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Abstract 

Introduction: In recent times, an upsurge in the investigation related to the effects 
of meditation in reconditioning various cardiovascular and psychological disorders is 
seen. In majority of these studies, heart rate variability (HRV) signal is used, probably for 
its ease of acquisition and low cost. Although understanding the dynamical complexity 
of HRV is not an easy task, the advances in nonlinear analysis has significantly helped 
in analyzing the impact of meditation of heart regulations. In this review, we intend to 
present the various nonlinear approaches, scientific findings and their limitations to 
develop deeper insights to carry out further research on this topic.

Results: Literature have shown that research focus on nonlinear domain is mainly 
concentrated on assessing predictability, fractality, and entropy-based dynamical com-
plexity of HRV signal. Although there were some conflicting results, most of the studies 
observed a reduced dynamical complexity, reduced fractal dimension, and decimated 
long-range correlation behavior during meditation. However, techniques, such as 
multiscale entropy (MSE) and multifractal analysis (MFA) of HRV can be more effective 
in analyzing non-stationary HRV signal, which were hardly used in the existing research 
works on meditation.

Conclusions: After going through the literature, it is realized that there is a require-
ment of a more rigorous research to get consistent and new findings about the 
changes in HRV dynamics due to the practice of meditation. The lack of adequate 
standard open access database is a concern in drawing statistically reliable results. 
Albeit, data augmentation technique is an alternative option to deal with this problem, 
data from adequate number of subjects can be more effective. Multiscale entropy 
analysis is scantily employed in studying the effect of meditation, which probably need 
more attention along with multifractal analysis.

Methods: Scientific databases, namely PubMed, Google Scholar, Web of Science, 
Scopus were searched to obtain the literature on “HRV analysis during meditation by 
nonlinear methods”. Following an exclusion criteria, 26 articles were selected to carry 
out this scientific analysis.
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Introduction
In the last decade, a growing investigation on the role of yoga and meditation, especially 
on psychological and cardiac health using heart rate variability (HRV) features, has been 
observed. Relevant research works claim that yoga/meditation not only improves men-
tal calmness and boosts concentration level, but also keeps the cardiovascular system 
healthy [1–4]. It is also to be noted that HRV signal has received tremendous response 
from the biomedical research community probably due to its ease of acquisition, nonin-
vasiveness, and direct association with the functioning of the autonomic nervous system 
(ANS) [5–10]. The ANS plays a very important role in controlling various physiological 
processes, like the cardiovascular regulation, respiration, thermoregulation, urinary sys-
tem, digestion, etc., and thus maintaining the homeostasis. Over the last few decades, 
different works [10–13] have demonstrated that meditation has interesting impact on 
the activity of the ANS, which functions via its two divisions, namely, the parasympa-
thetic nervous system (PNS) and the sympathetic nervous system (SNS). Under different 
actions and health conditions, the predominance of these two sub-systems automati-
cally changes. Activation of SNS and PNS causes the release of chemical messengers; 
epinephrine and norepinephrine in case of the former, while acetylcholine in the latter 
[5, 10]. These hormones control the firing rate of the sinoatrial (SA) node, responsible 
for maintaining the HR. Parasympathetic activation decreases HR and sympathetic acti-
vation increases HR. This leads to a variation in interbeat (RR) intervals, which is rep-
resented by the HRV signal. Changes in HR dynamics under pathological, normal sinus 
rhythm, and different meditative states are shown in Fig. 1.

Literature study shows that linear (time or frequency domain) HRV analysis meth-
ods are more commonly used to distinguish the meditative state and the pre-med-
itative state. Out of them, time domain methods essentially perform statistical and 
geometrical calculations using the RR intervals time series. Although they are popu-
larly used for studying the effect of meditation [15–17], they have the limitation of 
providing only the average information about the signal, while frequency domain 
methods are used for evaluating the spectral power distribution of the HRV signal 
in three distinct bands. These bands are classified as very low frequency (VLF), low 

Fig. 1 HRV signals of a representative Kundalini Yoga meditator (Y1) before meditation (left) and during 
meditation (right) [14]
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frequency (LF), and high frequency (HF) bands. It is to be noted that another band, 
named the ultra low frequency (ULF) band (0−0.0033 Hz) is seldom used due to lack 
of reliable findings of its correlation with the ANS. The significance of VLF (0.0033−
0.04 Hz) power is its association with thermoregulation, renin–angiotensin system, 
and peripheral vasomotor activity [18, 19]. LF power (0.04−0.15 Hz) reflects the stim-
ulation of both the SNS and PNS with a greater influence from the former. On the 
other hand, HF power (0.15−0.4 Hz) reflects the stimulation of PNS. Based on these 
measures, an important parameter: the ratio of LF power to HF power is computed, 
which reflects the sympathovagal balance between the SNS and PNS. The values of 
these parameters are used to analyze whether there is any impact of meditation of 
ANS [11, 20–22]. In majority of these frequency domain studies, the fast Fourier 
transform (FFT) is used to estimate the power spectral density (PSD) for studying the 
effect of meditation. However, considering the non-stationary behavior of HRV, few 
[21, 23] of them have resorted to wavelet-based HRV analysis during meditation.

Even though linear methods of HRV analysis are being used in the detection of 
mind–body interactions, they are not able to perceive the underlying complex pat-
terns in the HRV signal. Meditation causes a change in HRV dynamics arising from 
respiratory sinus arrhythmia (RSA) as well as the changes in autonomic activity 
because of concentrated mind. For the study of various phenomena, like self simi-
larity, deterministic chaos, irregularity in patterns, nonlinear tools are assumed to 
be more effective. Different nonlinear techniques and tools are already popular in 
various fields including hydrodynamics, mechanical, and electrical engineering, etc. 
Subsequently, in the study of human physiological conditions also, they are found to 
be quite effective. The complexity and the dynamical behavior of HRV signals dur-
ing meditation are mainly analyzed with the help of different nonlinear parameters, 
including the largest Lyapunov exponent (LLE), the correlation dimension (CD), and 
the nonlinearity score (NLS) [12, 24, 25]. Besides, several entropy measures, like the 
Shannon entropy (ShEn), the approximate entropy, the sample entropy, the correla-
tion entropy, the symbolic entropy, the Renyi entropy, the permutation entropy, etc., 
are also used [13, 26, 27]. The presence/absence of long-range dependence has also 
been studied in some studies to examine whether any significant changes occur dur-
ing meditation based on fractal/multi-fractal analysis [15, 28, 29] and visibility graph 
[28, 30, 31] techniques.

A thorough literature search on “HRV analysis for studying the effects of meditation” 
returns papers which are primarily focussing on linear analysis techniques and a massive 
vacuum is observed in the reviews related to nonlinear HRV analysis for studying the 
impacts of meditation. As numerous original works have demonstrated the nonlinear 
property of HRV signal, it is of paramount importance to have an analysis on the pub-
lished papers related to the aforementioned subject. This led us to cumulate the findings 
of various nonlinear methods of HRV signal to analyze the impacts of meditation, fol-
lowed by their critical analysis.

In order to provide a critical analysis on the works, we first mention different non-
linear parameters for characterization of HRV dynamics during and before the prac-
tice of meditation and yoga. Relevant theoretical backgrounds are briefed to extract 
specific knowledge and understanding of their usefulness in studying the dynamics 
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of HRV signal. Next, we add our perspectives to aid in the quest for continuous and 
breakthrough findings on this multidisciplinary research domain.

