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Abstract 

Deformable multimodal image registration plays a key role in medical image analysis. 
It remains a challenge to find accurate dense correspondences between multimodal 
images due to the significant intensity distortion and the large deformation. macJNet 
is proposed to align the multimodal medical images, which is a weakly-supervised 
multimodal image deformable registration method using a joint learning frame-
work and multi-sampling cascaded modality independent neighborhood descriptor 
(macMIND). The joint learning framework consists of a multimodal image registration 
network and two segmentation networks. The proposed macMIND is a modality-inde-
pendent image structure descriptor to provide dense correspondence for registration, 
which incorporates multi-orientation and multi-scale sampling patterns to build self-
similarity context. It greatly enhances the representation ability of cross-modal features 
in the registration network. The semi-supervised segmentation networks generate 
anatomical labels to provide semantics correspondence for registration, and the reg-
istration network helps to improve the performance of multimodal image segmenta-
tion by providing the consistency of anatomical labels. 3D CT-MR liver image dataset 
with 118 samples is built for evaluation, and comprehensive experiments have been 
conducted to demonstrate that macJNet achieves superior performance over state-of-
the-art multi-modality medical image registration methods.

Keywords:  Deformable registration, Multimodal, Image descriptor, Joint learning, 
Semi-supervised segmentation

Introduction
Multimodal medical image registration aims to establish anatomical correspond-
ences between multimodal images, which plays an important role in assisted diagno-
sis, image-guided ablation, and surgical navigation. Medical image registration is a 
high-dimensional optimization task to estimate the dense deformation fields. With the 
recent advances in data driven learning, deep learning-based registration methods have 
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achieved comparable accuracy with a significantly higher inference speed. In general, 
deep learning-based registration could be categorized into fully-supervised registration, 
unsupervised registration and weak-supervised registration from the perspective of the 
utilization of the ground-truth.

Fully‑supervised registration

Inspired by the FlowNet for vector flow estimation [1], fully-supervised image regis-
tration methods [2–4] consider image registration as a regression problem to predict 
deformation fields for matching the ground-truth. Fully-supervised registration imports 
image pairs and dense correspondence to learn the spatial mapping between images, and 
directly predicts deformation fields in the inference stage. It makes the fully-supervised 
registration a modality-independent registration method. However, it is challenging to 
find the accurate dense correspondence between medical images. Fan et al. [5] proposed 
brain image registration networks (BIRNET) to guide the training process in fully-
supervised learning using a dual supervision loss to measure the difference between the 
generated deformation field and the real deformation field. Cao et al. [6] cascaded Syn 
[7] and Demons [8] to obtain the deformations used as ground-truth for CNN training. 
Some methods generate the artificially synthesized images to simulate the deformation 
fields [9], which solves the problem of getting dense correspondence between images. 
However, the authenticity problem of synthesized warped images would degrade regis-
tration performance.

Unsupervised registration

Unsupervised registration methods do not require ground-truth deformation fields [10, 
11], which consider image registration as a loss function minimization problem and 
use a differentiable warping module with the spatial transformer network (STN) [11] 
to warp the moving image in the training procedure. The image similarity metric and 
regularization are usually incorporated into the loss function to optimize the registra-
tion network. Learning the cross-modality representation through network training or 
designing elaborated modality-independent similarity metrics are two alternative ways 
for multimodal registration.

In the first way, Balakrishnan et al. [11] proposed the first unsupervised learning regis-
tration method (VoxelMorph) for mono-modality registration. Mok and Chung [12] fur-
ther improved its performance by adding the symmetric diffeomorphic properties into 
the network. To efficiently train a medical image registration network, DeepFLASH [13] 
computes the deformation fields via utilizing low-dimensional band-limited space. Yan 
et al. [14] first proposed the adversarial image registration framework, which performs 
image registration tasks through a generator and evaluates the quality of the warped 
images by a discriminator. Kim et al. [15] proposed a fully convolutional self-similarity 
to find dense semantic correspondence in mono-modality registration. A recent trend 
for multimodal image registration takes advantages of image to image translation [16], 
generative adversarial networks (GANs) convert the multimodal registration into a sim-
pler unimodal task by learning transferable representations from multimodal images. 
Fan et al. [17] further extended this work to both unimodal and multimodal registration. 
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However, image translation is a challenging topic by itself, the main challenges for 
GANs-based registration include: it may inevitably produce artificial features [18] and 
achieving Nash equilibrium in training procedure [19].

In other way, some methods attempt to elaborately design cross-modal descriptors as 
a similarity metric to represent the modality-independent structure features for multi-
modal registration. Schechtman and Irani [20] introduced the local self-similarity (LSS) 
descriptor for multimodal image matching address the problem of multimodal appear-
ance and shape change. Heinrich et  al. [21] proposed a modality-independent neigh-
borhood descriptor (MIND) based on self-similarity theory [20], which calculates the 
difference between patches within a local neighborhood. Some other LSS-based meth-
ods are also introduced to represent the cross-modal dense correspondence [22, 23]. 
Kim et al. proposed deep self-correlation (DSC) [24] to estimate cross-modal dense cor-
respondences inspired by LSS and DSC has demonstrated its high accuracy on aligning 
multimodal image. Fully convolutional self-similarity (FCSS) [15] formulates LSS within 
a fully convolutional network to simultaneously learn the patch sampling patterns and 
self-similarity measures. Although FCSS dramatically improved performance for object-
level semantic correspondence, it cannot deal with complex geometric variations, which 
frequently appears in medical image registration.

