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INTRODUCTION 
 

Uveal melanoma (UVM), also termed ocular melanoma, 

is a unique neoplasm that arises from malignancies 

within the uvea [1]. It affects approximately 5–7 

individuals per million each year, with management 

typically involving surgical procedures, brachytherapy, 

or proton beam therapy [2–4]. Genetic anomalies play  
a critical role in UVM development and progression  

[5, 6]. Key genetic players, such as SF3B1 [6], PTP1B 

[7], BAP1 [8], and EIF1AX [9], serve both as indicators  

of prognosis and as therapeutic targets. While localized 

UVM cases have a promising 5-year survival rate  

of around 80%, metastatic instances often exhibit a dire 

prognosis, with an average survival duration of less  

than one year [10]. Thus, understanding prognosis-

related biomarkers or risk factors for UVM is vital  

for enhancing clinical intervention strategies. 

 
Tryptophan (Trp) is an essential amino acid that  
must be obtained from dietary sources due to its 

absence of endogenous synthesis [11]. Its metabolic 

pathway primarily branches into the serotonin and 

kynurenine pathways (KP) [12]. Key rate-limiting 
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reveals correlations between risk assessments and immune cell infiltrations. Notably, the low-risk group displayed 
a heightened potential response to immune checkpoint inhibitors. In conclusion, our findings underscore the 
dynamic relationship between TRMG expression and various UVM characteristics, presenting a novel prognostic 
framework centered on TRMGs. The deep connection between TRMGs and UVM’s tumor immune 
microenvironment emphasizes the crucial role of tryptophan metabolism in shaping the immune landscape. Such 
understanding paves the way for designing targeted immunotherapy strategies for UVM patients. 
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enzymes identified within the KP include TDO, IDO1, 

and IDO2 [13, 14]. The multifaceted roles of these 

enzymes in various diseases – from cancers [15] to 

autoimmune conditions [16] and neurological disorders 

[17] – make them compelling subjects for scientific 

exploration. Previous studies have demonstrated that 

TDO’s presence in glioblastoma [18] and breast cancer 

[19] cells can enhance malignancy. Similarly, over-

expression of IDO1 increases the mobility of lung 

cancer cells, whereas its inhibition reverses this effect 

[20]. Additionally, in cervical cancer-related lymph 

nodes, a significant proximity was observed between 

FOXP3+ Treg cells and dendritic cells expressing IDO1 

[21]. This interaction correlates with elevated levels  

of CD4+CD25+FOXP3+ Treg cells in patients with 

conditions like AML [22] and metastatic pancreatic 

ductal adenocarcinoma [23]. Recent findings also 

indicate that tumor cells can transfer Kyn to CD8+ T 

cells, prompting an increase in PD-1 expression through 

an AHR-dependent process [24]. Furthermore, TDO 

displays substantial immunosuppressive capabilities, 

inhibiting T-cell growth and reducing immune cell 

infiltration into the tumor environment [25]. These 

studies underscore Trp’s central role in tumor prog-

ression and immune response modulation [26]. While 

tryptophan metabolism (TPM) profoundly impacts  

the immune aspects of tumors, its influence on UVM’s 

progression and immune landscape remains an area ripe 

for exploration. 

 
In our recent work, we studied TCGA and GEO cohorts 

of UVM patients. Our aim was to discern the relationship 

between TRMGs expression and the immunological and 

morphological traits of UVM. We conducted extensive 

analyses to decipher the intricate dynamics between 

TRMGs and UVM’s immune status. Additionally, we 

assessed drug sensitivity in UVM patients based on 

TRMG profiles. By integrating our findings with current 

knowledge, we are poised to delve deeper into how  

TPM might augment responses to immune checkpoint 

inhibitors and guide immunotherapy choices for UVM 

patients. 

 

METHODS 
 
Study population and data collection 

 
UVM mRNA expression profiles were explored in  

a cohort of 80 patients, with data sourced from The 

Cancer Genome Atlas (TCGA) database (https://portal. 

gdc.cancer.gov/) and the Gene Expression Omnibus 

(GEO, GSE22138). Throughout this research, strict 

adherence to relevant guidelines ensured methodological 

rigor. Duplicates were removed, and cases lacking clinical 

outcomes were excluded (processed datasets were 

shown in Supplementary File 1). For data processing, 

the R programming language was employed, effectively 

translating Ensembl ID numbers into gene symbols. 
 

