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Abstract 

Background:  Cerebral microbleeds (CMBs) serve as neuroimaging biomarkers 
to assess risk of intracerebral hemorrhage and diagnose cerebral small vessel disease 
(CSVD). Therefore, detecting CMBs can evaluate the risk of intracerebral hemorrhage 
and use its presence to support CSVD classification, both are conducive to optimizing 
CSVD management. This study aimed to develop and test a deep learning (DL) model 
based on susceptibility-weighted MR sequence (SWS) to detect CMBs and classify 
CSVD to assist neurologists in optimizing CSVD management. Patients with arteriolo-
sclerosis (aSVD), cerebral amyloid angiopathy (CAA), and cerebral autosomal dominant 
arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) treated 
at three centers were enrolled between January 2017 and May 2022 in this retrospec-
tive study. The SWSs of patients from two centers were used as the development set, 
and the SWSs of patients from the remaining center were used as the external test set. 
The DL model contains a Mask R-CNN for detecting CMBs and a multi-instance learn-
ing (MIL) network for classifying CSVD. The metrics for model performance included 
intersection over union (IoU), Dice score, recall, confusion matrices, receiver operating 
characteristic curve (ROC) analysis, accuracy, precision, and F1-score.

Results:  A total of 364 SWS were recruited, including 336 in the development 
set and 28 in the external test set. IoU for the model was 0.523 ± 0.319, Dice score 
0.627 ± 0.296, and recall 0.706 ± 0.365 for CMBs detection in the external test set. 
For CSVD classification, the model achieved a weighted-average AUC of 0.908 (95% 
CI 0.895–0.921), accuracy of 0.819 (95% CI 0.768–0.870), weighted-average precision 
of 0.864 (95% CI 0.831–0.897), and weighted-average F1-score of 0.829 (95% CI 0.782–
0.876) in the external set, outperforming the performance of the neurologist group.

Conclusion:  The DL model based on SWS can detect CMBs and classify CSVD, thereby 
assisting neurologists in optimizing CSVD management.

Keywords:  Cerebral small vessel disease, Cerebral microbleeds, Susceptibility-
weighted MR Sequence, Deep learning
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Background
Cerebral small vessel disease (CSVD) is a chronic and progressive vascular disease 
affecting capillaries, arterioles, and small veins supplying brain deep structures, often 
leading to cerebral hemorrhage, dementia, and stroke [1, 2]. CSVD comprises arterio-
losclerosis (aSVD) related to age or vascular risk factors, cerebral amyloid angiopathy 
(CAA) caused by vascular deposition of β-amyloid, and cerebral autosomal dominant 
arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused 
by NOTCH3 gene mutations which encode a vascular smooth muscle transmembrane 
protein involved in vascular development and smooth muscle cell differentiation [3, 4]. 
The current treatment strategy for CSVD typically involves secondary stroke prevention 
[5, 6], focusing on prevalent types, such as aSVD and CAA. The role of CADASIL, a 
typically inherited small vessel disease, in stroke prevention should not be ignored [7]. 
However, there is controversy regarding whether the secondary prevention measures 
for stroke are suitable for these types of CSVD; there is no uniform treatment stand-
ard [3]. For example, antithrombotic therapy is generally not recommended for treating 
CAA because amyloid angiopathy is an independent risk factor for hemorrhage [8, 9]. 
Patients with CADASIL should avoid using antiplatelet drugs to prevent an increased 
risk of hemorrhage [10, 11], antiplatelet therapy should not be withheld for patients with 
aSVD, and may even be beneficial for the prevention of lacunar stroke [6, 12]. Optimiz-
ing the management of CSVD depends on the individual patient’s intracerebral hem-
orrhage risk and the type of CSVD. Cerebral microbleeds (CMBs), which manifest as 
small, oval, hypointense lesions on brain susceptibility-weighted MR sequences [SWS, 
including T2-star-weighted angiography (SWAN) and susceptibility-weighted imaging 
(SWI)], serve as indicators for evaluating the risk of intracerebral hemorrhage [13, 14]. 
CMBs also serve as neuroimaging biomarkers for CSVD and play a critical role in the 
diagnosis of CSVD, especially CAA [13, 15–17]. Hence, accurate identification of CMBs 
is useful for evaluating the risk of intracerebral hemorrhage; facilitating classification 
of CSVD based on the presence of CMBs, both of which are beneficial for optimizing 
CSVD management.