Weakly‑supervised registration

Weakly-supervised registration usually uses anatomical segmentation labels as semantic 
prior information to improve the registration performance. However, manual delinea-
tion of anatomical labels is a time-consuming and laborious work. To address the prob-
lem of insufficient labels, the joint learning framework for registration and segmentation 
has been proposed [25–27], in which the registration and segmentation network are 
alternately optimized during the training procedure. Some label-driven weakly-super-
vised methods have also been proposed [28, 29] by exploiting the auxiliary anatomical 
information and the invertible transformation. In the joint learning framework, the anat-
omy labels created by the segmentation network provide semantic prior knowledge to 
guide dense correspondence mapping for the registration network [25]. The registration 
provides the consistency of segmentation labels by mapping the warped image to the 
fixed image, which is an effective way to improve the segmentation performance of mul-
timodal images. The registration and segmentation networks are iteratively optimized in 
an end-to-end manner to simultaneously improve the performances of registration and 
segmentation [30]. However, the joint learning framework still confronts the following 
problems. For registration network, it is a challenge on how to utilize semantic labels to 
provide sufficient dense correspondence between multimodal images [31], which leads 
to the low quality of registration in interior of large tissues, such as liver. For segmenta-
tion network, it is a challenge to generate the consistent labels for multimodal images 
with few manual labels.

In general, the existing registration methods cannot accurately align the multimodal 
images since they cannot learn the cross-modality dense correspondence to handle 
complex and large deformation. In this paper, macJNet is proposed as a novel multi-
modality registration method, which is weakly-supervised multimodal image deform-
able registration using joint learning framework and multi-sampling cascaded modality 
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independent neighborhood descriptor (macMIND). The key idea behind macJNet is to 
learn (or extract) different levels of prior knowledge to guide the registration: anatomical 
labels are predicted by segmentation networks as semantic information to provide global 
sparse correspondences for registration, and the macMIND is extracted as context infor-
mation to provide local dense correspondences for registration. Our contributions are 
summarized as follows.

(1)	 A novel weakly-supervised multimodal image deformable registration methodol-
ogy using a joint learning framework (macJNet) is proposed for multimodal reg-
istration. The macJNet consists of a registration network and two segmentation 
networks, which are iteratively optimized in a single end-to-end framework. Seg-
mentation networks provide semantic anatomical labels for weakly-supervised reg-
istration by few-label learning; registration network improves the performance of 
segmentation results by enforcing cross-modality consistency based on deformable 
spatial mapping.

(2)	 Multi-sampling cascaded modality independent neighborhood descriptor (mac-
MIND) is proposed to establish dense correspondences between multimodal 
images for registration. macMIND builds the local self-similarity context by multi-
orientation and multi-scale sampling in a supporting window, which enriches the 
modality-independence contextual information to characterize cross-modality ana-
tomical structures. An efficient computational scheme for macMIND in a convolu-
tional manner is also proposed.

(3)	 Dual similarity-based loss function is introduced to optimize macJNet. The dual 
similarity incorporates macMIND and DSC, in which macMIND represents the 
similarity of modality-independent context to find dense correspondence and DSC 
represents the similarity of semantic labels structures to find sparse correspond-
ence of tissue boundaries.

The paper is organized as follows. “Experiments” presents the proposed methodology 
and its implementation. The experiments results are given in “Methodology”. Conclusion 
and discussion are given in "Methodology".

Experiments
Medical image data and evaluation metrics

118 pairs of CT-MR liver images are used to evaluate the proposed method. All images 
are collected from Lishui Central Hospital. The characteristic of dataset is listed in 
Table  1. All anatomy labels (liver labels and tumor labels) and anatomical landmarks 

Table 1  The characteristic of the dataset

Symbol MR image CT image

Modality T1(no contrast) no contrast

FOV 288 × 288 512 × 512

Resolution (mm3) 1.146 × 1.146 × 3 0.664 × 0.664 × 5

Scanner Siemens Philips
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(Fig. 1) are executed by radiologists. 90 pairs are selected randomly and assigned into 
training cohort, and the remaining 28 pairs are assigned into the testing cohort. macJNet 
is optimized by five-fold cross-validation on the training cohort.

To quantitatively verify the effectiveness of macJNet, target registration error (TRE), 
Dice similarity coefficient (DSC), 95% Hausdorff distance (Hd95), mutual information 
(MI), and structural similarity (SSIM) are used to evaluate the registration accuracy. 
TRE, DSC and Hd95 are used to evaluate the accuracy of tumor and liver registration; 
MI and SSIM are used to evaluate the registration quality over the entire image domain.

Mutual information is a common similarity metric for multimodal image registration, 
which indicates the similarity of two images. The mutual information is defined as:

where the probability p(I) is the probability distribution of the voxel values in image I, 
and the probability p(IF, IM) is the joint distribution of the intensities of two images.

SSIM is a metric to measure the structural similarity between two images, which 
mainly focus on structural information (such as shapes and position). The range of SSIM 
is from 0 to 1, a higher value implies a higher similarity [32]. SSIM has been applied as 
similarity metric in a GAN-based brain multimodal registration [33]. SSIM is defined as

where I  symbolizes the mean voxel value of the given image; σ is the standard deviation 
of the image; σM-F is the covariance of multimodal image pair; c1 and c2 are constant 
values.

Registration results

Implementation

In light of the limited GPU computing resources, the liver images are resampled into 
128 × 128 × 96 and then input into macJNet for training and inference. The out-
put deformation fields and warped images would be up-sampled to original size. The 

(1)MI(IF , IM) =
∑

IF ,IM

p(IF , IM) log
p(IF , IM)

p(IF )p(IM)
,

(2)SSIM =

(

2IF IM + c1
)

+ (2σM−F + c2)
(

I
2
F + I

2
M + c1

)

(

σ 2
F + σ 2

M + c2
)

,

Fig. 1  The identified landmarks (the central location of tumor and hepatic fissures) in CT and MR images. The 
TRE is defined as Euclidean distance between the corresponding landmarks
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Reg-SubNet is pre-trained in an unsupervised manner, and Seg-SubNets is pre-trained 
in cycle self-training with CT and MR image. 30% liver labels are used to train the Seg-
SubNets for guiding registration, and the tumor labels are only used as ground-truth to 
evaluation the accuracy of registration. The learning rate is set to 2 × 10−5 in registration 
and 1 × 10−5 in segmentation, batch size is 1, epoch number is 200. The learning rate in 
registration network is larger than that in segmentation due to the convergence of seg-
mentation is faster than registration. Adam is used as optimizer in these networks. In 
our experiments, the hyper-parameters are: K = 2, α1 = 0.3, α2 = 0.7 in Eq. (11); λsim = 20, 
λlabel = 2 and λsmo = 0.5 in loss function. L = 2-pixel distance, R1 = R2 = 5-pixel. The joint 
training cost around 16 h to reach convergence, while it only cost about 0.18 s to com-
plete deformation prediction for an image pair.