Defining tryptophan metabolism-related genes 

 

In our exploration of TMRGs (Supplementary File 2),  

we focused on those associated with the “KEGG 

TRYPTOPHAN METABOLISM” pathway, drawing data 

from The Molecular Signatures Database (MSigDB) 

(http://software.broadinstitute.org/gsea/msigdb/index.jsp). 
 

Alterations of TMRGs in UVM 
 

TMRG modifications in the TCGA database, which 

include changes in gene expression, methylation, and 

copy number variations (CNVs), were analyzed using 

the Gene Set Cancer Analysis platform (http://bioinfo. 

life.hust.edu.cn/GSCA/#/). Our study assessed the impact 

of these TMRG alterations on disease-free survival 

(DSS), overall survival (OS), and progression-free 

survival (PFS) in patients. 
 

Identification of subtypes and biological function 

enrichment 
 

Using consensus unsupervised clustering analysis, 

patients were classified into specific molecular subgroups 

based on the expression patterns of 40 TRMGs. We  

then assessed the differences in prognosis and survival 

rates among these subtypes, employing univariate Cox 

regression and Kaplan-Meier survival analyses with the 

aid of the ‘survival’ (3.5.7) and ‘survminer’ (0.4.9) R 

packages. Additionally, using the Gene set variation 

analysis (GSVA), we determined the variations in mole-

cular subtype enrichment within biological processes, 

referencing the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and Gene Ontology (GO) gene sets. 
 

Establishment of the risk model 
 

To construct a precise prognostic signature focusing on 

minimal RNA processing factors, we applied the least 

absolute shrinkage and selection operator (LASSO) 

penalty using R software’s “glmnet” (4.1.8) package. 

Ten-fold cross-validation determined the optimal penalty 

parameter (λ) and established regression coefficients for 

individual variables. The formula used was RiskScore = 

Σβi × Expi, where i represents gene expression levels 

and β corresponds to the gene’s Cox regression co-

efficient. Hazard ratios emerged from both univariate and 

multivariate Cox regression analyses, visualized through 

forest plots generated by R’s “forestplot” (3.1.3) package. 
 

Evaluation of the TRMGs prognostic model 
 

Based on the median risk score, patients were classified 

into either high- or low-risk group. The efficacy of the 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
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model was assessed by comparing survival rates between 

these groups using Kaplan-Meier plots generated via 

R’s “survival” package. Differences in CRG expression 

between the groups were illustrated using a heatmap 

created with the “pheatmap” package. Time-dependent 

receiver ROC analysis, facilitated by the “survminer” 

and “timeROC” R packages, assessed the model’s 

specificity and sensitivity over 1-, 3-, and 5-year periods. 

The area under the ROC curve (AUC) indicated the 

model’s predictive accuracy. A nomogram for predicting 

UVM patient survival over 1-, 3-, and 5- year durations 

was formulated using the “rms” package, integrating 

factors like age, pathologic stage, T-stage, gender, and 

the risk score. 

 

Analysis of immune capacity and drug susceptibility 

across risk categories 

 

We employed CIBERSORTx to calculate the tumor 

infiltrating immune cells (Supplementary File 3), and then 

evaluate correlations with risk scores. The research also 

identified differential expressions of immune cell sub-

sets between the high- and low-risk groups. To explore 

variations in drug sensitivity between the risk groups, we 

utilized the ‘pRRophetic’ (0.5) algorithm and ‘ggpubr’ 

(0.6.0) packages, computing IC50 values for commonly 

used immunotherapeutic drugs in cancer treatment. 

 

Immune cell infiltration assessment 

 

The gene markers were retrieved from Immune Cell 

Abundance Identifier (ImmuCellAI), which was shown  

in Supplementary File 4. We compared immune cell 

infiltration patterns across 24 immune cells (ImmuCellAI) 

between high- and low-risk groups. Grouping 143 UVM 

patients based on median risk scores, we analyzed data on 

the platform to understand the dynamics of immune cell 

abundance and infiltration. 