Recently, there has been a keen interest in the application of deep learning (DL) to 
medical images. Several studies indicate that DL can reliably detect lesions and diagnose 
diseases, such as detecting primary bone tumors on radiographs and diagnosing muscu-
lar dystrophies using MRI [18, 19]. The clinical application of these models may improve 
the reliability and accuracy of lesion assessment or disease diagnosis, potentially lead-
ing to improved diagnostics and better treatment. Therefore, in this study, we used SWS 
data from patients with three types of CSVD collected from three independent centers 
to develop and test an end-to-end, two-task DL model that can detect CMBs and classify 
CSVD.

Results
Patients and datasets characteristics

This study enrolled 364 patients with CSVD, of whom 336 were included in the 
development set and 28 in the external test set. The development set was com-
prised of 203 aSVD patients, 99 CAA patients, and 34 CADASIL patients. The mean 
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age (± standard deviation) of the development set patients was 64.88  years ± 6.71 
[aSVD (65.34  years ± 6.12); CAA (64.41  years ± 6.98); CADASIL (63.56  years ± 8.93)], 
and 34.82% (n = 117) of the development set patients were female [aSVD (76/203, 
37.44%); CAA (28/99, 28.29%); CADASIL (13/34, 38.24%)]. The external test set con-
sisted of 14 aSVD patients, 7 CAA patients, and 7 CADASIL patients The mean age 
(± standard deviation) of the external test set patients was 64.18  years ± 6.83 [aSVD 
(64.36  years ± 6.05); CAA (66.57  years ± 10.16); CADASIL (61.42  years ± 3.41)], and 
32.14% (n = 9) of the external test set patients were female [aSVD (3/14, 21.43%); CAA 
(3/7, 42.86%); CADASIL (3/7, 42.86%)] (Table 1). The SWS in the development set came 
from 6 different MRI scanners, and the SWS in the external test set came from another 
MRI scanner. The MRI scanner in the external test set differed from any scanner in the 
development set. MRI scanners and SWS parameters are summarized in supplementary 
materials (Additional file 1: Table S1).

CMBs detection
The reproducibility of the manual annotation of CMBs was calculated with an IoU 
of 0.820 ± 0.039 for bounding box placement, and a Dice score of 0.900 ± 0.024 for 
segmentation.

On the internal test set of the development dataset, the performance of the model for 
detecting CMBs presented an IoU of 0.594 ± 0.258 for bounding box placement, and a 
Dice score of 0.709 ± 0.230 for segmentations. The proportion of the true CMBs pre-
dicted by the model had a recall of 0.879 ± 0.228 in the internal test set of the devel-
opment set. On the external test set, the performance of the model in detecting CMBs 
presented an IoU of 0.523 ± 0.319 for bounding box placement, and a Dice score of 
0.627 ± 0.296 for segmentations. The proportion of the true CMBs predicted by the 
model had a recall of 0.706 ± 0.365 in the external test set. Pearson analysis to evaluate 
the correlations of CMBs areas predicted by the model and the ground truth indicated 
correlations of 0.832 and 0.797 in the internal test set of the development set and exter-
nal test set, respectively (Fig. 1). Figure 2 shows an example of CMB detection.