To evaluate the registration performance, macJNet is performed to compared with the 
well-performed methods: Elastix [34], VoxelMorph [11], and LapIRN [35]. Elastix is a 
classic traditional registration method using mutual information-based multimodal sim-
ilarity metric, and 3-level pyramid in Elastix is used in the experiments. VoxelMorph is a 
CNN-based unsupervised registration method, which is aimed to mono-modality image 
registration. VoxelMorph with MIND-based loss function is applied to multimodal 

(a) (b) (c) (d) (e) (f)

Fig. 2  Visualization of registration on three samples in the test dataset. The left and right columns show the 
moving and fixed images, respectively. The middle four columns show the results of Elastix, VoxelMorph, 
LapIRN and macJNet in sequence. a MR image (moving image), b registration results of Elastix, c registration 
results of VoxelMorph, d registration results of LapIRN, e registration results of macJNet, f CT image (fixed 
image)

Table 3  Registration with different descriptors in joint learning framework (mean ± std)

Bold values indicate better results than other methods

Metric Tumor Liver Image

TRE (mm) DSC (%) Hd95 (mm) TRE (mm) DSC (%) Hd95(mm) MI (%) SSIM (%)

Affined 7.38 ± 3.56 46.81 ± 32.67 7.70 ± 3.27 7.01 ± 2.95 90.94 ± 1.38 6.67 ± 1.50 32.11 ± 6.96 34.29 ± 10.54

MI 6.03 ± 1.29 50.42 ± 25.68 7.33 ± 2.40 6.17 ± 2.24 92.89 ± 1.95 5.64 ± 1.12 43.65 ± 5.05 42.76 ± 9.78

MIND 5.64 ± 1.51 51.58 ± 23.05 7.18 ± 1.94 5.69 ± 1.41 94.61 ± 1.07 4.77 ± 1.08 42.72 ± 4.85 49.30 ± 12.67

mac-
MIND

5.05 ± 1.79 55.20 ± 18.77 6.71 ± 1.97 4.83 ± 1.49 94.75 ± 0.82 4.53 ± 1.11 44.12 ± 4.63 54.43 ± 11.62
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registration. The configuration of VoxelMorph is as follows: learning rate of 1 × 10−4, 
regularization parameter of 1, batch size of 1, and the number of epochs of 800. LapIRN 
is a CNN-based registration method, which divides the image into three resolutions and 
performs registration layer by layer. LapIRN is also applied as a baseline network in Reg-
SubNet. The parameters of configuration are set same as VoxelMorph. All deep learn-
ing-based methods are implemented by Pytorch on a single Nvidia Telsa V100 GPU with 
16G memory. Elastix registration running on AMD Ryzen 5 4600H CPU. Affine align-
ment for each image pair is pre-performed using Elastix to reduce the position deviation.

Multimodal image registration results

As shown in Table 2, four deformable registration methods are compared with the met-
rics of TRE, DSC, Hd95, MI, SSIM and inference time. In terms of tumor registration, 
it is observed that macJNet achieves better registration performance (TRE = 5.05 mm, 
DSC = 55.20%, Hd95 = 6.71 mm) than Elastix, VoxelMorph and LapIRN. In terms of liver 
registration, macJNet (TRE = 4.83  mm, DSC = 94.75%, Hd95 = 4.53  mm, MI = 44.12%, 
SSIM = 54.43%) also outperforms other competitive methods in all evaluation metrics. 
This statistical result demonstrates that macMIND and consistency constraint simul-
taneously improve the global registration accuracy and local accuracy. Figure  2 intui-
tively shows the visual comparisons of registration results using different methods, 
where macJNet optimizes the deformation both in tissue boundary and internal organs. 
The Elastix outperforms VoxelMorph at tumor alignment with the metric of TRE and 
DSC and liver alignment with all evaluation metrics. In addition, the inference time of 

Table 4  Performance of macMIND in registration network (mean ± std)

Bold values indicate better results than other methods

Methods Tumor Liver Image

TRE (mm) DSC (%) Hd95 (mm) TRE (mm) DSC (%) Hd95(mm) MI (%) SSIM (%)

MIND 5.48 ± 2.24 52.51 ± 22.64 7.03 ± 1.71 5.51 ± 1.39 93.64 ± 1.13 5.52 ± 1.37 42.03 ± 4.71 49.03 ± 12.66

macMIND 5.19 ± 1.34 56.09 ± 19.05 6.53 ± 2.18 4.90 ± 1.48 93.64 ± 1.07 5.39 ± 1.14 43.76 ± 4.83 53.00 ± 11.64

Fig. 3  Optimal ratio of scale weight α1 and α2. The horizontal axis indicates the ratio of α1/α2, where α2 is the 
weight of large sampling window, and α1 is the weight of small sampling window
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macJNet is comparable to other deep learning-based methods and over 400 times faster 
than Elastix. The affine registration is listed as a reference to obviously compare the per-
formance of registration methods. It should be noted that clinical medical images are 
used (slice thickness is larger than 3  mm) in the experiment, which takes an adverse 
impact on registration result. However, macJNet still accurately matches the multimodal 
images, and outperforms the competitive methods.