 

Cell culture 

 

UVM cell lines C918 and M619, sourced from ATCC 

(VA, USA), were cultivated in DMEM supplemented 

with 10% fetal bovine serum and incubated at 37°C  

with 5% CO2. Post 24-hour treatment with 5 μM N,N-

Dimethyltryptamine (DMT), one group was established 

as the DMT group, while the other served as a control 

(NC group). 

 

Cell viability assay 

 

5 × 103 cells were seeded onto a 96-well plate and 

allowed to adhere overnight in a medium containing 
10% FBS. After the initial treatment, cell viability was 

gauged using the Cell Counting Kit-8. Post-DMT 

treatment, the cells were left to form colonies for 

seven days. Following this period, the cells were fixed, 

stained, and colony numbers were quantified using 

ImageJ software. 

 

Colony formation assay 

 

Following DMF treatment, cells were seeded in 6-well 

plates at a density of 2 × 103 cells/well and incubated 

in DMEM supplemented with 20% FBS for seven 

days. After this period, cells were fixed using 70% 

ethanol and stained with a 0.25% crystal violet 

solution (Thermo-Fisher, PA, USA). Colonies were 

then quantified using ImageJ software. 

 

Cell apoptosis 

 

Using flow cytometry, apoptosis was analyzed with 

the Annexin V-FITC cell apoptosis detection kit 

(Beyotime, Shanghai, China). Detached cells were 

suspended in 1× binding buffer at a concentration  

of 1 × 105 cells/mL. Following this, 5 μL of FITC 

Annexin-V and 5 μL of propidium iodide were added 

to 100 μL of the cell suspension, which was then 

incubated in the dark for 15 minutes. After incubation, 

400 μL of 1× binding buffer was added. Apoptosis was 

analyzed using the FACS Calibur flow cytometer with 

Cell-Quest software (BD Cell Quest Pro Software, BD 

Biosciences, CA, USA). 

 

Cell invasion assay 

 

Transwell cell culture systems with 8 μM pores in the 

upper chamber membranes were used for cell invasion 

assays. The upper chamber membrane was coated with 

a mixture of Matrigel (Corning, NY, USA) and serum- 

free DMEM. 1 × 104 cells in suspension were seeded 

into each upper chamber in serum-free medium,  

with or without 5 μM DTM. The lower chamber was 

filled with DMEM medium containing 20% FBS. 

After a 24-hour incubation at 37°C and 5% CO2, the 

cells were fixed with 4% formaldehyde and stained 

with 0.1% crystal violet. Non-invaded cells on the 

upper membrane were removed using a 70% ethanol-

soaked cotton swab. Invaded cells on the lower side  

of the membrane were visualized and captured with  

an inverted microscope (Ti-S, Nikon, Tokyo, Japan). 

Using ImageJ software, the invaded cells were 

counted, and an average value was calculated from 

three randomly chosen fields of view, each at 100× 

magnification. 

 

Scratch wound-healing migration assay 

 
UVM cells were cultured on a six-well plate at a density 

of 5 × 105 cells per well and incubated until they 

reached confluence. Using a 10 μL pipette tip, a linear 
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scratch was made across the monolayer. The cells were 

then treated with either 0 or 12.5 nm of DMT. Images 

were captured at 0 and 24-hour intervals using an 

inverted light microscope (Leica DM IL, Wetzlar, 

Germany). The wound area was analyzed with ImageJ 

software, and the wound closure rate was calculated 

using the formula: (initial wound area - residual 

wound area)/initial wound area ×100%. 

 

Statistical analysis 

 

For comparisons between two groups, the Student’s 

t-test was employed. For multiple group comparisons, 

the Wilcoxon test was used. Survival differences were 

assessed using the log-rank test. A p-value of less than 

0.05 was deemed statistically significant. The code 

script was shown in Supplementary File 5. 

 

Data availability statement 

 

The datasets presented in this study can be found in 

online repositories. 