Table 1  Patients and datasets characteristics

* mean ± standard. The numbers in parentheses are the percentages. Unless otherwise specified the data indicate the 
number of participants. The susceptibility-weighted MR sequences (SWS) of patients from the Third Affiliated Hospital, 
Sun Yat-sen University (SYSUTH) and Maoming People’s Hospital (MMPH) served as the development set, and the SWS of 
patients from the First Affiliated Hospital of SHANTOU University Medical College (STUMFH) served as the external test set 
for testing the geographic performance of the model. The tenfold cross-validation was used to evaluate the stability of the 
deep learning (DL) model

y year, SD standard deviation, CSVD cerebral small vessel disease, aSVD arteriolosclerosis, CAA​ cerebral amyloid angiopathy, 
CADASIL cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

Characteristic Overall Development set External testing set

Number of patients 364 336 28

Age (y ± SD)* 64.83 ± 6.72 64.88 ± 6.71 64.18 ± 6.83

Female sex (%) 126 (34.62%) 117 (34.82%) 9 (32.14%)

CSVD type

 aSVD (%) 217 (59.62%) 203 (61.42%) 14 (50.00%)

 CAA (%) 106 (29.12%) 99 (29.46%) 7 (25.00%)

 CADASIL (%) 41 (11.26%) 34 (10.12%) 7 (25.00%)
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CSVD classification
The inter-rater agreement among committee members was presented with a Fleiss 
Kappa coefficient of 0.735, ensuring the consistency and accuracy of the annotations.

On the internal test set of the development set, the performance of the model for clas-
sifying CSVD into aSVD, CAA, and CADASIL across tenfold cross-validation presented 
a mean weighted-average AUC of 0.865 (95% CI 0.841–0.884), a mean accuracy of 0.732 
(95% CI 0.718–0.746), a mean weighted-average precision of 0.755 (95% CI 0.743–
0.768), and a mean weighted-average F1-score of 0.733 (95% CI 0.719–0.747) (Table 2). 
ROC analysis showed a mean AUC for categorizing CSVD into aSVD, CAA, and 
CADASIL of 0.867 (95% CI 0.805–0.929), 0.863 (95% CI 0.802–0.924), and 0.834 (95% 
CI 0.773–0.895), respectively, in the internal test set of the development set (Fig. 3A). On 
the external test set, the performance of the model at classifying CSVD into aSVD, CAA, 
and CADASIL across tenfold cross-validation presented a mean weighted-average AUC 
of 0.899 (95% CI 0.884–0.914), a mean accuracy of 0.717 (95% CI 0.704–0.731), a mean 

Fig. 1  Pearson analysis for evaluating the model performance in detecting CMB. A The analysis yielded 
a correlation coefficient of 0.832 for the internal test set of the development set. B The analysis yielded a 
correlation coefficient of 0.797 for the external test set. CMBs cerebral microbleed

Fig. 2  An example of CMBs detection. A Original SWS image. B Bounding box placement of CMBs predicted 
by the Mask R-CNN with a probability above 0.6. C Comparison between the CMBs region identified by 
the model and the groundtruth. The probability mask generated by the Mask-RCNN was binarized with 
a threshold of 0.6. The contours of binarized mask and ground truth were visualized in red and blue, 
respectively. CMBs cerebral microbleed; SWS susceptibility-weighted MR sequences
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weighted-average precision of 0.717 (95% CI 0.702–0.733), and a mean weighted-average 
F1-score of 0.705 (95% CI 0.691–0.719) (Table 2). ROC analysis showed a mean AUC for 
categorizing CSVD to aSVD, CAA, and CADASIL of 0.954 (95% CI 0.946–0.970), 0.929 

Table 2  Metrics in CSVD classification for the model and the neurologist group

The numbers in parentheses are the 95% confidence interval

CSVD cerebral small vessel disease, AUC​ area under the receiver operating characteristic curves

Metrics Internal test set External test set

Mean of 10-told 
cross-validation

Mean of 10-told 
cross-validation

Ensemble model Neurologist group

Weighted-average AUC​ 0.865 (0.841–0.884) 0.899 (0.884–0.914) 0.908 (0.895–0.921) –
Accuracy 0.732 (0.718–0.746) 0.717 (0.704–0.731) 0.819 (0.768–0.870) 0.759 (0.740–0.779)

