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Abstract 

Recent advances in deep learning have shown great potential for the automatic 
generation of medical imaging reports. Deep learning techniques, inspired by image 
captioning, have made significant progress in the field of diagnostic report genera-
tion. This paper provides a comprehensive overview of recent research efforts in deep 
learning-based medical imaging report generation and proposes future directions in 
this field. First, we summarize and analyze the data set, architecture, application, and 
evaluation of deep learning-based medical imaging report generation. Specially, we 
survey the deep learning architectures used in diagnostic report generation, including 
hierarchical RNN-based frameworks, attention-based frameworks, and reinforcement 
learning-based frameworks. In addition, we identify potential challenges and suggest 
future research directions to support clinical applications and decision-making using 
medical imaging report generation systems.

Keywords:  Medical imaging reports, Automatic generation, Image captioning, Deep 
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Introduction
As we all know, a detailed explanation of medical images such as CT (computed tomog-
raphy), ultrasound, MRI (magnetic resonance imaging), or pathological imaging must 
be conducted by professional physicians or pathologists who write a diagnostic report 
for each patient. An example of such a report can be seen in Fig. 1. Although one report 
may seem simple, containing only indications, findings and impression, there are many 
patients with unforeseen abnormal medical images. Therefore, analyzing and depicting 
textual reports, which require skilled experience, can be a time-consuming and stressful 
task for professionals. Automatic diagnostic report generation from medical images is 
an indispensable trend to reduce this workload. In addition, while deep learning, with 
its advantage of end-to-end processing, has emerged on a large scale in recent medi-
cal diagnosis studies, the non-interpretable network and non-standardized evaluation 
make deep learning like a black box. Teaching machines to automatically write diagnos-
tic reports is a semantic and effective way to support the interpretability of deep learning 
models [1]. Hence, it is essential to explore the automatic diagnosis of images and the 
generation of reports to improve the interpretability of deep learning.
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The automatic generation of diagnostic reports is inspired by image captioning 
[2], which combines computer vison (CV) and natural language processing (NLP) to 
provide a comprehensive understanding of medical images. Traditionally, image cap-
tioning was achieved through report retrieval [3] and template-based generation [4]. 
However, these conventional methods are limited in their ability to produce flexible 
and comprehensive textual descriptions that can be applied to new images. Recent 
progress in deep learning has led to significant advancements in image captioning. In 
this research, we focus on medical report generation based on deep learning. Essen-
tially, the paradigm follows a typical encoder–decoder architecture [5–7]. It leverages 
visual features obtained from Convolution Neural Network (CNN, encoder) to gener-
ate descriptions of given images through Recurrent Neural Network (RNN, decoder) 
[8], as shown in Fig. 2.

However, generating diagnostic reports is a challenging task due to the complexity and 
diversity of objects in medical images. In practice, the values obtained via the activa-
tion function at one suitable layer of the objects recognition CNN are considered as the 
visual feature vector [9]. Moreover, variations of RNN, such as long–short-term mem-
ory (LSTM) [10] and gated recurrent unit (GRU) [11], that contain different controlling 
gates capable of learning information from a long time ago, are frequently employed in 
effectively capturing the semantics of image captioning tasks. In addition, more recent 
works focus on generating long-form text instead of single sentences [12, 13]. Attention 
mechanisms that focus on salient parts have been widely used in image captioning to 
provide visual explanations for the rationale of deep learning networks [14–17]. Rein-
forcement Learning [18] (RL) and Generative Adversarial Networks [19] (GAN) have 
also been widely proposed in image captioning [20] due to their recent success.

Fig. 1  One simple example of mammography report

Fig. 2  Illustration of the CNN–RNN-based image captioning framework
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To date, some scholars have explored the automatic generation of medical reports 
using image captioning methods move forward, see the basic framework in Fig. 3. The 
first application of deep learning in medical imaging report generation was conducted 
by Shin et al. [21] in 2016. They developed a CNN–RNN network that effectively pre-
dicted only annotated tags (e.g., location, severity and affected organs) from chest X-ray 
images. They tested both LSTM and GRU and improved the results by considering joint 
image/text contexts using account using a recurrent neural cascade model. LSTM has 
been more widely used and studied in the literature, and has achieved state-of-the-art 
results in many tasks. However, GRU is gaining popularity due to its simpler architec-
ture and faster training time compared to LSTM. Subsequently, in further research on 
medical image captioning, LSTM will be used as the core framework of RNN.