The rest of the paper is organized as follows.  "Results" section provides a details 
of the nonlinear HRV methods with their theoretical cores for studying the nonlin-
ear behavior of HRV and the findings related to nonlinear HRV analysis under medi-
tative intervention. "Discussion" section  provides an overall summary of different 
approaches. The conclusions and a few future research directions are discussed in 
"Conclusion and future research trends" section. Finally, "Methods" section  provides 
a detailed search strategy for the selection of relevant research articles analyzed in 
this study.

Results
Distribution of research articles on nonlinear HRV analysis in the last two decades

The literature search returns around 389-odd articles on nonlinear HRV analysis for 
studying the cardiac conditions during meditation/yoga. Figure  2 shows year-wise 
numbers of publications on HRV studies on the above context, which clearly indi-
cates that it is one of the highly researched areas by the scientific community and 
the trend is fairly on a rising scale. It is worth mentioning that in this study, we have 
considered Chi, Kundalini, mindfulness, Zen, slow/deep breathing, paced breathing, 
focused meditation as meditative interventions although there are copious forms of 
meditation. This is because our aim is to study various nonlinear methods useful for 
studying meditative interventions rather than to evaluate different meditative inter-
ventions. A pie diagram representation of the distribution of meditation techniques 
used in research articles is shown in Fig. 3.

Fig. 2 A trend of publications related to HRV analysis for meditation
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Nonlinear methods for studying HRV dynamics

A brief account of the various nonlinear methods used for the study of HRV under med-
itative interventions; the databases, nonlinear parameters, and significant observations 
construed from them are detailed in Table 1.

Next, we elaborate the theoretical background and the mathematical formulation of 
some of the widely used techniques belonging to nonlinear regime; highlighting the 
parameters used for studying the dynamics of HRV as follows.

Application of Poincaré plots

Poincaré plot is popularly used to study the behavior of ANS by investigating the short-
term and long-term HRV [46, 47]. In this technique, each RR interval is plotted against 
its previous RR interval (i.e., RRn+1 vs. RRn for a delay of 1), which forms a scatter plot 
as shown in Fig. 4. The shape of the plot gives a qualitative assessment, while the stand-
ard deviation parameters, SD1 and SD2 (dispersions along the minor and major axes of 
the fitted ellipse, respectively) could provide a quantitative assessment of the underlying 
dynamics of HRV. Particularly, SD1 corresponds to the standard deviation of instantane-
ous (short-term) variability of RR intervals, which indicates the activity of PNS, while 
SD2 corresponds to the standard deviation of continuous long-term variability, which is 
an indicator of the activity of SNS [37, 47]. The SD1/SD2 ratio is the relative measure of 
short-term and long-term variability of RR intervals.

A new approach of Poincaré analysis is also reported in the form of heart rate asym-
metry (HRA) measure by Karmakar et al. [48], and later applied in [42] to assess its sen-
sitivity towards delay. Mathematically, the HRA index, popularly known as Guzik’s index 
(GI), is given by [48]:

(1)GI =
∑C(P+

i )

i=1 (D+
i )

2

∑N−1
i=1 (Di)2

× 100%,

Fig. 3 Pie diagram representation of the distribution of meditation techniques used in research articles
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Table 1 HRV analysis under meditative condition

Sl. no. Authors (Year) Database (subjects) Nonlinear parameters Observations/findings 
during meditation

1 Sarkar and Barat [10] 
(2008)

PhysioNet (8) DFA, DEA, Recurrence 
and MSE analysis

DFA shows strong affect 
in long-range correla-
tion, DEA exhibits regular 
repetitive oscillations of 
time series

2 Papasimakis and Pal-
likari [32] (2009)

PhysioNet (8) DFA scale exponent and 
ShEn

DFA scale exponent 
decreases; decimated 
long-range correlation, 
standard deviation of 
ShEn decreases at higher 
scales indicating reduced 
variations in the correla-
tions of HRV

3 Goswami et al. [13] 
(2010)

PhysioNet (12) and 
own (3)

Normalized ShEn Normalized ShEn 
decreases for advanced 
meditators which 
indicates lower HRV 
dynamics. No statistical 
test found

4 Diosdado et al. [29] 
(2010)

PhysioNet (46) Higuchi’s fractal dimen-
sion (HFD)

HFD graph possesses 
quasi-periodic compo-
nents indicating reduced 
complexity. No statistical 
test found

5 Li et al. [26] (2011) PhysioNet (26) Base-scale entropy 
(BSEn)

BSEn* decreases, π-type 
probability distribution 
shows more certainty; 
indicates low complexity 
of HRV

6 Goswami et al. [33] 
(2011)

PhysioNet (12), own (3) Second order difference 
plot (SODP)

Cluster formed by SODP 
rotates anticlockwise dur-
ing meditation; indicates 
detachment from the 
external world. No statisti-
cal test found

7 Raghavendra and Dutt 
[24] (2011)

PhysioNet (12) MED, CD, LLE and NLS MED* and CD* decrease, 
whereas LLE* and NLS* 
increase; inducement of 
overwhelming calmness 
and significant alertness

8 Raghavendra and Dutt 
[12] (2011)

PhysioNet (12) Fractal dimension Significantly low fractal 
dimension*; increases 
for scales 1 to 7 and then 
becomes constant

9 Song et al. [12] (2013) PhysioNet (8) Multifractal detrended 
fluctuation analysis, 
singularity spectrum 
width

Significantly narrow 
singularity spectrum 
width indicating reduced 
dynamical complexity. No 
statistical test

10 Jiang et al. [30] (2013) PhysioNet (12) Visibility Graph method 
and P(k)

P(k) initially decreases 
( k ≤ 8 ) and then signifi-
cantly increases ( k >11). 
Long-range correlation 
is retained only at higher 
scales. No statistical test 
found

11 Goshvarpour and Gosh-
varpour [34] (2013)

PhysioNet (12) Higher order spectral 
(HOS) analysis: Bispec-
trum estimation

Bispectrum amplitude 
increases during KYM and 
decreases significantly 
( p < 0.05 ) during Chi 
meditation
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Table 1 (continued)

Sl. no. Authors (Year) Database (subjects) Nonlinear parameters Observations/findings 
during meditation

12 Kamath [15] (2013) PhysioNet (12) CCTM and HFD Significant increase in 
CCTM; indicates activa-
tion of PNS.

13 Goshvarpour and Gosh-
varpour [35] (2015)

PhysioNet (8) SD1 (minor axis), SD2 
(major axis), area under 
Poincaré plot

SD1/SD2* increase signifi-
cantly; elliptical Poincaré 
becomes circular; indi-
cates definite change in 
the psychological state

14 Bhaduri and Ghosh [28] 
(2017)

PhysioNet (12) Multifractal-DFA and 
PSVG analysis

PSVG increases during 
Kundalini yoga and Chi 
meditation, indicates 
increase in the degree of 
complexity. No statistical 
test found

15 Alvarez-Ramirez [36] 
(2017)

PhysioNet (12) Hurst exponent Hurst exponent 
decreases; indicating 
uncorrelated HRV dynam-
ics and destruction of 
long-range correlation. 
No statistical test found.