Weighted-average preci-
sion

0.755 (0.743–0.768) 0.717 (0.702–0.733) 0.864 (0.831–0.897) 0.767 (0.747–0.786)

Weighted-average F1-score 0.733 (0.719–0.747) 0.705 (0.691–0.719) 0.829 (0.782–0.876) 0.762 (0.742–0.781)

Fig. 3  ROC and confusion matrices for evaluating the model performance in tenfold cross-validation in 
classifying CSVD. A, B ROC for model performance in tenfold cross-validation on the internal test set of the 
development set and the external test set, respectively. C, D Confusion matrices for model performance in 
tenfold cross-validation on the internal test set of the development set and the external test set, respectively. 
ROC receiver operating characteristic, CSVD cerebral small vessel disease
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(95% CI 0.916–0.940), and 0.760 (95% CI 0.734–0.788), respectively, in the external test 
set (Fig. 3B). The results for each run of tenfold cross-validation of the model for CSVD 
classification are summarized in supplementary materials (Additional file 1: Table S2).

In the external test set, the performance of the ensemble model for classifying CSVD 
presented a weighted-average AUC of 0.908 (95% CI 0.895–0.921), an accuracy of 0.819 
(95% CI 0.768–0.870), a weighted-average precision of 0.864 (95% CI 0.831–0.897), and 
a weighted-average F1-score of 0.829 (95% CI 0.782–0.876) (Table  2). ROC analysis 
showed an AUC for categorizing CSVD to aSVD, CAA, and CADASIL of 0.959 (95% 
CI 0.948–0.969), 0.946 (95% CI 0.932–0.959), and 0.769 (95% CI 0.731–0.805), respec-
tively, in the external test set (Fig. 4). Comparatively, the performance of the group of 
neurologists in classifying CSVD into aSVD, CAA, and CADASIL on the external test 
set was inferior to that of the ensemble model, with an accuracy of 0.759 (95% CI 0.740–
0.779), weighted-average precision of 0.767 (95% CI 0.747–0.786), and weighted-average 
F1-score of 0.762 (95% CI 0.742–0.781). The performance of each neurologist for CSVD 
classification on the external test set is summarized in supplementary materials (Addi-
tional file 1: Table S3 and Additional file 1: Figure S1). Figure 5 shows an example of an 
aSVD SWS superimposed on a Grad-CAM activation map.

Discussion
Optimizing CSVD management usually involves assessing the risk of intracerebral 
hemorrhage and determining the type. However, accurately evaluating these factors 
using MRI, which is the primary tool for examining and diagnosing CSVD, can be 
inconvenient. Firstly, it is difficult to visualize CMBs, indicators for evaluating the risk 
of intracerebral hemorrhage [14], on SWS because of their small size and the exten-
sive co-occurrence of similar objects in the brain, such as blood vessels and calci-
fications, which can be misinterpreted as CMBs. Hence, the visual inspection of 
CMBs on SWS requires significant expertise and can be time-consuming and prone 
to errors. Secondly, differentiating CSVD based on MRI results can be challenging 
since the diagnosis of CSVD primarily relies on neuroimaging biomarkers and clinical 
presentation, which may not have clear-cut categorical distinctions [3]. In addition, 
comprehensive diagnosis of CSVD typically requires multiple MR sequences [13], 
and further biopsy or genetic testing is necessary for confirmation, such as in cases 
of CAA and CADASIL [10, 15]. Both can not only increase the clinical workload but 

Fig. 4  ROC for evaluating the ensemble model performance in classifying CSVD on the external test set. Dots 
of different shapes represent individual neurologist performance and average neurologist performance. ROC 
receiver operating characteristic, CSVD cerebral small vessel disease
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also impose a financial burden on patients. Herein, we used SWS to develop and test 
a DL model that can detect CMBs and classify CSVD into aSVD, CAA, and CADASIL 
to assist neurologists in optimizing the management of CSVD.