Ablation studies

Evaluation of macMIND  To verify the effectiveness of our proposed macMIND in the 
macJNet, local mutual information (MI) [45], MIND [20] and macMIND are incorpo-
rated, respectively, into the macJNet to compare the performance of these modality-inde-
pendent image descriptors. Table 3 shows the results of the competitive image descriptors 
for CT-MR deformable registration, which shows the proposed macMIND achieves the 
best performance in all evaluation metrics for global alignment and local deformation. 
macMIND have an ability to describes complex cross-modality image structures and 
their geometrical variants due to its multi-sampling patterns in self-similarity context. 
Moreover, macMIND also could robustly reflects the large deformation vis multi-scale 
sampling and cascaded extractions.

Compared with MIND in the joint learning framework, macMIND improves 10.34% 
for TRE, and 3.62% for DSC, and 6.59% for Hd95 in the local (tumor) registration; 
improves 15.05% for TRE, 0.14% for DSC, 5.03% for Hd95, and 5.13% for SSIM in organ 
(liver) alignment. The statistical results demonstrate that macMIND is an outstanding 
descriptor to represent modality-independent image structures.

Furtherly, the effectiveness of macMIND is evaluated in registration network with the 
unsupervised learning manner. The statistical results of macMIND and MIND are listed 
in Table 4. It is observed that macMIND significantly improves the performance of reg-
istration in almost all evaluation metrics. Specifically, macMIND improves 5.13% for 

Table 5  Performance of macJNet and Reg-SubNet with macMIND (mean ± std)

Bold values indicate better results than other methods

Methods Tumor Liver Image

TRE (mm) DSC (%) Hd95 (mm) TRE (mm) DSC (%) Hd95(mm) MI (%) SSIM (%)

Reg-
SubNet

5.19 ± 1.34 56.09 ± 19.05 6.53 ± 2.18 4.90 ± 1.48 93.64 ± 1.07 5.39 ± 1.14 43.76 ± 4.83 53.00 ± 11.64

macJNet 5.05 ± 1.77 55.20 ± 18.77 6.71 ± 1.96 4.83 ± 1.49 94.75 ± 0.82 4.53 ± 1.11 44.12 ± 4.63 54.43 ± 11.62

Table 6  Performance of macMIND and MIND in deep learning-based registration (mean ± std)

Bold values indicate better results than other methods

Methods det (Jφ(p)) < 0 (‱)

Reg-SubNet with MIND 0.92 ± 0.45

Reg-SubNet with macMIND 0.63 ± 0.22
Joint learning framework with MIND 0.96 ± 0.47

Joint learning framework with macMIND (macJNet) 0.74 ± 0.24
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TRE, 3.58% for DSC, and 7.07% for Hd95 in tumor registration; improve 10.97% for TRE 
and 2.36% for Hd95 in liver registration.

To further explore the influence of weight of self-similarity context in dual-scales, the 
optimal ratios of α1 and α2 is verified in the macJNet. Figure 3 gives an overview of dif-
ferent ratios of α1 and α2, which also demonstrates that α1/α2 = 7/3 is an optimal ratio 
value for CT-MR liver registration. In addition, the change of TRE values also illustrates 
the effectiveness of multi-scale sampling in macMIND.

Evaluation of  joint learning framework  Organ labels of multimodal image pairs pro-
vide anatomical consistency constraint, which is considered as prior knowledge to guide 
alignment and deformation. However, manual labeling on multimodal images is a time-
consuming task. Semi-supervised learning-based segmentation incorporated in a joint 
learning framework is a feasible way to provide segmentation labels for weakly-super-

Fig. 4  Visualization of registration on a sample in the test dataset. The four columns show the deformation 
field results of Reg-SubNet-MIND, Reg-SubNet-macMIND, JNet-MIND and macJNet in sequence. The red 
region is the liver label and the blue region is the tumor label

Table 7  Registration results with different number of labels (mean ± std)

Bold values indicate better results than other methods

Amount Liver Image

TRE (mm) DSC (%) Hd95 (mm) MI (%) SSIM (%)

0% 4.90 ± 1.48 93.64 ± 1.07 5.39 ± 1.14 43.76 ± 4.83 53.00 ± 11.64

5% 4.93 ± 1.52 94.42 ± 0.85 4.94 ± 1.18 43.98 ± 4.70 53.72 ± 11.53

10% 5.18 ± 1.63 94.50 ± 0.92 4.80 ± 1.12 43.93 ± 4.60 54.41 ± 11.61

20% 5.24 ± 1.75 94.55 ± 0.91 4.63 ± 1.03 44.12 ± 4.58 54.85 ± 11.53

30% 4.83 ± 1.49 94.75 ± 0.82 4.53 ± 1.11 44.12 ± 4.63 54.43 ± 11.62
40% 4.79 ± 1.67 94.64 ± 0.82 4.52 ± 0.88 43.96 ± 4.55 54.22 ± 11.63

50% 5.05 ± 1.38 94.76 ± 0.85 4.46 ± 1.17 44.32 ± 4.64 54.39 ± 11.60

60% 5.10 ± 1.36 94.72 ± 0.89 4.59 ± 1.15 44.30 ± 4.71 54.05 ± 11.71

70% 5.27 ± 1.18 94.69 ± 0.86 4.53 ± 1.12 44.45 ± 4.68 54.24 ± 11.59

80% 5.31 ± 1.36 94.78 ± 0.79 4.40 ± 0.87 44.18 ± 4.72 54.17 ± 11.63

90% 4.97 ± 1.21 94.86 ± 0.89 4.20 ± 1.09 44.20 ± 4.52 53.94 ± 11.62

100% 5.10 ± 1.48 94.91 ± 0.81 4.21 ± 0.91 44.38 ± 4.65 54.09 ± 11.59
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vised registration. In this experiment, macJNet and Reg-SubNet is performed to access 
the effectiveness of anatomical consistency constraint. Reg-SubNet is considered as unsu-
pervised registration network here since there are no inputting segmentation labels into 
it. macJNet also used 30% labels to training the Seg-SubNet, and macMIND is used as 
metric in macJNet and Reg-SubNet. The performance of macJNet and Reg-SubNet is 
listed in Table 5. The statistical result shows that the label-based anatomical consistency 
plays an important role in organ boundary alignment. It significantly improves the liver 
registration performance in this experiment: improving 1.43% for TRE, 1.19% for DSC, 
15.96% for Hd95, 1.43% for SSIM. However, the influence of label-based anatomical con-
sistency is diminished on the registration of internal lesion regions.