16 Goshvarpour and Gosh-
varpour [37] (2018)

PhysioNet (12) Correlation entropy 
and Cauchy–Schwarz 
divergence

Correlation entropy* is 
the lowest and Cauchy–
Schwarz divergence* 
is the highest (low SNS 
activity)

17 Yao et al. [38] (2018) PhysioNet (26) Entropy measures: KW, 
BS, PEn, and DSJE

All the entropies are 
significantly lesser. Lower 
dynamical complexity

18 Guo et al. [39] (2019) Author’s own (70) DFA scale exponents α1 
and α2

Significant increase in α1 
and α2 *. Prevalent SNS 
activity is observed

19 Nasrolahzadeh et al. [40] 
(2019)

PhysioNet (8) Graph index complexity 
(GIC) based on visibility 
graph

GIC values are signifi-
cantly higher indicating 
higher complexity

20 Goshvarpour and Gosh-
varpour [27] (2019)

PhysioNet (12) SD1, SD2, LZ complex-
ity, LLE, SampEn, ShEn, 
ApEn, LogEn

SD1*** and SD2*** show 
large variations, LLE*** 
increases, LogEn*** 
increase but LZ*** 
complexity, SampEn***, 
ApEn***, and Shannon 
entropy*** decrease; indi-
cates low complexity

21 Deka and Deka [41] 
(2020)

PhysioNet (12) IncrEn Decrease in IncrEn during 
meditation; however 
the difference is not 
statistically significant 
( p > 0.05).

22 Goshvarpour and Gosh-
varpour [42] (2020)

PhysioNet (12) Heart rate asymmetry 
(HRA) index

Significant increase in 
HRA index with the 
increase in lags of NN 
intervals

23 Rohila and Sharma [43] 
(2020)

PhysioNet (8) Asymmetric spread 
index (ASI), Porta’s index 
(PI), Guzik’s index (GI), 
slope index (SI) and area 
index (AI)

Significant increase in ASI, 
PI and GI. Crossover of 
ASI is observed in some 
meditators. Overall domi-
nant PNS activity
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where C(P+
i ) is the number of points (cyan-colored dots) above the line of identity (LOI) 

as shown in Fig. 4, N is the number of RR intervals, D+
i  is the distance of ith point above 

the LOI, and Di is the distance of ith point from the LOI given by:

It is reported that HRA index of meditators (Chi and KYM) are significantly different 
from non-meditators especially at higher delays [42, 43]. Similarly, Rohila and Sharma 
[43] observe that there occurs a significant increase in GI index too during meditation, 

(2)Di =
|RR(i + 1)− RR(i)|

√
2

.

Table 1 (continued)

Sl. no. Authors (Year) Database (subjects) Nonlinear parameters Observations/findings 
during meditation

24 Deka and Deka [14] 
(2021)

PhysioNet (12) EMD-based Energy 
ShEn (eShEn), Kurtosis, 
Skewness, DFA based 
short-term scale expo-
nent ( α1 ), multiscale PEn 
(MPE)

Significant decrease 
in eShEn***, MPE*** at 
lower scales (1,2,3,4) 
and α1***. However with 
the increase in scales, 
MPE increases during 
meditation providing a 
hint of higher underlying 
complexity

25 Goshvarpour and Gosh-
varpour [44] (2022)

PhysioNet (12) Verhulst map-based 
measures: area, circum-
radius, inradius

Significant decrease in 
area, circumradius, and 
inradius during Chi medi-
tation and significant 
increase in area, circumra-
dius, and inradius during 
KYM

26 Deka and Deka [45] 
(2022)

PhysioNet (12) Improved multiscale 
distribution entropy 
(ImDistEn)

Significant increase in 
ImDistEn over higher 
scales (>5) during Chi 
and KYM meditation 
as compared to before 
meditation

*p < 0.05 , **p < 0.01 , ***p < 0.001 , ApEn: approximate entropy, CCTM: component central tendency measures, CD: 
correlation dimension, DEA: diffused entropy analysis, DFA: detrended fluctuation analysis, DSJE: double symbolic joint 
entropy, k: degree of VG node, KW: Kurths J. and Wessel N., LLE: largest Lyapunov exponent, LogEn: log energy entropy, LZ: 
Lempel–Ziv, MED: minimum embedding dimension, NLS: nonlinearity score, P(k): degree distribution, PSVG: power of scale-
freeness in VG, SampEn: sample entropy

Fig. 4 Poincaré plot of HRV signal before meditation (left) and during meditation (right) [42]
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while Goshvarpour et al. [27, 35] have observed that SD1/SD2 ratio also increases dur-
ing meditation, which connotes the dominant parasympathetic activity, while Dey et al. 
[49] have presented a 3D frequency delay plot, which shows that the effect of Chi and 
KYM on the ANS are not alike, rather their impacts are completely opposite. Goswami 
et  al. [33] use a modified version of Poincaré plot, termed as the second-order differ-
ence plot and observe that during meditation (Chi and KYM), the axis of the cluster 
rotates anticlockwise. Furthermore, correlation coefficient obtained from consecutive 
first-order differences of RR intervals also increases during meditation. However, their 
results are not further validated by statistical significance tests. In order to compare the 
findings of the standard HRV features along with some of the commonly used nonlinear 
features (DFA scale exponent and PEn), against the findings of the existing works, we 
have demonstrated the simulated results in Table 2. It can be observed that only a few of 
the standard HRV features are able to distinguish the two states of mind–body states sig-
nificantly. This portrays the importance of nonlinear analysis in distinguishing the HRV 
data of compared groups having subtle differences.

Nonlinear parameters in phase space

Application of phase space representation In case of nonlinear analysis of HRV, it is 
very common to transform the time series into the phase space form. The rationale 
behind the transformation is to capture all possible dynamical states of the 1-D sig-
nal, which would not otherwise be possible from the magnitudes of a single varia-
ble. For that purpose, the signal is embedded into higher dimensions. The minimum 
embedding dimension (MED) provides the minimum number of variables required 
to represent the complete dynamics. But, in that process it is essential to ensure 
that the reconstructed attractor of different dimensions preserve the salient prop-
erties of the original attractor [24, 50]. The choice of proper embedding dimension 
and time delay play an important role in the efficient reconstruction of the attrac-
tor. Mathematically, the RR interval (HRV) time series of N data points, denoted by 
RR(i) = [RR(1), RR(2), ....., RR(N )] can be transformed into an m dimensional phase 
space with time delay, τ by Taken’s embedding theorem [51] as follows:

Table 2 Statistical significance test of the HRV features [14]

* indicates statistically significant values

Parameter Pre-meditation During meditation p-value
Mean ± SD Mean ± SD

SDNN (ms) 78.726 ± 39.553 75.334 ± 25.261 0.619

RMSSD (ms) 44.152 ± 24.051 41.292 ± 22.752 0.004*

Kurtosis 3.35 ± 1.33 3.32 ± 1.59 0.804

Skewness − 0.005 ± 0.278 0.167 ± 0.662 0.135

NN50 count 29.750 ± 19.015 31.260 ± 22.942 0.503

HTI 14.618 ± 4.707 14.315 ± 3.832 0.551

α1 1.078 ± 0.131 .925 ± 0.126 2.88× 10
−15*

DOD 1.214 ± 0.149 1.262 ± 0.161 0.036*

PEn 1.730 ± 0.043 1.5814 ± 0.122 1.31× 10
−22*



Page 10 of 31Deka and Deka  BioMedical Engineering OnLine           (2023) 22:35 

where each time delay vector, Y(i) can be expressed as 
Y (i) = [RR(i), RR(i + τ ), RR(i + 2τ ), ..., RR(i + (m− 1)τ )] and there are 
Nv = N − (m− 1)τ such time delay vectors.