 

RESULTS 
 

The difference in survival according to alteration of 

TMRGs in patients with UVM 

 

In assessing the survival differences linked to TMRGs 

alterations in UVM patients, a thorough analysis  

of the mRNA expression of TMRGs in the UVM  

cohort from TCGA revealed a significant correlation. 

High expression levels of WARS1, KMO, and IDO1 

were associated with shorter DSS, OS, and PFS. 

Conversely, low expression of OGDHL, HAAO, 

EHHADH, ALDH9A1, ALDH1B1, and AANAT 

yielded similar outcomes (Figure 1A). Additionally, an 

examination of TMRGs methylation levels classified 

UVM patients into two groups: those with hazard 

ratios exceeding 1 and those below. It was found that 

higher methylation of ALDH7A1 and EHHADH, and 

lower methylation of IDO2, MAOB, INMT, and DDC 

were indicative of unfavorable DSS, OS, and PFS 

outcomes (Figure 1B). A subsequent survival analysis 

using CNV data in UVM confirmed that CNV of 

TPH1, IDO2, IDO1, EHHADH, and CAT were also 

associated with poor DSS, OS, and PFS (Figure 1C). 

 

Establishment of Trp subtypes and analysis of 

biological pathways 

 

To elucidate the role of TMRGs in UVM progression, 

we analyzed various genomic factors. We classified 

patients from TCGA and GSE22138 into two distinct 

clusters based on the consensus matrix (Figure 2A). 

Notably, cluster A exhibited a significantly prolonged 

OS compared to cluster B (Figure 2B). A GSVA  

in GO revealed enrichment in metabolic processes 

(such as NADH, ADP, ribonucleoside diphosphate, 

and nucleoside diphosphate) as well as vesicle and 

granule pathways in cluster A (Figure 2C). Similarly, a 

GSVA in KEGG showed that cluster A was rich in 

diverse pathways, including cancer (glioma and bladder 

cancer) and metabolic pathways (like linoleic acid, 

glyoxylate and dicarboxylate, inositol phosphate, and 

galactose) (Figure 2D). Delving deeper with ssGSEA, 

we observed greater immune cell infiltration in cluster 

A, characterized by the prevalence of immune cell 

types such as Activated. B.cell, Activated (Figure  

2E). CD4.T.cell, Activated.CD8.T.cell, and others. Our 

findings suggest that TMRGs may play a pivotal role 

in UVM progression, potentially by regulating immune-

related and metabolic processes and pathways. 

 

Identification of gene subtypes 

 

Through comparative analysis of the two Trp subtypes, 

we identified 994 differentially expressed genes (DEGs) 

at their intersection. Univariate Cox regression analysis 

was employed to assess the prognostic significance of 

these DEGs, leading to the selection of 284 specific 

genes. Leveraging the insights from the Trp subtypes, 

we utilized the consensus clustering algorithm to 

stratify patients into three genomic subtypes based on 

these 284 prognostic genes, which we termed gene 

subtypes A, B, and C (Figure 3A). Clinical analysis 

showed that cluster B had a higher expression of 

TMRGs compared to cluster C (Figure 3B). Survival 

analysis underscored the superior survival benefits for 

individuals in gene cluster A (Figure 3C). A compre-

hensive review of TMRGs expression levels across the 

gene subtypes revealed marked differences in genes such 

as AANAT, ACAT2, and ECHS1, among others 

(Figure 3D). 

 
Construction of the prognostic model of TMRGs in 

UVM 

 
We subjected UVM patients to LASSO and multivariate 

Cox regression analyses, identifying five key model 

genes with their associated coefficients (Figure 4A,  

4B). The resulting formula was: risk score = (−0.168  

× expression of ATP13A3) + (0.060 × expression  

of CHST11) + (0.218 × expression of TPST2) + 

(0.085 × expression of TAPBPL) + (0.045 × expression 

of MRPL24). Using this risk score, we stratified the 

patient cohort into high-risk and low-risk groups based 

on the median signature risk score. A Sankey diagram 

illustrated the distribution and characteristics of 

patients, highlighting the majority in the high-risk group 

who sadly succumbed (Figure 4C). Notably, the risk 

score distribution varied among TMG and gene clusters:
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Figure 1. The disparity in survival outcomes in the modifications of TMRGs among patients afflicted with UVM. (A) The 