Some studies pointed out that the label-guided registration may receive diminishing 
or perturbing gradients [36, 37]. In the above experiment, DSC and Hd95 of the tumor 
are decreased due to the fact that the liver labels emphasize the alignment of the liver 
boundaries and ignores the physical properties of the deformation field, which yields 
some implausible deformation [31].

To investigate the effect of liver labels and modality-independent descriptors on the 
physical properties of the deformation field, the proportion of folding occurs (Jacobi 
determinant < 0) is calculated in different methods, as shown in Table 6. In the first 
set of experiments, the MIND descriptor and macMIND descriptor are separately 
applied to the Reg-SubNet (unsupervised registration). It is observed that macMIND 
performs significantly better than MIND with lower average proportion of folding 
points (0.63‱). In the second set of experiments, the two descriptors are applied 
separately to the joint learning framework (weakly-supervised registration), the aver-
age proportion of folding points in macMIND is also lower than that in MIND. It 

Fig. 5  The influence of different number of labels on macJNet

Table 8  Segmentation results on CT and MR with 30% labels (mean/std)

Bold values indicate better results than other methods

Modality Methods DSC (%) Hd95 (mm) Recall (%) Precision (%) RVDabs (%) VOE (%)

CT Sub-SegNet 93.39 ± 3.31 19.15 ± 16.66 95.63 ± 6.24 91.50 ± 2.07 7.80 ± 4.25 12.24 ± 5.44

macJNet 95.38 ± 0.82 5.97 ± 3.21 96.05 ± 1.93 94.71 ± 1.24 2.53 ± 2.07 8.81 ± 2.19

MR Sub-SegNet 93.10 ± 2.39 20.95 ± 18.59 95.23 ± 1.93 91.20 ± 4.25 4.75 ± 6.22 12.81 ± 4.05

macJNet 94.12 ± 1.06 6.59 ± 2.14 94.22 ± 2.13 94.36 ± 2.72 3.92 ± 2.15 12.17 ± 1.86
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means that macMIND can effectively alleviates the negative impact of liver label and 
improve the physical properties of the deformation field. The visualization of defor-
mation fields is shown in Fig. 4, which illustrates that macMIND effectively improves 
the physical properties of the deformation field.

Seg-SubNet is a semi-supervised segmentation network, which is influenced by the 
total amount of manual labeled images. To explore the influence of various amount 
of anatomy labels on registration, 0–100% different proportions of liver labels are 
input into Seg-SubNet by evaluating the registration metrics of liver registration. 
The results of liver registration are listed in Table 7. It obviously shows that the liver 
registration accuracy (DSC and Hd95) gradually increases with the increase of label 
amounts, which demonstrates that the anatomy consistency of multimodal images 
provides prior knowledge to guide registration. The anatomy labels play an impor-
tant role in alignment of organ boundaries: liver registration would be significantly 
improved if very few labels (such as 5% labels) are input into the joint learning reg-
istration framework. 30% of total amount of label would be considered as a trade-off 
between the time-consuming manual label task and registration accuracy, which can 
be seen clearly in Fig. 5.

Multimodal image segmentation results

Although our study aims to improve the performance of multimodal deformable regis-
tration, macJNet also have an ability to improve the performance of multimodal image 
segmentation due to its multi-modality consistency constraint for segmentation labels. 
macJNet provides consistency between labels by mapping the moving label to the fixed 
label via a deformation field.

To quantitatively verify the improvement of segmentation of macJNet, DSC, Hd95, 
recall, precision, absolute value of relative volume difference (RVDabs) and volumetric 
overlap error (VOE) are used to evaluate the segmentation accuracy. RVDabs and VOE 
are defined as:

where Vseg and Vgt symbol the segmentation volume and ground-truth volume, 
respectively.

The liver segmentation results on CT and MR images are listed in Table  8. Both 
macJNet and Sub-SegNet are trained with 30% labels. The statistical results of macJNet 
outperform the Sub-SegNet. Moreover, macJNet trained with 30% labels even sur-
passes the Sub-SegNet with 100% labels (DSC = 95.26, Hd95 = 8.71, Precision = 93.82, 
RVDabs = 4.40, VOE = 9.04) for fixed (CT) image segmentation.

Conclusion
This article has proposed macJNet for multimodal image deformable registration. 
macJNet is a weakly-supervised multimodal image deformable registration network 
using joint learning framework and macMIND. The main advantage of macJNet is that it 

(3)RVDabs =
∣

∣Vseg

/

Vgt − 1
∣

∣× 100%,

(4)VOE =
(

1−
(

Vseg ∩ Vgt

)/(

Vseg ∪ Vgt

))

× 100%,
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provides global sparse correspondences by semantic labels and local dense correspond-
ences by macMIND, where macMIND provides the local modality-independent con-
textual information. macJNet consists of a registration network and two segmentation 
networks. Each segmentation network generates semantic anatomical labels as weakly-
supervised information for registration; macMIND incorporates multi-orientation and 
multi-scale sampling patterns to build self-similarity context, which is modality-inde-
pendent image structure features and used as dense local contextual information to 
guide the registration. The registration network also provides the consistency of anatom-
ical labels by spatial mapping for segmentation networks to improve the performance 
of multimodal image segmentation. Experiments on 3D CT-MR liver images have been 
carried out to evaluate performance of macJNet. Experimental results indicate that our 
method achieves significant improvements in multimodal registration task.