For the estimation of MED, generally the methods based on the singular value 
decomposition (SVD) [53], the variation of the exponent of power-law based corre-
lation integral [54], the count of false nearest neighbors (FNNs) based on Kennel’s 
[52] and Cao’s [50] approaches are commonly used. However, the method [50] has 
received wide acceptance among the chaos analysts because of the computational 
ease and reliability. Another advantage is that the estimation of FNNs is threshold 
independent. The attractor gets unfolded if the signal is embedded at higher dimen-
sion than MED, which can facilitate the study of stability, predictability, correla-
tion behavior, and regularity. However, it is to be noted that the optimal time-delay 
value should be known prior to the estimation of MED. Average mutual information 
(AMI) and autocorrelation techniques are mostly used to determine the right delay at 
which these functions return the least value. Figures 5 and 6 show estimation of MED 
based on Cao’s and Kennel’s methods, respectively, for an HRV signal of meditators 

(3)Y = [Y (1),Y (2), .....Y (N − (m− 1)τ ]T ,

Fig. 5 Variation of the E2(m) against embedding dimensions to determine MED for HRV time series 
corresponding to meditative and pre-meditative states using Cao’s method [50]

Fig. 6 Variation of percentage of FNNs against embedding dimensions to obtain MED for HRV time series 
corresponding to meditative and pre-meditative states using Kennel’s method [52]
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(PhysioNet). Here, E2(m) is given by E
∗(m+1)
E∗(m)

 , with E∗(m+ 1) and E∗(m) indicating the 
averages of the distances between the neighboring vectors at dimensions m+ 1 and 
m, respectively, as given below:

where RRn(i,m)+mτ is the nearest neighbor of RRi+mτ in the m-dimensional phase space. 
As reported in [50], E2(m) is specially tailored to distinguish deterministic signals from 
stochastic signals. For the test HRV signal, it attains the peak value at m = 2 and then 
saturates beyond m = 3 . Saturation of E2(m) after m = 3 , gives the value of MED, i.e., 
m+ 1 = 4 . As per Kennel’s method since the lowest percentage of FNN is found at 
m = 4 with threshold of 15% false neighbors, the MED = 4.

It can be observed from Fig. 7 that mutual information drops sharply and it remains 
negligible from τ = 4 onward. With lower τ values, the MED required to capture the 
attractor of a signal is higher than that with optimal τ values. However, time-delay 
information is more relevant for continuous time signals, while for the analysis of dis-
crete time signal (e.g., HRV), the time-delay of 1 is sufficient [50].

Phase-space transformation is found to be the basis for various types of nonlin-
ear analyses, since it provides the scope to analyze a 1-D time series under higher 
dimensions. This led to its use in studying the effects of meditation from the aspects 
of asymptotic stability [24, 27, 55], time correlation of phase trajectories [10, 27, 55], 
dynamical complexity [10, 14, 26, 37, 41, 45], etc. Nevertheless, the computation of 
MED from phase space representations using FNN and Cao’s techniques (shown 
above) have revealed that HRV signals under meditative and pre-meditative condi-
tions can be best studied within MED=3. This indicates that even during meditative 
states, the HRV time series maintains the property of lower order deterministic chaos. 
Thus a general belief that the meditation may develop more regular and predictive 
cardiac dynamics is actually false, rather the cardiac dynamics still remain complex. 
It is worthwhile to mention that a complex heart dynamics indicates better adaptabil-
ity of heart, whereas the monotonous heart dynamics enunciates pathological heart 
conditions.

(4)E∗(m) =
1

N −mτ

N−mτ
∑

i=1

∣

∣RRi+mτ − RRn(i,m)+mτ

∣

∣,

Fig. 7 Variation of mutual information against varying time delay for HRV time series corresponding to 
meditative and pre-meditative states
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Application of correlation dimension (CD) It gives the assessment of the complexity of 
a time series [54]. Since, for many complex signals, CD value is a fractional quantity, it 
is also known by fractal dimension (FD). Higher the magnitude, greater is the dynami-
cal complexity. CD-based dimension calculation is having more adoption in biomedical 
applications as compared to the other techniques including, box-counting dimension, 
Kolmogorov capacity dimension, and information dimension, since it needs relatively 
lesser data for its calculation. It can be obtained from a time series by finding correla-
tions sum calculated from its data points as reported in [56]:

where

is the correlation integral of all the correlation functions, Nv is the number of states, 
and H is the Heaviside step function, which determines whether the distance between m 
dimensional vectors, Ym(i) and Ym(j) is within a sphere of radius, r or not. Cm(r) is found 
to have a power-law relationship with r, whose exponent gives the measure of CD [54]:

Raghavendra and Dutt [24] observed reduced MED and CD values during meditation 
(Chi and KYM) as shown in Fig. 8, which they considered to be due to a state of over-
whelming calmness. Although CD is considered as an indicator of vagal activity, it also 
characterizes the sympathovagal balance [57, 58]. This demonstrates the depressed 
vagal activity during meditation. However, it is to be mentioned that estimation of CD 
requires large number of data, which makes its use dubious for the given dataset having 
smaller data length.

Application of Lyapunov exponent (LE) LEs indicate whether the underlying system of 
a time series is chaotic or not [59]. It determines the sensitivity of a system to the initial 

(5)Cm(r) =
1

Nv

Nv
∑

i=1

Cm
i (r),

(6)Cm
i (r) =

{

1
Nv−1

∑Nv
j=1,j �=i[H(r − Ym

i,j )], if i ≤ Nv

0, otherwise
,

(7)CD = lim
r→0

logCm(r)

log(r)
.

Fig. 8 CD values of HRV time series after embedding the series with varying embedding dimensions m for 
meditative and pre-meditative states [24]
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conditions by calculating the average rate of separation of infinitesimally close trajecto-
ries. A positive value of the largest LE (LLE) of a series means that the underlying system 
is chaotic, while negative LE describes the asymptotic stability (convergence of close tra-
jectories). For a phase space representation of m dimensional dynamical series having N 
points, let the spectrum of LEs be (�1, �2, ...�m) . If the rate of divergence between any two 
trajectories is δZ(t) with initial separation vector δZ0 , the LLE at a time t can be obtained 
by [24]:

Fig. 9 shows that LLE is higher during meditation [24, 27, 55], which is considered to 
be associated with enhanced alertness during meditation. The higher value of LLE dur-
ing meditation may be considered as the manifestation of stronger neurocardiovascular 
couplings as well as the couplings between the ANS and other sensory systems [60, 61].

Application of recurrence plot and recurrence quantification analysis The recurrence 
plot (RP) is an array of dots, graphically represented by a square-sized ( N × N  ) image. 
A dot is placed at (i,  j) whenever the delay vector Ym(j) is sufficiently close to another 
vector Ym(i) . Therefore, the index (i, j) corresponds to the time information, and RP nat-
urally describes the time correlation between two vectors. Its not restrained by station-
arity, dimension size, and data length. Mathematically, the vectors, Ym(i) and Ym(j) are 
recurrent if they are within a cut-off distance ( ε ) [10, 62, 63], i.e.:

For clarity, recurrence plots for HRV signal corresponding to meditative and pre-med-
itative states are presented in Figs. 10 and 11 under a setting of embedding dimension, 
m=3 and time delay=1. It can be seen that during meditation, more prominent short 
lines parallel to the diagonal of the RP are found. This indicates that some states recur 
during meditation hinting a more periodic kind of oscillations. These periodic patterns 
may be due to the controlled breathing cycles during meditation. This illustrates the 
importance of respiratory data while analyzing the effects of meditation to arrive at a 
more profound decision. On the other hand, it is equally important to understand the 

(8)LLE = lim
t→∞

lim
|δZ0|→0

1

t

|δZ(t)|
|δZ0|

.

(9)Ri,j = H(ε −
∥

∥Ym(i)− Ym(j)
∥

∥).