The primary aim of this manuscript is to present a systematic review of studies on 
deep learning-based medical imaging reports generation. The survey provides readers 
with a comprehensive understanding of the field of deep learning in automatic diag-
nostic reports generation, and to offer clinical treatment management suggestions for 
medical imaging reports generation exploiting deep learning. The survey also lays the 
foundation for innovation to increase the richness of this field. To summarize, this work 
contributes in three ways: (1) it focuses on the clinical value of deep learning-based diag-
nostic reports generation, providing suggestions for clinical decision making and reduc-
ing the workload of radiologists; (2) it organizes and explains the current works in detail, 
proving that automatic writing diagnostic reports can improve the interpretability of 
deep learning in medical imaging area; and (3) it provides comprehensive references and 
identifies new trends for researchers in this field. This paper is the first overview of med-
ical report generation based on deep learning, with a focus on improving interpretability 
of deep learning and its clinical value.

This paper is structured as follows: in "Overview and analysis" section, we provide a 
comprehensive summary and analysis of the current state of deep learning applied in 
medical imaging reports generation, covering aspects, such as data sets, architectures, 
applications and evaluations based on the retrieved studies. In "Discussion and future" 

Fig. 3  Illustration of the CNN–RNN-based framework for diagnostic report generation. The variable "t" 
represents time, "x" denotes the input layer, "y" represents the output layer, and "p(y)" denotes the probability 
of output
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section, we discuss potential challenges and future directions to serve as a reference for 
further studies in this field. Finally, in "Conclusion" section, we provide brief conclusions.

Overview and analysis
The encoder–decoder framework, which combines image-text embedding models 
with multimodal neural language models, was first introduced by [22]. The framework 
encodes visual data, projecting it into the embedded space composed of RNN hidden 
states that encode text data by optimizing the pairwise sorting loss. In the embedding 
space, a structure-content neural language model is used to decode the visual features, 
based on the feature vectors of context words, to form sentences. An example of the 
whole framework can be seen in Fig. 4.

Within the framework described above, image captioning is defined as the probability 
of generating a sentence based on an input image (Eq. 1):

where I is the input image, θ is the model parameter. A sentence S equals to a sequence 
of words S0, ..., St−1.

Vinyals et al. use a LSTM neural network [8] to model P(St |I , S0, ..., St−1; θ) as hidden 
state ht , which can be updated as (Eq. 2)

where xt is the input to the LSTM neural network. In the first unit, xt is an image feature, 
while in other units xt is a feature of previously predicated context words. The model 
parameter θ is obtained by maximizing the likelihood of sentence-image pairs in the 
training set. Through the training model, the possible output word sequences can be 
predicted by sampling or beam search.

To generate descriptions closely related to image contents, Jia et al. (2016) extracted 
semantic information from images and added it to each unit of the LSTM in the process 

(1)S∗ = S
argmax

∏
P(St |I , S0, ..., St−1; θ)

(2)ht+1 = f (ht , xt)

Fig. 4  Medical report generation example of the encoder–decoder framework
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of sentence generation [23]. The original forms of the memory unit and gate of an LSTM 
unit [24] are defined as (Eqs. 3, 4, 5, 6, 7)

where variables il , fl and ol , respectively, denotes input gate, forget gate, output gate of a 
LSTM cell, cl and ml denotes the state and hidden state of the memory cell unit, σ(·) and 
h(·) are non-linear functions, xl is the input, W  are model parameters, and ⊙ stands for 
an elementwise multiplication operation.