In future studies, label-efficient deep learning methods will be incorporated into our 
method to further reduce the reliance on manually labeled images. In addition, the 
impact of sampling scale number and multi-scale information fusion ways on registra-
tion results will be investigated.

Methodology
Overview

In this work, macJNet is proposed to improve the accuracy of multi-modality image 
registration. macJNet is a weakly-supervised multimodal image deformable registra-
tion method, which incorporates two components: joint learning framework and mac-
MIND. The joint learning framework is a single end-to-end architecture, which includes 
two segmentation networks and a registration network. Segmentation networks provide 
semantic anatomical labels for weakly-supervised registration by few-label learning; 
registration network improves the performance of segmentation by enforcing cross-
modality consistency based on deformable spatial mapping. macMIND builds the local 
self-similarity context by multi-orientation and multi-scale sampling in a supporting 

Fig. 6  Illustration of macJNet for CT-MRI registration. Image labels L comprise two subsets: manual 
annotation label subset Lgt as ground-truth in segmentation network, prediction label subset Lseg is 
generated by Seg-SubNets. LM = {Lgt M, Lseg M}, LF = {Lseg F, Lseg F}. For each iteration, Reg-SubNet takes IM, 
IF and their labels as input, outputs the deformation field φ, which provides the cross-modality consistency 
constrain for Seg-SubNets by mapping LM to LF. Seg-SubNets take IM and IF as input, and output Lseg M and 
Lseg F to provide semantic labels as anatomical prior knowledge for registration
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window, which enriches the modality-independence contextual information to charac-
terize cross-modality anatomical structures. Detail of the proposed method is described 
in "Joint learning framework" and "Reg-SubNet and Seg-SubNet".

Joint learning framework

macJNet comprises three sub-networks, a weakly-supervised registration sub-net-
work (Reg-SubNet) and two semi-supervised segmentation sub-network (Seg-SubNet) 
for dual-modality image segmentation. Ku unlabeled multimodal image pairs and Kl 
labeled image pairs (Ku > Kl) are input into the network to optimize macJNet. Specifi-
cally, an alternately update strategy is used to optimize Reg-SubNet and Seg-SubNets in 
the joint learning framework. In the registration update stage, IF, IM and their anatomy 
labels (including Kl pairs with manual labels Lgt and Ku pairs with segmentation labels 
Lseg created by Seg-SubNets) are input into Reg-SubNet to optimize the dense deforma-
tion fields φ. In the segmentation update stage, Ku unlabeled image pairs and Kl labeled 
image pairs are input into the Seg-SubNets to generate the segmentation labels (Lseg M 
and Lseg F), where the dense deformation fields created by Reg-SubNet maps Lseg M 
to Lseg F for cross-modality consistency constraint. The overview of the joint learning 
framework is illustrated in Fig. 6.

The main advantages of joint learning in macJNet are as follows: (1) incorporating two 
correlated tasks in a single framework to improve the performance of registration; (2) 
allowing to use existing task-specific networks for registration and segmentation. It is 
noteworthy that our work does not focus on the design of an elaborate registration net-
work. The main aim of this work is to propose a general framework for weakly-super-
vised registration, any task-specific registration or segmentation networks could be used 

Fig. 7  Reg-SubNet and Seg-SubNet in the joint learning framework. a The architecture of Reg-SubNet; b 
AG-block in Reg-SubNet; c architecture of Seg-SubNet. d scSE-block in Seg-SubNet
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as sub-networks in this framework. Some other works [27, 38] joint the registration and 
segmentation through multi-task learning. Multi-task learning methods joint the two 
tasks using hard or soft parameter sharing, which needs to change the architecture of 
existing networks.

Reg‑SubNet and Seg‑SubNet

In this study, LapIRN is adopted to build Reg-SubNet (shown in Fig. 7a). LapIRN [35] 
is a deep Laplacian pyramid image registration network with a 3D UNet-like architec-
ture [39] and mitigates the large-deformation problem via a coarse-to fine scheme [35]. 
AG-blocks [40] (shown in Fig. 7b) are added into the LapIRN to filter the features by 
propagating through the skip connections. AG-blocks employ multi-level spatial and 
contextual information to highlight the regions with large discrepancies. The nnUNet 

Fig. 8.  2D illustration of cascaded feature calculations of macMIND. The “Multi sampling partners” sketch 
illustrates the msSSC with multi-sampling patterns (multi-scale sampling and multi-orientation sampling). 
msSSC includes some different scale self-similarity contexts (SSC). The left sketch illustrates a dual-scale SSC: 
the small-scale SSC includes the central patch P0 (red box) and its closer 4-neighborhood (light blue boxes); 
the larger-scale SSC includes the central patch P0 and its farther 4-neighborhood (dark blue boxes). Each 
SSC includes more connectivity (black lines and gray line) than MIND (gray lines), which leads macMIND to 
incorporate more orientation sampling. L and R1 symbolize the patch distance and size, respectively. The 
msSSC feature map with M channels are created. The “feature aggregation” sketch shows the N bins (here 
N = 16) in log-polar space with 8-angle intervals and 2-radial intervals. One of the bins is colored with gray. 
macMIND translates each voxel in an image to a M × N matrix by macMIND. Finally, macMIND feature map is 
created as a M × N channel image for registration

(a) MIND descriptor (2D) (b) MIND descriptor (3D) (c) macMIND descriptor 
(2D)

(d) macMIND descriptor (3D)