Fig. 9 LLE for HRV time series corresponding to meditative and pre-meditative states [24]
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where

Here, Dm
i (r) is almost the same as Cm

i (r) of Eq. 6, differing only for its consideration of 
distance measurement of time delay vectors with itself; φm(r) is the average of the cor-
relation functions of all the time delay vectors with dimension m, and r is the tolerance 
limit.

Sample entropy (SampEn) Since approximate entropy is dependent on the data length 
and includes self matching of time delay vectors, it can give rise to biased result [67]. So 
it has been modified to derive the sample entropy (SampEn), which provides better reali-
zation of complexity of a time series. Its mathematical expression is given by [68]

where A and B are the number of time delay vectors whose Chebyshev distances are less 
than r in m+ 1 and m dimensional phase space, respectively.

Permutation entropy (PEn) This entropy is suitable for identifying whether a tempo-
ral dynamics is originated from stochastic process or deterministic chaos, and follows 
the identical mathematical formulation as used in ShEn [66]. After embedding the time 
series into phase space, the unique ordinal patterns of the embedding vectors are des-
ignated as π forms. The maximum possible patterns configurable by the vectors of m 
dimension is given by m!. It is mathematical expression is given by:

Base-scale entropy (BSEn) BSEn is another complexity metric suitable for short time 
series. For its computation, firstly the base scale (BS) is obtained from the phase space 
representation of the series and then symbolic sequences are formed on the basis of BS. 
Its mathematical calculation is given by [69]:

The symbolic sequences are coded in terms of symbols (say, a = 0, 1, 2, 3), which indi-
cates about the amplitude resolution. In this case, for m dimensional phase space, there 
can be maximum of 4m (i.e., {length(a)}m ) different forms of π . For each π , the probabil-
ity of occurrence is calculated to obtain BSE as given below:

(10)ApEn = φm(r)− φm+1(r),

(11)φm(r) = (N −m+ 1)−1
N−m+1
∑

i=1

log[Dm
i (r)].

(12)SampEn = − log
A

B
,

(13)PEn = −
m!
∑

i=1

P(πi) log2 P(πi).

(14)BS =

√

∑n
k=1[Y (i + k)− Y (i + k − 1)]2

m− 1
.

(15)BSEn = −
n

∑

i=1

[P(π) log2 P(π)].



Page 16 of 31Deka and Deka  BioMedical Engineering OnLine           (2023) 22:35 

Increment entropy (IncrEn) IncrEn evaluates the dynamical complexity of a time series 
by encoding each increment of it onto a word of two letters, where the first letter denotes 
the sign of change and the second letter denotes the amount of change [70]. Let these 
codewords be denoted by wn,k for n=1, 2,...,(N −m) and k = 1,..,m for an embedded 
increment series, HRV of length N; firstly, the successive differences are obtained and 
then the resultant increment series is embedded into m dimensional vectors, yn for n = 
1, 2,...,(N −m) . Each element of these vectors ( yn ) are mapped onto a word wn,k for k = 
1,..,m having two letters, say sn,k and qn,k corresponding to sign and symbolic increment, 
respectively. These m words ( wn,k ) in a vector, form a full word denoted by wn [41]:

If t(wn) denotes the number of occurrences of nth unique word, the probability of occur-
rence of each unique word is given by:

The increment entropy, H(m) for a resolution level (r) is given by:

Deka and Deka [41] have observed reduced IncrEn value especially during KYM and 
marginally lower entropy during Chi meditation than that before meditation, though 
the results are not statistically significant. This indicates that there may be a reduced 
irregularity and dynamical complexity during meditation. However, many other mark-
ers have demonstrated more significant decrease in entropy values during meditation. 
For example, BSEn [26], SampEn and ApEn [27], PEn [38] return significantly lower 
value ( p < 0.05 ) for the HRV during meditation. However, based on multiscale entropy 
(MSE) analysis as introduced by Costa et al. [65], Sarkar and Barat [10] show that for 
higher scales, the SampEn values are quite higher during meditation. In [14], Deka and 
Deka have used multiscale PEn (MPE) to examine the dynamical complexity of tempo-
ral structures in HRV signals of meditators and observed consistent results with that of 
[10]. Consistent results are also obtained from a recently developed improved multiscale 
distribution entropy measure [45]. It provides an interesting fact that actually complex-
ity of HRV signal increases during meditation.

Apart from these entropy markers based on Shannon entropy theory, generalized 
forms of entropies, such as Renyi entropy, Tsallis entropy, Kolmogorov–Sinai (KS) 
entropy as well as correlation measure-based correlation entropy are also used in 
practice.

Renyi entropy (ReEn) ReEn is the generalized form of ShEn, which is suitable for 
quantifying the complexity of multifractal time series. The mathematical formulation 
of ReEn of order q can be given as:

(16)qn,k =

{

0, if std(yn) = 0

min(r,
�yn�×r

std(yn)
), otherwise

(17)P(wn) =
t(wn)

N −m
.

(18)H(m) =
(2r+1)m
∑

n=1

P(wn) log2 P(wn).
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where n is the number of possible outcomes of a signal/series and q ≥ 0 , but q  = 1.
Tsallis entropy (TsallisEn) TsallisEn is another generalized form of ShEn, which was 

introduced with the aim to provide a better analysis of especially, nonextensive systems, 
very common in natural phenomena. For an order q, TsallisEn can be given by [71]:

Kolmogorov–Sinai (KS) entropy KS entropy also quantifies the dynamic behavior of 
a time series, by determining the changes in entropy by partitioning the data at each 
iteration. To obtain KS entropy, the HRV time series is first mapped using measure-
preserving transformation, T : RR → RR . The transformed RR series is then partitioned 
into several parts and each partition elements are considered as intervals Ii . Then with 
the elements in partition at time n falling into an interval Ii1 , while elements falling into 
interval Ii2 at time n+ 1 and so on, block entropies of block size m can be obtained using 
the joint probability Pi1,i2,..,im function by [59]:

where hq = sup
P

lim
m→∞

1
m [Hq(m,Pǫ)] and sup

P

 means finding the supremum over all possi-

ble P, provided ǫ → 0.
Correlation entropy (CorrEn) It gives the similarity measure between two random vari-

ables in the neighborhood of joint space. For this, the data are transformed into a higher 
dimensional Hilbert space and afterwards the correlation of the data in Hilbert space is 
obtained. If X, Y are two series of same dimension then CorrEn can be obtained by [37]:

where H(X) and H(Y) map the data X and Y to higher dimensional Hilbert domain. Kσ is 
a Kernel function, which could be a polynomial function, radial basis function (RBF) or 
sigmoid function, etc.

Goshvarpour and Goshvarpour [37] evaluate information theoretic descriptors, 
namely, the CorrEn and the Cauchy–Schwarz divergence (CSD) and observe very low 
CorrEn values during Kundalini yoga for smaller kernel sizes. It indicates higher relaxed 
state and lower SNS tone during Kundalini yoga meditation. However, as the kernel size 
increases, these values further decrease marginally. They further conclude that CSD 
fails to demonstrate the nonlinear similarities. Again, diffusion entropy analysis (DEA) 
as shown in Fig. 12 demonstrates regular repetitive oscillations during meditation, indi-
cating the loss of long-range correlation. In [72], Porto et al. have found that although 
entropy markers, such as TsallisEn, ReEn could not provide significant difference 
between slow breathing and normal breathing conditions. They observed that dynamical 
complexity in case of slow breathing reduces and this leads to an reduced vagal control.