Aiming to utilize high-level semantic information for image captioning, Qi et al. (2016) 
incorporate a set of semantic attributes from the training sentences which are seen as 
visual concepts into the encoder–decoder framework [25]. In the region-based multi-
label classification framework [26], a CNN-based multi-classifier is trained for each 
attribute. By training the semantic attribute classifiers, the image I can be encoded as a 
prediction vector Vatt(I) giving the probability of each attribute appearing in the image. 
Then, a LSTM is deployed as decoder to generate a sentence describing the contents of 
the image based on the representation. In this case, the image captioning problem can 
be rephrased as (Eq. 8)

where I is the input image, θ is the model parameter, S is a sentence.

Data sets

The automatic generation of medical imaging reports based on deep learning requires a 
large data set for training. In this section, we introduce frequently used public data sets 
and some typical private data sets.

The current public data sets have greatly contributed to the development of deep 
learning for medical imaging report generation. The most commonly used databases 
consist of images and reports from the United States and Europe, with chest radiographs 
being the predominant data set. Some examples of these data sets include Indiana Uni-
versity Chest XRay (IU X-Ray) [27], ChestX-ray14 [28], CheXpert [29], MIMIC Chest 
X-ray (MIMIC-CXR) [30], CX-CHR [31], PadChest [32], as shown in Table 1.

The IU X-Ray is a set of chest X-ray images paired with their corresponding diagnostic 
reports. The data set contains 7470 images (6470:500:500) and 3955 report. Each report 
consists of the following sections: impression, findings, tags, comparison, and indica-
tion. On average, each image is associated with 2.2 tags, 5.7 sentences, and each sen-
tence contains 6.5 words. About 70% of the automatic report generation work are from 

(3)il = σ(Wixxl +Wimml−1)

(4)fl = σ(Wfxxl +Wfmml−1)

(5)ol = σ(Woxxl +Womml−1)

(6)cl = fl ⊙ cl−1 + il ⊙ h(Wcxxl +Wcmml−1)

(7)ml = ol ⊙ cl

(8)S∗ = S
argmaxP(S|Vatt(I); θ)
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these public data sets, where IU X-Ray takes up the biggest fraction due to its large num-
bers and comprehensive annotation.

ChestX-ray14 is provided by the national institute of health (NIH). It comprises 
112,120 frontal-view X-ray images of 30,805 (collected from the year of 1992 to 2015) 
unique patients with the common disease labels, mined from the text radiological 
reports. The database contains 14 kinds of lung diseases (atelectasis, consolidation, 
infiltration, pneumothorax, edema, emphysema, fibrosis, effusion, pneumonia, pleural 
thickening, cardiac hypertrophy, nodules, swelling and hernia).

The CheXpert data set contains 224,316 chest radiographs of 65,240 patients with 
both frontal and lateral views available. The task is to do automated chest X-ray inter-
pretation, which features uncertainty labels and radiologist-labeled reference standard 
evaluation sets.

MIMIC-CXR is a large publicly available data set of chest radiographs in DICOM for-
mat with free-text radiology reports. The data set contains 377,110 images correspond-
ing to 227,835 radiographic studies performed at the Beth Israel Deaconess Medical 
Center in Boston. The data set is intended to support a wide body of research in medi-
cine including image understanding, natural language processing, and decision support.

CX-CHR is a proprietary internal data set of chest X-ray images with Chinese reports 
collected from a professional medical institution for health checking. The data set con-
sists of 35,609 patients and 45,598 images. Each patient has one or multiple chest X-ray 
images in different views, such as poster anterior and lateral, and a corresponding Chi-
nese report.

PadChest is a labeled large-scale, high resolution chest X-ray data set for the auto-
mated exploration of medical images along with their associated reports. This data set 
includes more than 160,000 images obtained from 67,000 patients that were interpreted 
and reported by radiologists at Hospital San Juan Hospital (Spain) from 2009 to 2017, 
covering six different position views and additional information on image acquisition 
and patient demography. The reports were labeled with 174 different radiographic find-
ings, 19 differential diagnoses and 104 anatomic locations organized as a hierarchical 

Table 1  Common data set of medical imaging report generation

Data set Description Image Report Link

IU X-Ray Chest X-ray images of lung diseases 7470 3955 http://​openi.​nlm.​nih.​gov/