Some recent studies have used DL to detect CMBs on SWS [20–22], but images 
were cropped manually around the CMBs, or data were collected from only one 
center, thus, possibly limiting the clinical applicability and reliability. Moreover, previ-
ously proposed models have adopted non-end-to-end algorithms for detecting CMBs, 
which could potentially result in low efficiency and human errors. In this study, we 
proposed to use Mask R-CNN, an end-to-end algorithm, to detect CMBs slice-wise, 
which was developed and tested using SWS collected from three independent cent-
ers, regardless of the MRI system platforms or parameters. Using heterogeneous data 
to develop and test the model indicates that our model has stronger applicability and 
robustness, and using an end-to-end algorithm for CMBs detection indicates that 
our model has higher efficiency and fewer human errors. Additionally, another sig-
nificance of detecting CMBs in this work is the use of the CMBs segmentation masks 
generated by the model to assist with the second task, i.e., CSVD classification. Per-
forming two tasks to capture more detailed information can improve the model sta-
bility [23].

Fig. 5  An example of an aSVD SWS superimposed on the Grad-CAM activation map. SWS 
susceptibility-weighted MR sequences; aSVD arteriolosclerosis, Grad-CAM Gradient-weighted Class Activation 
Mapping
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There are several studies on the application of DL in CSVD [24–26], but the focus is 
on the biomarkers rather than aetiopathogenic classification, limiting the benefit of opti-
mizing CSVD management. Herein, we proposed an SWS-based MIL network that can 
classify sequence-wise CSVD into aSVD, CAA, and CADASIL from the perspective of 
etiopathogenesis. The MIL network must be able to extract SWS representations relative 
to the above types of CSVD to accomplish this task. SWS is presented in a three-dimen-
sional (3D) form with a large volume, making it reasonable to use a 3D convolutional 
neural network (3D-CNN) to extract representations. However, using a 3D-CNN may be 
time-consuming and costly, leading to low calculation efficiency. Reslicing can be used 
to decrease the resolution of the SWS, thereby improving its efficiency. However, high 
resolution is required to recognize CSVD image biomarkers such as CMBs; therefore, 
we abandoned the method of lessening SWS volume by reslicing. Here, we used a two-
dimensional CNN (2D-CNN) to extract SWS representations instead of 3D-CNN. The 
main limitation of 2D-CNN is that it is applicable only to 2D but not 3D images com-
posed of multiple ordered slices, such as SWS [27]. To overcome this limitation, we used 
the attention module to aggregate representations of each SWS slice into the whole SWS 
representation, inspired by the interpretable weakly supervised DL method for data-effi-
cient whole-slide image processing and learning proposed by Ming et al. [28]. Besides, 
to effectively train the model to classify CSVD based on SWS, we used CMBs segmenta-
tion masks generated by the Mask R-CNN to induce the MIL network to concentrate on 
the representations of the above types of CSVD. In tenfold cross-validation, the model 
demonstrated consistent performance on both internal and external test set, indicating 
that our model has excellent generalizability. Based on the Grad-CAM activation map, 
regions within the brain parenchyma were found to have a high degree of contribution to 
the model’s ability to develop CSVD prediction, indicating that our model relies on brain 
representations to make differential decisions, further supporting its stability. Addition-
ally, the model achieved better performance than the neurologist group in classifying 
CSVD into aSVD, CAA, and CADASIL on the external test set, indicating its potential 
to determine CSVD types using only SWS and providing an effective approach for clini-
cal differential diagnosis of CSVD, especially for generalized medical institutions lacking 
adequate diagnostic equipment. Furthermore, the model also offers the added advantage 
of confirming CAA or CADASIL patients without the need for biopsy or genetic testing, 
thereby decreasing the financial burden on patients.