(19)ReEn =
1

1− q
log

(

n
∑

i=1

P
q
i

)

,

(20)TsallisEn =
1

q − 1

(

1−
n

∑

i=1

P
q
i

)

.

(21)Hq(m,Pǫ) =
1

1− q
ln





�

i1,i2,..,im

P
q
i1,i2,..,im



,

(22)CorrEn = E[< H(X),H(Y ) >] = E[Kσ (X ,Y )],
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Fractal/multi‑fractal analysis

Applications of detrended fluctuation technique Like many natural objects and signals, 
such as mountains, leaves of plants, DNA sequences, time series of network traffic, HRV 
time series also possesses the fractal behavior. Fractal object/process should have a frac-
tional dimension and possess self-similarity behavior under different spatial/temporal 
scales. Fractal dimension (FD) is the most fundamental measure to check the fractal-
ity and hence the complexity of a signal, which is based on the degree of space-filling 
of a curve constituting the signal. Even though CD, box-counting dimension, Hausdorff 
dimension can provide the measure of FD, Hurst exponent and detrended fluctuation 
analysis (DFA) based FD measures are widely used [32, 73].

DFA method reveals the possession of self-similarity (fractal) behavior by eliminating 
any kind of trends. This trend unless removed, could mislead the interpretation of frac-
tal analysis as it could add unnecessary signal components extraneous to the underlying 
dynamics of interest. The mathematical formulation of this method is given below [73]:

where RRcum(m) =
∑m

i=1[RR(i)− RR(i)] , RR(i) is the mean of RR interval series, 
RRcum(m) is the cumulative sum, Frms(n) is the rms fluctuation of the series at scale 
n, RRtn(m) is the trend (least-square fit line) of RR(m) at scale n, and α is the scaling 
exponent which defines the self-similarity behavior of a signal. For 0 ≤ α ≤ 1 , Hurst 
exponent, H = α and for 1 < α ≤ 2 , H = α − 1 . Here, H value reflects the correlation 
behavior of a series with 0 < H < 0.5 indicating antisymmetric correlation and 0.5 < H 
< 1 indicating long-range correlation. From the H value, FD can be obtained by: FD 
= 2-H [74, 75]. It is to be noted that for the computation of asymptotic α , a very long 
time series is required (approximately 9000 data points), which is often unavailable as 
the physiological signals are concerned. This led to its evaluation for short time scales 
(4–16 data points), by short-term DFA exponent ( αs ), which is also found to be effective 
in studying self-similarity property [27, 73]. In a work, Sarkar and Barat [10] observe 
that the long-range correlation of the HRV data is destroyed during Chi meditation as 
shown in Fig. 13, where there is a scaling crossover indicating the effect of meditation. In 

(23)
Frms(n) =

√

√

√

√

1

N

N
∑

m=1

[RRcum(m)− RRtn(m)]2,

Frms(n) = nα ,

Fig. 12 Error bar plot of DEA for Chi meditators’ HRV time series during and before meditation [10, Fig. 3]
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[12], Raghavendra and Dutt compute the mean and standard deviation of FD values for 
various scales (from 1 to 20) and it is found that FD values are significantly lesser dur-
ing meditation ( p <0.05). During deep meditation, Guo et al. [39] have found that both 
short-term and long-term scaling exponents have significantly increased. In another 
work, Kamath [15] observes decrement in HFD, which is interpreted as the increase of 
LFp owing to the shift of the RSA by parasympathetic mediation. Alvarez-Ramirez et al. 
[36] have observed a decrement in Hurst exponent (HE) during chi and KYM meditation 
from the rescaled range (R/S) analysis. From the time series, firstly overall rescaled range 
(R/S) is obtained. The constant of proportionality between the logarithm of R/S value 
and the logarithm of time scales gives the exponent known as HE. Reduced HE indicates 
uncorrelated HRV dynamics and destruction of long-range correlation due to medita-
tion. In another study, Gronwald et  al. [76] have observed that a reduced short-term 
DFA exponent manifests the reduced dynamical complexity and withdrawal of organis-
mic system to maintain homeostasis under the influence of central nervous system.

Moving forward, it was observed with time that HRV time series do not have the same 
fractal behavior all throughout its length, rather they possess multifractal behavior. In 
multifractal analysis method, the fractal behavior is analyzed under different scales 
locally. More mathematical details about MFDFA can be found in [77]. It is observed 
by Song et al. [78] that during Chi meditation, multifractal spectrum width reduces as 
compared to that in pre-meditative state. This indicates a reduced multifractality during 
meditation.

Fig. 13 DFA of representative instantaneous HRV time series during and before meditation [10, Fig. 3]

Fig. 14 Representation of visibility graph of an HRV time series
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Application of visibility graph technique Visibility graph (VG) essentially converts a 
fractal time series into a scale-free graph. In this method, each data points are indicated 
by nodes and the nodes are connected by edges as shown in Fig. 14. If Xp and Xq are two 
data points at positions p and q, respectively, in a time series then they can be connected 
by an edge if it satisfies-

where p, q and s ∈ Z+ and p < p+ s < q . The degree of a node is the number of edges 
connected with a node, and the degree distribution, P(k) is the fraction of the nodes with 
degree k. It is to be noted that as per the law of visibility graph, degree distribution fol-
lows power-law with the degree of a node, i.e., P(k) = k�p . The constant of proportional-
ity, �p is called power of scale-freeness in visibility graph (PSVG) [28].

Based on VG, several complexity markers were derived, namely, medium articulation 
( MAVG ), graph index complexity (GIC), Visibility entropy (VGEn), offdiagonal complex-
ity (ODC), etc. [79]. It was found that graph with medium number of edges is the most 
complex, whereas both sparse type and fully connected graphs are in fact less complex. 
MAVG value attains the maximum value for such graphs with medium edges, which fol-
lows n1.5VG , with nVG being the number of nodes. Again, ODC provides the diversity in 
the value of node–node edges. More mathematical details about MAVG and ODC can 
be found in [79]. However, since GIC and VGEn have been more frequently used in time 
series analysis including HRV, we provide below a brief mathematical details of them:

where D is the total number of unique degrees. On the other hand, GIC is determined 
from the eigenvalues of adjacency matrix of a graph. The largest eigenvalue ( �max ) for a 
graph lies with the range [ 2 cos( π

nVG+1 ), (nVG − 1) ]. Mathematically, GIC is given by [40, 
79]:

where c =
�max−2 cos( π

nVG+1 )

nVG−1−2 cos( π
nVG+1 )

.

The PSVG depicts the amount of complexity and self-similarity of a dynamic time 
series, which is also linearly related to the HE. Higher the PSVG, more is the complexity. 
Bhaduri et al. [28] observe increase in both multifractal spectrum width and PSVG dur-
ing Chi meditation. Unlike MFDFA technique, PSVG can be applied for small data size 
also. However their results contradict to that of [12, 29, 78]. On the other hand, Jiang 
et al. [30] observe that P(k) decreases as the degree of node k increases before medita-
tion as shown in Fig. 15. Although during meditation it is found to be small for k < 8, 
increases consistently to reach the peak value at k = 11 indicating distinct change in 
dynamics. However, at large values of k, the P(k) distribution follows a power-law tail, 
which indicates that the long-range correlation of HRV time series is similar for both 
pre-meditative and meditative states. Again, from the complexity measure GIC, Nas-
rolahzadeh et al. [40] have found that during meditation, GIC values are much higher 

(24)Xp+s < Xq +
q − (p+ s)

q − p
(Xp − Xq),

(25)VGEn = −
D
∑

k=1

P(k) log2 P(k),

(26)GIC = 4c(c − 1),
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than that before meditation. They corroborate that the higher complexity associated 
with meditative state, reflects better adaptability of heart under different conditions (i.e., 
healthy ANS activity).