ChestX-ray14 14 kinds of lung diseases 112,120 – https://​nihcc.​app.​box.​com/v/​Chest​
Xray-​NIHCC

CheXpert Chest radiographs of 65,240 patients 
with lung diseases

224,316 – https://​stanf​ordml​group.​github.​io/​
compe​titio​ns/​chexp​ert/

MIMIC-CXR 227,835 radiographic studies in 
DICOM format

377,110 227,835 https://​physi​onet.​org/​conte​nt/​mimic-​
cxr/2.​0.0/

CX-CHR Chest X-ray images with Chinese 
reports of 35,609 patients

45,598 – –

PadChest Chest X-ray data set obtained from 
67,000 patients

160,000 109,931 https://​bimcv.​cipf.​es/​bimcv-​proje​cts/​
padch​est/

PEIR Gross Radiology teaching images 4,000 4000 https://​peir.​path.​uab.​edu/​libra​ry/​index.​
php?/​categ​ory/​106

DDSM Normal, benign, and malignant 
mammography studies

2620 – http://​marat​hon.​csee.​usf.​edu/​Mammo​
graphy/​Datab​ase.​html

http://openi.nlm.nih.gov/
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
https://physionet.org/content/mimic-cxr/2.0.0/
https://physionet.org/content/mimic-cxr/2.0.0/
https://bimcv.cipf.es/bimcv-projects/padchest/
https://bimcv.cipf.es/bimcv-projects/padchest/
https://peir.path.uab.edu/library/index.php?/category/106
https://peir.path.uab.edu/library/index.php?/category/106
http://marathon.csee.usf.edu/Mammography/Database.html
http://marathon.csee.usf.edu/Mammography/Database.html


Page 7 of 16Pang et al. BioMedical Engineering OnLine           (2023) 22:48 	

taxonomy and mapped onto standard Unified Medical Language System (UMLS) 
terminology.

Apart from the chest radiographs, there are some other medical images. Such as PEIR 
Gross, Digital Database for Screening Mammography (DDSM) [33], etc. PEIR Gross is 
a collection of over 4,000 curated radiology teaching images, which are created by the 
University of Alabama for medical education. It contains sentence-level descriptions of 
20 different body parts, including the abdomen, adrenal, aorta, breast, chest, head, kid-
neys, etc. DDSM contains 2620 scanned films of normal, benign, and malignant mam-
mography studies with verified pathology information. It is supported by the University 
of South Florida and it has been widely used by researchers due to its scale and ground 
truth validation. Moreover, researchers have trained their deep learning frameworks on 
several privately owned data sets.

However, private medical imaging data sets are less common. Collecting private medi-
cal images can be difficult due to patient confidentiality and data privacy concerns, as 
well as the laborious effort required for properly indexing, storing, and annotating the 
images. In addition, image attributes such as cropped image size, format, data source, 
and number of samples for training and testing can greatly impact the final results [27]
[28].

Methods

Hierarchical RNN‑based framework

As illustrated in Fig. 5, a medical imaging report typically consists of at least one para-
graph consisting of several sentences, which can be much longer for abnormal diseases. 
To address this challenge, Jing et al. proposed a hierarchical LSTM consisting of a sen-
tence LSTM and a word LSTM for generating long chest X-ray reports, inspired by the 
hierarchical RNN for image captioning proposed by Krause et al. [12]. The single-layer 
sentence LSTM determines the number of sentences for medical reports using visual 
features as inputs and generates the topic vector for each sentence, which is then passed 
to the two-layer word LSTM. The word LSTM generates fine-grained words and descrip-
tions based on the topics for each sentence, which are concatenated to form the final 
medical report paragraph (see the hierarchical LSTM report generation model in Fig. 5). 
Harzig et al. also employed hierarchical LSTM to produce diagnostic reports for chest 
X-ray, and to address data bias, they innovatively proposed dual word LSTMs, including 
an abnormal word LSTM and a normal word LSTM, which are trained when the label is 
abnormal and normal [35]. They also set an abnormal sentence predictor to determine 
whether to use the sentences generated by the dual word LSTM. To address the limited 

Fig. 5  Hierarchical RNN-based framework for medical report generation
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availability of pairs of medical images and reports, Yuan et  al. synthesized visual fea-
tures by taking advantage of multi-view chest X-ray images at the sentence-level LSTM 
to ensure cross-view consistency [36]. Furthermore, medical concepts based on reports 
were extracted and merged with respective decoding steps by the word-level LSTM.