This study has some limitations and potential areas for future research. First, given the 
rarity of monogenic CSVD [10, 29], the present study included a relatively small number 
of patients with CADASIL and did not include other types of CSVD, such as inflamma-
tory vasculitides. To overcome this limitation, future studies should aim to recruit more 
diverse and extensive cohorts. Second, because the SWS labels used to train and test the 
model for classifying CSVD are annotated by a committee based on neuroimaging bio-
markers and clinical symptoms, there may be random human errors, especially in anno-
tating aSVD and CAA; thus, the performance of our model in classifying CSVD is based 
on the neurologist-level “gold-standard”, rather than a true gold-standard. In future 
research, molecular and protein-level studies need to be combined to eliminate human 
errors in the model’s performance. Third, we did not include cases with mixed patholo-
gies, such as small vessel disease combined with inflammatory vasculitides, because we 



Page 9 of 15Wu et al. BioMedical Engineering OnLine           (2023) 22:99 	

considered that the use of neuroimaging biomarkers and symptoms was insufficient to 
distinguish these mixed etiologies. In future research, more clinical information, such as 
biochemical examinations, should be included to train and test the model and achieve 
better results.

Conclusion
In this study, we developed and tested a DL model based on SWS that can detect CMBs 
and presented an IoU of 0.523 ± 0.319, a Dice score of 0.627 ± 0.296, and a recall of 
0.706 ± 0.365, classification of CVSD into aSVD, CAA, and CADASIL had a weighted-
average AUC of 0.908 (95% CI 0.895–0.921), an accuracy of 0.819 (95% CI 0.768–0.870), 
a weighted-average precision of 0.864 (95% CI 0.831–0.897), and a weighted-average 
F1-score of 0.829 (95% CI 0.782–0.876), providing a promising approach to assist neu-
rologists in optimizing the management of CSVD.

Methods
Patients selection

In this study, 364 CSVD patients (217 patients with aSVD, 106 patients with CAA, and 
41 patients with CADASIL) treated at three independent centers, Third Affiliated Hos-
pital, Sun Yat-sen University (SYSUTH), the Maoming People’s Hospital (MMPH), and 
the First Affiliated Hospital of SHANTOU University Medical College (STUMFH), 
were enrolled between January 2017 and May 2022 All patients with aSVD had vascular 
risk factors, such as hypertension, and their MRI neuroimaging met the STandards for 
ReportIng Vascular changes on nEurouimaging (STRIVE) for CSVD [3, 13, 30]. Patients 
with CAA met the diagnostic criteria for probable CAA according to the Boston criteria 
version 2.0 [15, 16]. CADASIL was confirmed by a genetic diagnosis of NOTCH3 gene 
mutation or a granular osmiophilic material identified in a skin biopsy [31, 32]. Detailed 
inclusion criteria can be found in the supplementary materials.

Dataset curation

SWS of enrolled patients were collected to develop and test the model, regardless of 
SWS parameters, to improve robustness and applicability. The SWS acquisition details 
are shown in the supplementary materials (Additional file 1: Table S1). SWS of patients 
from SYSUTH (a hospital in Guangzhou city) and MMPH (a hospital in Maoming city) 
served as the development set, and SWS of patients from STUMFH (a hospital in Shan-
tou city) served as the external test set for testing the geographic performance of the 
model [33]. Additionally, the tenfold cross-validation was used to evaluate the stability 
of the DL model.

Image of SWS preprocessing

The SWS images were pre-processed before inputting the DL model. Firstly, the orien-
tation of all SWS was uniformly adjusted to left-posterior-superior, and the brain area 
was extracted from the irrelevant background. Subsequently, the pixel value in the image 
was ranked, and those topping ≥ 99.5% were denoted as xu . Finally, the pixel value of the 
entire image was normalized and scaled ( X = x/xu).
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Annotation procedures

To train the model for detecting CMBs, an author (R.Z.W), who was blinded to patients’ 
clinical data, performed segmentations of the CMBs using the software ITK-SNAP 
(version 3.8.0). Another author (B.Q) reviewed the results. To evaluate the reproduc-
ibility of the manual segmentations, 30 SWS were randomly selected from the develop-
ment dataset, and an additional segmentation was performed 3 months after the initial 
segmentation.