Application of higher order spectral (HOS) analysis HOS analysis provides the spec-
tral analysis of higher order ( > 2 ) moments or cumulants of a signal. It is very effective 
in extracting hidden information from nonlinear and non-Gaussian signal (e.g., HRV), 
which cannot be obtained from regular power spectrum. This is because regular power 
spectrum provides no information about the Gaussianity/non-Gaussianity behavior of 
a signal. Besides, power spectrum (second-order moment) is inadequate to provide the 
phase relations among spectral components [80–82].

If X(k) is an HRV time series, the nth-order spectrum Sn(f1, f2, ..., fn−1) can be obtained 
by taking the Fourier transform of the nth-order cumulant, cn(t1, t2, ..., tn−1) as given 
below:

The spectrum obtained from 3rd-order cumulant, known by bispectrum is very popular 
among researchers to capture new information from HRV signal [34, 81–83]. The math-
ematical expression of bispectrum is given by:

where E[·] is the expectation operator, X(f) represents the Fourier transform of a sig-
nal X(k), and ∗ indicates the complex conjugate operation. It is evident from Eq. (28) 
that bispectrum is capable of providing information about the phase coupling or spectral 
interactions of a signal at frequencies f1 , f2 , and f1 + f2 . Similarly, trispectrum of a signal 
can provide details of the spectral interactions of f1 , f2 , f3 , and f1 + f2 + f3 and given by:

(27)

Sn(f1, f2, .., fn−1) =
∞
∑

t1=−∞
...

∞
∑

tn−1=−∞
{cn(t1, t2, .., tn−1)

. exp[−j

n−1
∑

i=1

2π fiti]}.

(28)S3(f1, f2) = E[X(f1)X(f2)X∗(f1 + f2)],

(29)S4(f1, f2, f3) = E[X(f1)X(f2)X(f3)X∗(f1 + f2 + f3)].

Fig. 15 The degree distribution, P(k) of visibility graph network for HRV time series of meditators [30]
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In order to eliminate the impact of the variability of power spectrum across different 
signals on the salient phase coupling information, often bispectrum and trispectrum are 
normalized. The normalized versions of these two polyspectra are known by bicoher-
ence and tricoherence, respectively. Their mathematical expressions are given by:

From the bispectrum analysis of HRV signals for meditative and pre-meditative states, 
Goshvarpour and Goshvarpour [34] have observed distinct differences in bispectrum 
amplitudes for the two states. They have observed an increase in mean bispectrum 
amplitude during meditation in case of KYM practitioners, while a significant decrease 
( p < 0.5 ) in bispectrum amplitude during Chi meditation. However, their results are 
found to be containing bispectral components up to the range of ∼ 15 Hz, which is found 
to be exceeding the spectral bandwidth of HRV signal. This may also happen due to the 
consideration of higher sampling frequency for the signals in the study. From, bispec-
tral analysis of the HRV signals as shown in Figs.  16 and 17, it can be observed that 

(30)Bcoh(f1, f2) =
E[X(f1)X(f2)X∗(f1 + f2)]

√

E[
∣

∣X(f1)X(f2)
∣

∣

2]E[
∣

∣X(f1 + f2)
∣

∣

2]
,

(31)Tcoh(f1, f2) =
E[X(f1)X(f2)X(f3)X∗(f1 + f2 + f3)]

√

E[
∣

∣X(f1)X(f2)X(f3)
∣

∣

2]E[
∣

∣X(f1 + f2 + f3)
∣

∣

2]
.

Fig. 16 Bispectrum plot for HRV signal during pre-meditative state [34]

Fig. 17 Bispectrum plot for HRV signal during meditative state [34]
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oscillations are more periodic during meditation. However, the power concentrations 
in the spectral bands are more evident from bicoherence plots as portrayed in Figs. 18 
and 19. It can be seen that before meditation, prominent spectral components are pre-
sent in both 0.05−0.15 Hz and 0.15−0.45 Hz spectral ranges. However, during medita-
tion, prominent spectral components are found only in 0.05−0.1 Hz corresponding to LF 
band. It is to be mentioned that these two HOS-based plots are obtained by direct FFT 
technique. Multiple samples of length 256 are taken with an overlap of 50 samples, FFT 
length is chosen as 512 to estimate the bispectrum and bicoherence. In [84], Garcia et al. 
have corroborated that reduced HH power in a bispectrum analysis can be an indicator 

Fig. 18 Bicoherence plot for HRV signal during pre-meditative state

Fig. 19 Bicoherence plot for HRV signal during meditative state
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of alterations in vagal activity, which may drastically affect the psychological health by 
acting on the central autonomic network in response to psychological stress.

Application of wavelet-based nonlinear analysis The non-stationarity in HRV signal 
could easily lead to misleading information if segmentation-based analysis is not con-
ducted. Traditional time domain and spectral analysis methods consider the whole sig-
nal to be a stationary one. Besides, many nonlinear methods are suitable to stationary 
signals only. Under such circumstances, wavelet analysis is well-designed to analyze such 
signals. It has the leverage of using a narrow wavelet for analyzing signals demanding 
high time-resolution and wider wavelet for those requiring high-frequency resolution 
[85]. A wavelet basically decomposes a signal into scale-specific waveforms by perform-
ing convolution operation with the dilated and translated wavelet function, ψ(t) ∈ L2(R) 
known as mother wavelet. If a is the scaling parameter and b is the translation param-
eter, the wavelet transform of a signal x(t) is given by:

Here, ∗ is the complex conjugate operator. The scaling parameter can be varied to change 
the width of the analyzing wavelet function and the shift parameter, b facilitates the loca-
tion specific analysis.

On the other hand, the decomposition of a signal x[n] using discrete wavelet transform 
(DWT) for a wavelet function ( ψ[n] ), is given by:

where φj,k [n] = 2j/2φ[2jn− k] , ψj,k [n] = 2j/2ψ[2jn− k] are sampled versions of scaling 
and wavelet functions, respectively; j = 0, 1, 2, ....J  and k = 0, 1, 2, ..., 2J − 1 with j0 = 0 
being the minimum scale, J the highest scale and N normally selected as integer power of 
2. Decomposition of signals into different sub-bands with unique scales leads to detec-
tion of singularity under different scales, which makes it a proficient tool for multifractal 
analysis. This prompted researchers to analyze multifractality existing in various physi-
cal phenomena and contribute remarkable works [86, 87]. Besides, DWT and wavelet 
packet transform can yield various nonlinear metrics from their coefficients [88, 89].

Based on average wavelet coefficients (AWC), Papasimaki and Pallikari [32] have 
found that prominent peaks are obtained in the scales ranging from 8–32 beats dur-
ing meditation. Their results indicates the presence of periodic behavior in LF region 
of HRV during meditation. Further, they observe a significant drop in Hurst exponent 
during meditation, which indicates destruction of long-range correlation behavior. In 
a study by Goshvarpour and Goshvarpour [90], daubechies wavelet ‘db4’ is applied to 
extract multiple features including the nonlinear parameters such as, skewness, kurtosis 
and entropy. They have achieved an accuracy of 99.61% in classifying the HRV of medi-
tators (Chi and KYM) and non-meditators using probabilistic neural network (PNN).

(32)Wx(a, b) =
1
√
a

∞
∫

−∞

x(t)ψ∗
(

t − b

a

)

dt.