Fig. 9  Illustration of MIND and macMIND descriptor. a The dotted box illustrates the supporting window, 
the red box illustrates the central patch of the supporting window, its 6-neighborhood patches are colored 
in blue. L and R symbolize the patch distance and size, respectively. b The 3D structure of 6-connectivities 
(3-orientation) in MIND. c The single scale 3D structure layout of 18-connectivities (9-orientation) in 
macMIND. The black (shown as black solid lines and black dotted lines) 12-connectivities are introduced by 
macMIND, while the gray 6-connectivities (3-orientation) attached to MIND. d The supporting window of 
macMIND similar with MIND. Light blue and dark blue patches indicate the dual sampling scales, and black 
and gray connections indicate the multi sampling orientation
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[41] is applied to build Seg-SubNet (shown in Fig. 7c) due to its excellent performance 
in medical image segmentation. scSE-blocks [42] (shown in Fig. 7d) are added into the 
decoding layers to suppress insignificant information in both spatial and channel dimen-
sions. In the training stage, Dice loss is used to measure the similarity in label pairs.

Multi‑sampling cascaded modality independent neighborhood descriptor

Modality independent neighborhood descriptor

MIND is a well-known image representor [20] for multi-modality image registration, 
which represents local self-similarity structures by calculating the difference between 
patches within a local neighborhood. For any point x in image I, the MIND feature can 
be represented by Gaussian kernel distance between center point x and its 6-neighbor-
hood patches, as shown in Fig. 9b. Assuming that the n-th patch in the 6-neighborhood 
centered at xn, MIND can be expressed as:

where Dp(I, x, xn) donates the mean squared difference between two patches, which, 
respectively, locate at x and xn. P is defined as the set of displacements from any voxel in 
a patch to the center of the patch.

V(I, x) is an estimation of the local variance, defined as the expectation of Dp:

However, MIND computes self-similarity between the center patch and its 6-neigh-
borhood patches with the simple sampling pattern (shown in Fig. 9), which cannot han-
dle the large deformation and high complex dense correspondence.

macMIND

Inspired by MIND, a multi-sampling cascaded modality independent neighborhood 
descriptor (macMIND) is proposed to improve performance of multimodal image 
deformable registration. The motivation of macMIND is to incorporate more abun-
dant sampling patterns for representing the complex cross-modality structure fea-
tures, which contributes to find dense correspondence in multimodal images.

The macMIND descriptor incorporates cascaded feature calculations: (1) multi-
scale self-similarity context (msSSC) feature map calculation with multi-sampling 
patterns; (2) feature aggregation in 3D log-polar bins. Figure  8 illustrates the cas-
caded feature calculations of macMIND. macMIND extracts the M × N-channels 
feature map of every voxel in the image. The specific implementation process and its 
advantages will be detailed in the following sections.

(5)MIND(I , x, xn) = exp

(

−
Dp(I , x, xn)

V (I , x)

)

(6)Dp(I , x, xn) =
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∑
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Dp(I , x, xn).
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Multi‑sampling patterns of msSSC

Multi-sampling patterns (multi-orientation sampling and multi-scale sampling) are 
introduced to encode the self-similarity context, which is robust and accurate cross-
modality feature representation. Specifically, given a certain patch layout PΩ, the 
central patch P0 of size R1 × R1 × R1 centered at voxel p and the distance between P0 
and its 6-neighborhood patches is L (Fig. 8a). The self-similarity context SSC(I, PΩ) is 
defined as:

where I is an image, PΩ = {P0, P1,…,P6}, Pi and Pj are the symbols of arbitrary patches in 
PΩ, ∥eP∥ denotes the total number of patch connections. SSD(I, Pi, Pj) denotes the sum of 
squared difference between patch Pi and Pj, which is formulated as:

where ∥P∥ represents the total number of voxels in patch P. In Eq. (8), SSC is computed 
as the sum of squared difference between two patches to represent the self-similarity. 
As shown in Fig. 9d, there are 18-connectivity in SSC within single scale, which can be 
divided into 9 orientations. Therefore, a multi-orientation sampling pattern is intro-
duced into macMIND, which leads macMIND to represent the complex deformations.

The multi-scales self-similarity context (msSSC) is further computed to represent 
the large deformation (large geometrical variations) in the multimodal images. msSSC 
can be reformulated as:

where K is the total number of scales, and αk denotes the weight of multi-self-similarity 
context in the k-th scale. The Eq.  (10) formulates the multi-self-similarity context in a 
weighted sum way. It is a simple way to fuse the multi-scale information in consideration 
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Fig. 10  Feature map visualization of macMIND and MIND. macMIND shows its advantage for representing 
complex anatomical structures. The multi-channel feature map is translated to a single-channel image by 
calculating the average value of channel-dimension for visualization. In this figure, macMIND is calculated 
with K = 2, α1 = 0.7, α2 = 0.3
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of the limitations of computing resources. The other way is to concatenate SSC(I, PΩ) of 
each scale along the channel dimension.

In summary, self-similarity in MIND is calculated based on the central patch (shown 
in Fig. 9a, b), which has the disadvantage that the noise in central patch takes adverse 
effect on the self-similarity. Compared with MIND, msSSC has two advantages: (1) 
multi-orientation sampling: utilizing all pairwise connectivity (18- connectivity) within 
central patch and its 6-neighbourhood to build a 9-orientation sampling pattern (shown 
in Fig. 9c); (2) multi-scale sampling: incorporating multi-scale self-similarity context in 
a supporting window (shown in Fig.  9c). The multi-sampling pattern in msSSC leads 
macMIND to represent the complex and large deformation in multimodal images.