Attention‑based framework

Recently, attention-based medical image captioning frameworks have been used to pro-
vide meaningful embeddings and improve the interpretability of deep learning processes 
for report generation (Fig.  6). Zhang et  al. built a MDNet for bladder cancer diagno-
sis that combines an image model and a language model, using an improved attention 
mechanism to enhance image alignment and generate sharper joint image/report 
attention maps [37]. Wang et  al. proposed TieNet, a multi-level attention mechanism 
that fuses visual attention and text-based attention into a CNN–RNN model to high-
light important report and image representations of chest X-ray patients [38]. Lee et al. 
designed a justification generator to explain the diagnostic decision of breast masses, 
utilizing attention to obtain visual pointing maps and an LSTM to generate diagnostic 
sentences [39]. Li et al. adopted an attentive LSTM that takes either the original chest 
X-ray image or the cropped abnormal ROI as input and generates the entire report [40].

Reinforcement learning‑based framework

Motivated by the successful application of reinforcement learning in deep learning, 
some researchers have attempted to employ RL for optimizing medical imaging report 
generation, as shown in the basic framework in Fig. 7. RL is formed by agents that learn 
an optimal policy for better decision-making by receiving rewards from the environment 
at a given state. Jing et al. proposed a novel Cooperative Multi-Agent System (CMAS) 
consisting of Planner (PL), Abnormality Writer (AW), and Normality Writer (NW) with 
one reward module to capture the bias between normality and abnormality for generat-
ing more accurate chest X-ray reports [41]. PL determines whether the area has lesions, 
and AW or NW generates a sentence based on the result given by PL. Similarly, Liu et al. 
used a final fine-tuned RL containing natural language generation reward and clinically 
coherent reward to optimize a hierarchical CNN–RNN-based model for clinical accu-
racy and readability of chest X-ray reports [42].

Fig. 6  Attention-based framework for medical report generation
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Other‑related works

Labeling pairs of medical images and reports is a tedious task for professionals. To 
address this issue, Han et  al. proposed a weakly supervised framework that combines 
symbolic program synthesis theory and deep learning. This framework uses object-level 
annotations, without requiring radiologist-level report annotations, to generate unified 
reports [43]. Similarly, Xue et  al. developed a recurrent image captioning model that 
generates the findings of a medical report sentence by sentence, where each successive 
sentence is based on multimodal inputs, including the original images and the previ-
ous sentence [44]. Zeng et al. introduced a coarse-to-fine ultrasound image captioning 
ensemble model that helps doctors automatically generate high-quality annotated ultra-
sound reports [45].

Applications

The application of automatic generation of medical imaging reports has a wide range of 
potential benefits beyond assisting diagnosis and lightening workload. For instance, gen-
erating accurate and comprehensive reports can improve patient care by providing more 
informed treatment decisions. In addition, the vast amounts of data generated by medi-
cal imaging can be utilized for medical research and advancements in the field. However, 
efficient and accurate annotation and labeling is required, which can be facilitated by 
automatic report generation. In summary, the use of deep learning for automatic genera-
tion of medical imaging reports has significant potential to greatly benefit the healthcare 
industry.

Assisting diagnosis

Some studies have employed a combination of language models (such as LSTM) and 
image models (such as CNN) to improve the accuracy of diagnostic conclusions. These 
models leverage the semantic knowledge of medical images obtained from diagnostic 
reports to provide an interpretable prediction mechanism. To ensure the reliability of 
the machine learning system’s decisions, it is important to open the black box of deep 
learning and increase understanding of the reasoning behind the decisions [46]. All the 
studies reviewed attempt to present semantically and visually interpretable results dur-
ing the diagnosis process [46–49].