(33)

Wφ[j0, k] =
1

√
N

N
∑

n=1

x[n]φj,k [n],

Wψ [j, k] =
1

√
N

N
∑

n=1

x[n]ψj,k [n] for j ≥ j0,
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Discussion
We intend to present applications of various nonlinear dynamical approaches for 
studying HRV dynamics during meditation as reported in the literature over the last 
20 years. It has been observed that due to the variation in meditation/relaxation and 
yoga techniques in terms of breathing procedures, duration and intensity, etc., their 
impact on ANS is different. To mention, slow breathing meditation and paced breath-
ing (Kapalbhati) meditation adopt completely opposite procedure. Thanks to the Phy-
sioNet that has provided standard datasets for studying the effects of meditation on a 
single platform [11–13, 15, 24, 27, 28, 30, 35, 37, 49]. However, we believe that availabil-
ity of respiratory and blood pressure data could further enhance the depth of research 
in studying the impact of meditation. The rationale is that RSA also contributes spectral 
components at particular time scales which cause HRV modulation. Identically blood 
pressure also has impacts on HRV. It is to be noted that in case of classification-based 
works, exclusivity is a concern as majority of the works are based on binary classifica-
tions. Multiclass screening of different groups of subjects (viz., subjects under stress, 
exercise, meditator, runner, healthy subjects under resting condition) is probably much 
desired in present scenario.

From the literature it can be inferred that researchers have amply studied the varia-
tions in long-range correlation behavior of HRV, dynamical complexity in terms of regu-
larity, and predictability/stability of the HRV signal. It is also noticed that there are some 
degree of differences in the research outcomes of some works possibly due to the use dif-
ferent datasets or some other reasons. It is observed that during meditation, a majority 
of researchers demonstrate significant decrease in the complexity of HRV signal by com-
puting nonlinear parameters (entropy, CD, MED, LLE, Poincaré indices, etc.) [12, 13, 24, 
26, 27, 29, 33], while a few have observed an increase in dynamical complexity [15, 28, 
39]. To examine the regularity and complexity of HRV signals, various forms of entropy 
parameters are proposed. There are profound interest among researchers to use entropy 
markers in evaluating HRV signals representing well-being and different ailments; a few 
have worked on to find the most suitable entropy measure for small data size [26, 27, 
38]. However, the notion of multiscale analysis is not yet explored pervasively in the 
studies related to meditation except in [10, 14]. The multiscale-based entropy analysis 
has revealed that meditative state is rather a complex state unlike that revealed by the 
entropy analysis at scale 1 [13, 26, 27, 38]. Besides entropy, fractal/multi-fractal analy-
sis is also performed by many researchers [10, 15, 28, 29, 91]. In these studies, results 
are found to be inconsistent from one another. On applying VG, multifractality, and FDI 
techniques to HRV signals for meditative states, a significant increase in the complexity 
is observed [11, 28, 92]. On a nutshell, it can be stated that nonlinear study demonstrates 
that HRV possesses more periodic and decimated long-range correlation behavior, low 
fractal dimension, but higher dynamical complexity during meditation as compared to 
the non-meditative state. On the other hand, a prominent decrease in entropy, multi-
fractality and dimensionality is observed in cardiac pathological conditions.

Moving on to other techniques, a new approach based on HRV auditory display is 
used in studying the impacts of meditation. In this technique, the HRV features (lin-
ear and nonlinear) are transformed to auditory signal pitch, timbres, etc., by a process 
known as sonification. On implementation of machine learning-based discrimination of 
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meditative and pre-meditative state it has been noticed that only a few works [14, 27, 
93, 94] employ machine learning techniques (pattern recognition, SVM, pNN, LVQ, etc., 
classifiers) to distinguish the meditative state from non-meditative state, probably due 
to the small size of publicly available datasets. However data augmentation strategy [14] 
such as window slicing, concatenation based techniques can be very effective to ena-
ble machine learning-based classification works; whereas, in studies related to cardiac 
pathologies, comparatively larger (adequate) amount data are available in public domain.

Conclusion and future research trends
In this paper, we have carried out a brief review of works demonstrating scientific evi-
dences of the impact of meditation and yoga on HRV dynamics under nonlinear domain. 
Nonlinear methods are chosen, since HRV is the output of nonlinear interactions of sev-
eral sub-systems. Recent studies revealed that meditation is a complex state in which 
larger entropy values are found at higher scales. This corroborates the previous findings 
of higher LLE during meditation. One of the major limitations of the research on medi-
tation and yoga is the non-availability of sufficient public labeled datasets for experimen-
tation. Besides, given the fact that HRV signal often possess distinct temporal patterns 
over multiple scales, multiscale entropy/fractal analyses may divulge the hidden heart-
beat dynamics in a more robust way. Some of the possible directions for future research 
in this topic could be: 

(1) No long-term analysis on the effects of different stages of meditation has been per-
formed yet, using HRV signal before, during and after meditation, which may could 
help in tracking the transformation in ANS functionality over years of continuous 
practice.

(2) Evaluation of variations in the dynamical complexity of HRV among experienced 
meditators, beginners, and control groups by taking sufficient experimental data. A 
study in this direction could provide more distinct and reliable outcomes.

(3) To examine whether the changes in heart beat dynamics during meditation is due 
to controlled respiratory effort (RSA) or due to its notable effect on the ANS. This 
could be ascertained by using both the HRV and respiratory rate time series for 
analysis.

Methods
This study is based on the information provided by scientific reports, articles indexed 
by PubMed, Google Scholar, Web of Science, and Scopus with different keywords, like, 
“Nonlinear HRV meditation”, “HRV nonlinear analysis yoga”, “HRV and ANS”, “auto-
nomic regulation and nonlinear HRV”.

After preliminary investigation based on the inclusion–exclusion criteria detailed 
in Fig. 20, we have short-listed 26 research articles on nonlinear dynamical analysis of 
the HRV signal. Following this, we present analysis of the nonlinear methods that have 
gained much attention from the research community, while studying the HRV signal 
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dynamics during meditation. Along with the theoretical background of various non-
linear methods of HRV analysis, we provide our perspectives supported by numerical 
simulations.

Abbreviations
HRV  Hear rate variability
ANS  Autonomic nervous system
CHF  Congestive heart failure
CAD  Coronary artery disease
PNS  Parasympathetic nervous system
SNS  Sympathetic nervous system
SA  Sinoatrial
SDNN  Standard deviation of NN intervals
SDANN  SD of average NN intervals
RMSSD  Root mean square of successive differences between NN interval
HTI  HRV triangular index
TINN  Triangular interpolation of NN interval histogram
ANOVA  Analysis of variance
ANCOVA  Analysis of covariance
ULF  Ultra low frequency
VLF  Very low frequency
LF  Low frequency
HF  High frequency
FFT  Fast Fourier transform
PSD  Power spectral density
LLE  Lyapunov exponent
CD  Correlation dimension
NLS  Nonlinearity score
ShEn  Shannon entropy
CVD  Cardiovascular disease
GI  Guzik’s index
LOI  Line of identity
MSE  Multiscale entropy
HOS  Higher order spectra
ApEn  Approximate entropy,

Fig. 20 Criteria adopted for article selection
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CCTM  Component central tendency measures
DEA  Diffused entropy analysis
DFA  Detrended fluctuation analysis
DSJE  Double symbolic joint entropy
k  Degree of VG
LogEn  Log energy entropy
LZ  Lempel–Ziv
MED  Minimum embedding dimension
P(k)  Degree distribution
PSVG  Power of scale-freeness in VG
SampEn  Sample entropy
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