Feature aggregation in 3D log‑polar bins

Each point in the msSSC feature map is aggregated into the log-polar bins [24] to 
robustly represent the cross-modality structural information in deformable registration 
[43, 44]. A patch with size R2 × R2 × R2 and central at voxel p on msSSC is selected, and 
all voxels in the patch are transformed into local 3D log-polar space. The 3D log-polar 
space is divided into N bins based on Na angle intervals, Nr radial intervals and Nh height 
intervals (N = Na × Nr × Nh). The values in each bin are calculated and the average values 
are concatenated into a M × N-dimension vector as a macMIND descriptor. The mac-
MIND is defined as

Fig. 11  The convolution operations in SSD calculation and feature aggregation. a SSC feature map is 
calculated in the manner of convolution operations. Pi is the center patch of the image, Pj is a neighborhood 
patch of Pi. Pi would overlap Pj by shifting with 

−→
L  . This operation translates the computation of SSD to a 

voxel-wise squared difference. b Feature aggregation with a convolution operation. The kernels are designed 
according to the spatial distribution of voxels in bins

Fig. 12  Illustration of cascaded convolution operations in macMIND
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where ‘cat’ symbolizes the vector concatenation. Finally, macMIND translates each voxel 
p in image to a M × N vector. Here, the msSSC feature image is aggregated by utiliz-
ing average pooling in bins instead of max-pooling to maintain the fine-scale matching 
details [45].

Figure 10 shows the comparisons of feature map between macMIND and MIND on 
CT-MRI images. Two typical locations with different image structures are selected: 
(1) the boundary between liver and abdomen (blue window), it is a latent region with 
large deformation; (2) spine (green window), it is a region with complex structures. It 
is obviously observed that the macMIND feature map accurately represents the modal-
ity-independent features (e.g., tissue boundary and shape), and is more continuous and 
smoother than MIND.

Cascaded feature extraction

Actually, SSD is computed and feature map aggregation is performed in a convolutional 
manner due to its computational efficiency. Specifically, for computing SSD(I, Pi, Pj), 
image I’ is obtained by shifting the image I by a vector −→L  , as shown in Fig. 11a. I(Pj) is 
equal to I’(Pi) since the distance between patch Pi and patch Pj is 

∥

∥

∥

−→
L
∥

∥

∥ . Then, the voxel-

wise squared difference is calculated in the minus manner of I and I’: I(Pi)-I(Pj) = I(Pi)-
I’(Pi). Finally, the patch-wise squared difference can be obtained from voxel-wise squared 
difference by convolution with a R1 × R1 × R1 sized kernel KSSD. KSSD is designed as an 
average pooling kernel. The SSD(I, Pi, Pj) computation in Eq. (9) can be effectively substi-
tute, which is reformulated as:

where ⊗ is the convolution operator. For aggregating the point of msSSC feature map 
in 3D log-polar bins, a specific convolution kernel Kn agg (n is the scale parameter in 
msSSC, n = 1,2,…,N) with size of R2 × R2 × R2 is designed on the msSSC feature map 
(shown in Fig. 11b) for each bin. Kn agg transforms the mean value calculation to a con-
volution operation. The Eq. (11) could be reformulated as

The cascade convolution operations of macMIND are similar to the feature learning 
in two consecutive encoder layers of CNN (shown in Fig. 12), which has two advan-
tages for registration: representing deeper and more complex features, enlarging the 
receptive field of feature representation with low computational cost [24].

The sampling density is a main difference between MIND [21], macMIND, and DSC 
[24]. On one hand, compared with MIND, macMIND increases the sampling den-
sity by utilizing all connectivity of patch layout to encode comprehensive information 
in SSC feature map. All connectivity of patch layout also introduces multi-scale and 
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multi-orientation sampling patterns. The increase of sampling density enriches the 
modality-independence contextual information for dense correspondence cross mul-
timodal images. On the other hand, in comparison to the deep learning-based sam-
pling on the self-similarity surface [24], macMIND supplies a sparse sampling with 
the fixed patterns. Although some dense sampling patterns have been proposed to 
build more elaborate cross-modality descriptors (such as DSC [24] and DASC [45]), 
they would be computationally intractable for 3D medical images. The sparse sam-
pling patterns are necessary for efficient computation in 3D medical image registra-
tion. The patch layout in the supporting window of macMIND is much sparser than 
the dense self-correlation surfaces in DSC and DASC.

Loss function in joint learning framework

Dual-similarity-based loss is proposed for registration: a macMIND-based similarity 
metric to capture the dense correspondence of modality-independent texture charac-
teristics, DSC-based similarity to capture the semantic consistency of anatomical char-
acteristics in multimodal images. DSC value of label images is used as loss to guide the 
Seg-SubNet training.

Dual similarity‑based loss for multimodal image registration

The loss function for Reg-SubNet is defined as: Ereg = Esim(IF, IM∘φ) + λlabelElabel(LF, 
LM∘φ) + λsmoEsmo(φ). Esim(IF, IM∘φ) takes the form as

Esim measures the local difference between the pair of macMIND maps, |Ω3| is the 
total voxel number of the image. Elabel measures the DSC value of fixed label image and 
warped label image. In addition, a diffusion regularization on the spatial gradients of φ is 
added to encourage a smooth deformation field, which is defined as

Loss function for semi‑supervised segmentation

The loss function for Seg-SubNet is defined as:

Lseg represents the segmentation label output by Seg-SubNet, Lgt represents the ground-
truth. EDSC(Lseg, Lgt) guides the segmentation results to the ground-truth, and EDSC(Lseg 
F, Lseg M∘φ) guides different Seg-SubNets to generate consistent segmentations labels.

(14)Esim(IF , IM ◦ φ) =
1

∣

∣�3
∣

∣

∑

p∈�3

(macMIND(IF , p)−macMIND(IM ◦ φ, p))2,

(15)Esmo(φ)=
∑

p∈�3

�∇φ(p)�2.

(16)

{

Eseg = EDSC
(

L
seg
F , L

seg
M ◦ φ

)

Lgt not existed

Eseg = EDSC

(

L
seg
F , L

gt
F

)

+ EDSC

(

L
seg
M , L

gt
M

)

Lgt existed
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