To train and test the model for classifying CSVD into aSVD, CAA, and CADASIL, 
all SWS underwent additional annotation procedures to confirm the type of CSVD, i.e., 
the SWS label. A committee of three senior neurologists (B.Q, Z.Q.L, and H.L) anno-
tated labels based on inclusion criteria, with more resource-intensive neurologist anno-
tations being reserved. In cases where of disagreement regarding a label, the committee 
discussed and reached a consensus. If consensus could not be achieved, the SWS was 
excluded. In summary, each SWS label received one committee consensus annotation, 
which was regarded as the gold-standard for model evaluation. In the external test set, 
four neurologists (L.W, T.T.L, X.H.H, X.L) that were not part of the committee provided 
individual annotations for labels, and these labels were utilized to compare the model’s 
performance. To evaluate the consistency and accuracy of the annotations, we employed 
the Fleiss Kappa coefficient to measure the inter-rater agreement among committee 
members.

Network architecture

Figure 6 shows detailed information regarding our architecture. Mask R-CNN was used 
to detect CMBs slice-wise and to obtain a semantic segmentation mask for CMBs [34]. 
Next, a multi-instance learning (MIL) network was applied to classify CSVD sequence-
wise [35]. Semantic segmentation masks of CMBs generated by Mask-RCNN were 
then spliced with the original corresponding SWS to form a double-channel image as 
the model’s input for classifying CSVD, inducing the model to concentrate on repre-
sentations of CSVD on SWS. Resnet50 served as the backbone to extract representa-
tions of SWS on each slice layer by layer. Representations of each slice were exhibited 

Fig. 6  Deep learning architecture overview. Mask R-CNN was used to detect CMBs slice-wise and to obtain 
a semantic segmentation mask of CMBs. Next, semantic segmentation masks of CMBs were spliced with 
the originally corresponding SWS to input the MIL network for classifying CSVD SWS-wise. CMBs cerebral 
microbleed, SWS susceptibility-weighted MR sequences, MIL multi-instance learning, CSVD cerebral small 
vessel disease



Page 11 of 15Wu et al. BioMedical Engineering OnLine           (2023) 22:99 	

as a 1024-dimension vector. Representations of every slice belonging to the same SWS 
were aggregated into one feature vector using the attention module, among which those 
representations of slices relating to the final prediction CSVD type were given higher 
weights, and vice versa. This feature vector was concatenated with the corresponding 
patient’s age and sex to generate a 1026-dimension vector, serving as the sequence’s rep-
resentation. Finally, a fully connected layer was used to predict CSVD type according 
to sequence representation. Gradient-weighted Class Activation Mapping (Grad-CAM) 
[36] was applied to visualize where the MIL network focuses its attention when develop-
ing a prediction.

Model training

Adjacent slices in the SWS were combined to form a three-channel two-dimensional 
image and input into the Mask-RCNN network to identify CMBs. The manual segmen-
tation of CMBs from the middle channel of the two-dimensional image was used as the 
ground truth. In CMBs detection training, loss functions used for segmentation and 
boundary box placement included per-pixel sigmoid loss, binary loss, and regression 
loss, respectively. During the training for CSVD classification, a balanced random sam-
pling of three categories of CSVD samples was realized using weighted sampling, and 
the batch size was defined as 1, which guaranteed that only one sample was input into 
the model. The loss function of the model for CSVD classification was the cross-entropy 
loss function. The parameters of the model, including the feature extraction module, 
were trained from end to end using the reverse value of the cross-entropy loss function. 
The Adam optimizer was used to optimize the parameters of the second model, and the 
initial learning rate was set at 0.001. An early stopping mechanism was used to control 
the performance of the training process. When the loss function on the internal test set 
of the development set did not decline for five consecutive epochs, the training of the 
model was terminated, and the best model was preserved to avoid a large overfitting 
of the model on the training set. To classify CSVD, we implemented the tenfold cross-
validation to obtain ten models on the development set. To test the model’s applicability 
for classifying CSVD, the performance of the ensemble model obtained by aggregating 
ten models was compared with that of four neurologists (L.W, T.T.L, X.H.H, X.L) on the 
external test set. The training parameters and source code can be found online (https://​
github.​com/​Huats​ing-​Lau/​CSVD-​CMBs-​Detec​tion-​and-​Class​ifica​tion.​git).

