the two encoder branches and the decoder. In total, four differ-
ent approaches were compared: 

1.	 Select encoder and decoder weights from pre-training on the adult dataset.
2.	 Select the best encoder weights of the unimodal networks and decoder weights from 

pre-training on the adult dataset.
3.	 Select the best encoder weights of the unimodal networks and the best decoder 

weights of the LWIR network.

Fig. 11  Examples from a Pascal-Person-Part Dataset [38]; b Freiburg Sitting People dataset [30]; c Crowd 
Instance-level Human Parsing dataset [40]
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4.	 Select the best encoder weights of the unimodal networks and the best decoder 
weights of the RGB network.

Evaluation method

As the Chennai dataset is comparatively small, we evaluated our neural network using 
a fivefold cross-validation. The 600 RGB and 600 LWIR images were split into fivefolds. 
In addition, an independent test set for final evaluation was created. Each fold contains 
90 RGB and 90 IR images, while the test set contains the remaining 150 RGB and IR 
images. An overview of the data split is shown in Table 2. All images of one recording 
were assigned to only one fold. As a result, five complete recordings were left out for 
final evaluation with the test set.

One exception to this split is fold 2 and fold 4, which have two separate recordings of 
one infant. However, since the two recordings were taken on different days with different 
clothing and backgrounds, we have assigned them to separate folds.

The tuning of hyperparameters, such as augmentation, network architecture, and 
pre-training, was performed exclusively during cross-validation. The final models were 
evaluated only once on the test data set at the end. This was done to avoid the peeking 
effect, where iterative revision of the models causes the hyperparameters to eventually 
be tuned on the test data [41].

The widely used metric Intersection-over-Union was selected for the comparison of 
the different neural networks. This metric compares the area assigned to class c by the 
ground truth mask ( ygtruth,c ) to the area predicted by a neural network ( yprediction,c ). This 
is done by dividing their intersection by their union:

We note that the IoU can have values between 0 (no overlap) and 1 (both are identical). 
Furthermore, the mean IoU (mIoU) indicates accuracy averaged over the four classes 
head, torso, arms, legs, leaving out the background class.
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