Fig. 7  Reinforcement learning-based framework for medical report generation
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Lighten workload

In addition to these modalities and categories of diseases, automatic generation of medi-
cal imaging reports has also been explored in other areas such as MRI, CT scans, and 
PET scans for various diseases such as lung cancer, brain tumors, and cardiovascular 
diseases. The tedious process of preparing reports can be a significant burden on radi-
ologists and can lead to errors or delays in patient care. By automating this process, radi-
ologists can focus on more complex tasks and improve patient outcomes. Furthermore, 
the generated reports can provide valuable insights for medical research and contribute 
to the development of new treatment options.

Evaluations

BLEU [50], ROUGE [51], METEOR [52] and CIDER [53] are commonly used evaluation 
metrics for medical image report generation, which are adapted from machine transla-
tion and text summarization.

BLEU (Bilingual Evaluation Understudy) measures the similarity between the gener-
ated report and the ground truth report by calculating the overlap of word n-grams. 
BLEU-1 measures the overlap of unigrams (i.e., single words), while BLEU-2, -3, and -4 
consider bigrams, trigrams, and quadrigrams, respectively. To account for short gener-
ated reports, a penalty is added to the score. BLEU is easy to calculate and interpret, 
and it has been shown to correlate well with human judgments of text quality. How-
ever, BLEU only considers surface-level similarities between the generated and reference 
texts, and it does not take into account the semantic content or coherence of the gener-
ated text.

METEOR (Metric for Evaluation of Translation with Explicit ORdering) extends 
BLEU-1 by adopting F-score of precision and recall, with a bias towards recall, and uti-
lizing Porter stemmer and WordNet. To account for longer subsequences, it includes a 
penalty of up to 50% when there are no common n-grams between machine-generated 
descriptions and references. METEOR takes into account both surface-level and seman-
tic similarities between the generated and reference texts. It also has a built-in mecha-
nism for handling synonyms and paraphrases. Like BLEU, METEOR does not account 
for the coherence or overall quality of the generated text.

ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation—Longest Common 
Subsequence) measures the longest common subsequence between the machine-gen-
erated description and the reference human description, and calculates its ratio to the 
reference size (ROUGE-L recall), generated description (ROUGE-L precision), or a com-
bination of the two (ROUGE-L F-measure). ROUGE-L takes into account the semantic 
content and coherence of the generated text, and it has been shown to correlate well 
with human judgments of text quality. However, ROUGE-L only considers a single met-
ric, the longest common subsequence, and it may not capture all aspects of text quality.

CIDER (Consensus-based Image Description Evaluation) measures the cosine similar-
ity between n-gram TF–IDF (Term Frequency–Inverse Document Frequency) represen-
tations of the generated report and the reference report (words are also stemmed). The 
calculation is done from single gram to 4 g and the average is returned as the final evalu-
ation score. The rationale behind using TF–IDF is to reward frequent words and penal-
ize common words (such as stop words). CIDER takes into account both surface-level 
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and semantic similarities between the generated and reference texts. It also has been 
shown to correlate well with human judgments of text quality for image captioning 
tasks. However, CIDER may not be suitable for tasks other than image captioning, and it 
is computationally more expensive than other evaluation metrics.

 Automatic generation of medical reports using deep learning is still an emerging 
area with many challenges. We conducted a search of 31 relevant papers and com-
piled detailed implementation information in Table 2.

Discussion and future
Despite the significant progress made in medical imaging report generation based on 
deep learning, this section aims to highlight the unresolved issues and present future 
research directions in this area for further development.

Balanced data set

Deep learning has shown great potential in big data analytics, but in the field of medical 
imaging report generation, there are still many challenges to be addressed. One major 
issue is the imbalanced nature of available data sets. There is a lack of public databases 
that include a variety of image modalities, such as pathology, ultrasound, and magnetic 
resonance imaging (MRI). In addition, private data sets are often arbitrary in terms of 
number, size, and format, which makes it difficult to compare results across studies. 
Another challenge for both private and public data set is the annotation of images, as 
clinical radiologists may not always be available due to the labor-intensive and time-con-
suming nature of the task. The use of imbalanced data sets for training neural networks 
can lead to biased diagnostic report generation. To address these challenges, we need to 
establish public databases with a variety of image modalities, as well as develop private 
data sets to address the limitations of medical images and complex annotations. Private 
data sets can be useful for clinical practice, such as combining different imaging modali-
ties and diagnostic reports from various sources.