An AMD EPYC 7742, 2.25-GHz CPU, and an A100 GPU (Nvidia) were used and run 
on a Linux system (Ubuntu, version 7.5.0) with a CUDA version 11.7 platform. Model 
implementation was performed using open-source software (Python, version 3.8.3; 
Python Software Foundation), Pytorch, version 1.13.0, and torchvision version 0.14.0.

Statistical analysis

Mean and standard deviation (SD) were used to describe continuous variables, while 
percentages were used to describe non-continuous variables. Differences between 
groups were tested using one-way ANOVA and the Chi-square test, respectively.

The IoU, Dice score, and recall were calculated to evaluate the model’s performance 
in detecting CMBs. The IoU formulas was expressed by Eq.  (1) was used to assess the 
performance of bounding boxes. Bounding box placement was considered correct for an 

https://github.com/Huatsing-Lau/CSVD-CMBs-Detection-and-Classification.git
https://github.com/Huatsing-Lau/CSVD-CMBs-Detection-and-Classification.git
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IoU above 0.5. The Dice score formulas expressed by Eq. (2) was used to assess the per-
formance of the segmentation.

where TP, FP, and FN represent true positive pixels, false positive pixels, and false nega-
tive pixels, respectively. The recall formulas expressed by Eq. (3) was used to evaluate the 
proportion of the true CMBs predicted by the model.

where TP and FN represent the number of true positive CMBs detected by the Mask 
R-CNN (only those predicted CMBs with a Dice score exceeding 0.5 are considered true 
positive CMBs).

Confusion matrices, ROC curves, precision, and accuracy were used to evaluate the 
performance of the model in classifying CSVD. Confusion matrices were used to illus-
trate the label of CSVD classification, where the model prediction or the individual neu-
rologist predictions were discordant with the committee consensus. ROC analysis was 
used to calculate AUC to assess the discrimination of the model for each label class. 
With false positive rate (FPR) as the horizontal coordinate and true positive rate (TPR) 
as the vertical coordinate, ROC can be drawn and AUC can be calculated. The formu-
las of TPR and FPR were expressed in Eq. (4) and Eq. (5), respectively. Accuracy preci-
sion, and F1 score were calculated to provide additional information for ROC analysis 
[37], providing complementary performance measures to the AUC, especially in the 
context of multi-class prediction, and reducing sensitivity to class imbalance issues. The 
weighted-average of the indices was calculated to eliminate the imbalance between the 
number of categories. The formulas of accuracy, precision, and F1 score were expressed 
in Eq. (6), Eq. (7), and Eq. (8), respectively.

(1)IoU =
TP

FP + TP + FN
,

(2)Dicescore =
2TP

FP + 2TP + FN
,

(3)Recall =
TP

TP + FN
,

(4)TPR =
TP

TP + FN
,

(5)FPR =
FP

FP + TN
,

(6)Accuracy =
TP + TN

TP + FN + FP + TN
,
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where TP, TN, FP, and FN represent the true positive, true negative, false positive, and 
false negative numbers, respectively.

Statistical significance was set at P < 0.05. The 95% confidence interval (CI) was cal-
culated for each index. IBM SPSS Statistics (version 26), scikit-learn (version 0.24.2), 
and the statsmodels (version 0.13.5) were used to analyze the metrics of the models.
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