Clinical application

Clinical decision-making is critical in patient management and care, and errors in medi-
cal imaging reporting can lead to serious consequences. Therefore, improving the accu-
racy of medical reports is crucial. While deep learning has shown great potential in this 
field, there is still a significant research gap in the domain of diagnostic report genera-
tion. Many studies focus on improving the final performance, but we should also pay 
attention to the deep features obtained by deep learning and consider the unique charac-
teristics of different diseases for accurate report generation. By doing so, we can enhance 
the practical application value of deep learning in clinical decision-making.

Unified evaluation

In many studies, the technical details of experiments were not described in suffi-
cient detail. The selection of measurement indicators and baseline methods was often 
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Table 2  Studies conducted for medical report generation based on deep learning

References Data (Images, 
reports)

Architecture BLEU-1 BLEU-2 BLEU-3 BLEU-4 MET-EOR ROU-GE CIDEr

Shin et al. 
2016 [21]

OpenI (7470, 
3955)

CNN–RNN 0.972 0.671 0.149 0.028 – – –

Zhang et al. 
2017 [37]

Bladder Cancer 
(1000, 5000)

CNN–LSTM–
ATT​

0.912 0.829 0.75 0.677 0.396 0.701 0.0204

Jing 
et al.2017 
[34]

IU X-Ray (7470, 
7470)

CNN–HLSTM–
ATT​

0.517 0.386 0.306 0.247 0.217 0.447 0.327

Wang et al. 
2018 [38]

ChestX-ray14 
(−, −)

CNN–LSTM–
ATT​

0.2860 0.1597 0.1038 0.0736 0.1076 0.2263 –

Xue et al. 
2018 [44]

IU X-Ray (7470, 
7470)

Recurrent 
CNN–LSTM–
ATT​

0.464 0.358 0.270 0.195 0.274 0.366 –

Han et al. 
2018 [43]

Lumbar Spinal 
MRI (253, 253)

Weakly 
Supervised 
CNN–LSTM

– – – – – – –

Tian et al. 
2018 [54]

CT (−, −) CNN–LSTM – – – 0.766 – – –

Zeng et al. 
2018 [45]

Ultrasound 
Image (−, −)

CNN–LSTM 0.22 0.13 0.09 - 0.10 0.39 0.90

Ma et al. 
2018 [55]

Pathology (−, −) CNN–LSTM – – – – – – –

Harzig et al. 
2019 [35]

IU X-Ray (7470, 
3955)

CNN–HLSTM–
DualLSTM–
ATT​

0.373 0.246 0.175 0.126 0.163 0.315 0.359

Yuan et al. 
2019 [36]

CheXpert 
(6248, -)

Muti-view 
CNN–LSTM–
ATT–Medical 
Concepts

0.529 0.372 0.315 0.255 0.343 0.453 -

Lee et al. 
2019 [39]

DDSM FFDM2.0 
(605, 605)

CNN–LSTM–
ATT​

0.4070 0.2296 0.1354 0.0871 - 0.2650 0.1366

Liu et al. 2019 
[42]

MIMIC-
CXR(327,281, 
141,783)

CNN–HLSTM–
RL

0.313 0.206 0.146 0.103 0.146 0.306 1.046

Jing et al. 
2019 [41]

CX-CHR (−, −) CMAS–RL 0.428 0.361 0.323 0.290 – 0.504 2.968

Gale et al. 
2019 [56]

Frontal Pelvic 
X-rays (50,363, -)

CNN–LSTM–
ATT​

0.919 0.838 0.761 0.677 – – –

Hasan et al. 
2019 [57]

Biomedical 
Images(164,614, 
-)

CNN–LSTM 0.3211 – – – – – –

Sun et al. 
2019 [58]

INbreast (−, −) CNN–LSTM – – – – – – –

Xie et al. 
2019 [59]

– CNN–LSTM–
ATT​

– – – – – – –

Li et al. 2019 
[40]

IU X-Ray (7470, 
7470)

CNN–LSTM–
ATT​

0.419 0.280 0.201 0.150 - 0.371 0.553

Yin et al. 
2020 [60]

Two image-
paragraph pair 
data sets

Hierarchical 
RNN

– – – – – – –

Pino et al. 
2020 [61]

IU X-Ray (7470, 
7470)

CNN–LSTM–
ATT​

0.361 0.226 0.152 0.106 - 0.314 0.187

Zeng et al. 
2020 [62]

Ultrasound 
image

CNN–LSTM – – – – – – –

Xu et al. 2020 
[63]

IU X-Ray (7470, 
7470) and 
MIMIC-CXR

Reinforce 
CNN–LSTM

0.412 0.279 0.206 0.157 0.179 0.342 0.411

Singh et al. 
2021 [64]

IU X-Ray (−, −) CNN–LSTM- 23.07 11.86 7.05 4.75 11.11 23.15 19.78

Yang et al. 
2021) [65]

Ultrasound 
image

Adaptive 
Multimo-dal 
ATT​

– – – – – – –
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arbitrary, resulting in a lack of standardization in the evaluation process. Most research-
ers focused on metrics, such as BLEU, ROUGE, METEOR, and CIDER, which are com-
monly used in natural image evaluation but may not be appropriate for medical imaging 
reports. To improve the evaluation process, it is necessary to design more specific met-
rics in the medical domain to better evaluate the accuracy and interpretability of the 
generated reports.

Interdisciplinary background

The progress in deep learning for medical imaging report generation is hindered by the 
lack of collaboration between experts from different fields. Many medical professionals 
lack the technical expertise to design and code deep learning models, while engineering 
and computer science specialists may not have sufficient knowledge of medical imag-
ing and complex clinical applications. Better communication and a closer working rela-
tionship between these fields are essential to advance deep learning for clinically useful 
applications in medical imaging report generation.

Conclusion
Automatic generation of diagnostic reports from medical images can significantly reduce 
the workload of report writing. In addition, using semantic information to express vis-
ual features can improve the interpretability of deep learning-based models. This paper 
presents a survey of recent studies on deep learning-based medical imaging report gen-
eration, organized into four sections: data set, architecture, application, and evaluation. 
The focus is on frameworks, such as the hierarchical RNN-based framework, attention-
based framework, reinforcement learning-based framework, and related works. The 
paper also discusses potential challenges and future directions for further studies in this 
area. With the analyzed potential directions for deep learning-based report generation, 
there are vast opportunities for developments in research and clinical applications. To 

ATT​ Attention

Table 2  (continued)

References Data (Images, 
reports)

Architecture BLEU-1 BLEU-2 BLEU-3 BLEU-4 MET-EOR ROU-GE CIDEr

Najdenkoska 
et al. 2021 
[66]

IU X-Ray (7470, 
7470) and 
MIMIC-CXR

CNN–LSTM–
ATT​

– – – – – – –

Oa et al. 2021 
[67]

IU X-Ray (7470, 
7470)

Condition 
GPT2

0.387 0.245 0.166 0.111 0.164 0.289 0.257

Liu et al. 2021 
[68]

COVID-19 cases 
(1104, 368)

Medical visual 
language 
BERT

– – – – – – –

Han et al. 
2021 [69]

spinal image 
data set

Neural-
symbolic 
learning (NSL) 
framework

– – – – – – –

Wu et al. 
2022 [70]

skin pathological 
image data set 
(1147, 1147)

CNN–LSTM–
ATT​

– – – – – – –

Chang et al. 
2022 [71]

lung CT scans 
(458, 458)

– – – – – – –
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gain a more specific understanding of the automatic diagnostic report generation pro-
cedure, we plan to conduct further studies on private data sets. Specifically, we aim to 
establish a radiomics-reporting network to improve the interpretability of deep learning 
and propose text attention to enhance the readability of medical reports.
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