distinction in survival outcomes between elevated and diminished TMRG expression profiles; (B) Survival difference between high and low 
methylation of TMRGs; (C) Survival difference between CNV groups of TMRGs. TMRGs, tryptophan metabolism-related genes. The color from 
blue to red represents the hazard ratio, size represents statistical significance in bubble plot. The black outline border indicates Cox P ≤ 0.05. 
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Figure 2. Trp-related dual classifications and the enrichment of pertinent biological functions. (A) Harmonized matrix heatmap 

delineating a pair of distinct clusters; (B) Survival analysis among the two subtypes; P value was calculated based on Log-rank test;  
(C) Differences in the PCA analysis among the two clusters; (D) Disparities in expression levels of TMRGs related to clinical characteristics within 
the two unique subtypes; (E) Disparities in the immune infiltration between the two distinct clusters. Abbreviations: Trp: tryptophan 
metabolism; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology. 

 

 
 
Figure 3. Construction of gene subtypes. (A) Harmonized matrix heatmap delineating a pair of distinct gene assemblages; (B) 
Disparate expression of TMRGs amid clinical characteristics within the duet of gene subclasses; (C) Survival curves for OS of the two gene 
subtypes; (D) Variations in the manifestation of 40 TMRGs between the pair of gene subclasses. 
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gene cluster C had the highest risk score, while TMRGs 

cluster A was associated with a higher risk score 

(Figure 4D, 4E). Moreover, significant differences in 

TMRGs expression levels, including AADAT, ACAT2, 

and ECHS1 among others, emerged between the high- 

risk and low-risk groups (Figure 4F). 

 

The Kaplan-Meier survival curve demonstrated that the 

low-risk patient group had a significantly longer OS than 

the high-risk group (Figure 5A). Time-dependent ROC 

curves for 1-year, 3-year, and 5-year OS yielded AUCs 

of 0.724, 0.795, and 0.841, respectively (Figure 5B). A 

heatmap visualized the expression patterns of the five 

model genes across different risk score groups (Figure 

5C). As risk scores increased, the distribution of survival 

status showed a rising mortality rate (Figure 5D, 5E). The 

calibration plot highlighted a strong alignment between 

4F).
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a Trp inhibitor and evaluated its impact on cell 

proliferation, apoptosis, migration, and invasion. Our 

results from the CCK-8 assay (Figure 8A) and colony 

formation assay (Figure 8B) indicated that inhibiting  

Trp effectively suppressed UVM cell proliferation. Flow 

cytometry analyses further revealed that Trp inhibition 

significantly enhanced apoptosis in UVM cells (Figure 

8C). Additionally, we noted a marked reduction in cell 

migration distance upon Trp inhibition (Figure 8D). 

Moreover, the cells treated with the Trp inhibitor 

displayed a reduced propensity to invade Matrigel 

compared to the control cells (Figure 8E). In essence, Trp 

plays a pivotal role in the tumorigenicity of UVM cells. 
 

DISCUSSION 
 

In adults, UVM is the most common primary 

intraocular malignancy, affecting approximately five 

individuals per million each year [27]. While localized 

ocular treatments such as brachytherapy, proton beam 

therapy, and enucleation have been employed, they only 

partially inhibit tumor growth [28]. Unfortunately, once 

 

 
 

Figure 5. The prognostic signature’s risk score and its correlation with survival outcomes within the UVM cohort. (A) Survival 
analysis of the different risk subgroups; (B) ROC curves illustrating the predictive accuracy of 1-, 3-, and 5-year survival rates based on 
varying risk scores; (C) Disparate expression of model genes in the different risk subgroups. (D) Distribution of the risk score in the different 
risk subgroups. (E) The survival status in the different risk subgroups; (F) Nomogram model for individual patient survival probabilities at  

1-, 3-, and 5-year intervals for those diagnosed with UVM; (G) Calibration curves depicting the nomogram’s accuracy in relation to observed 

OS at 1-, 3-, and 5-year milestones. 
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metastasis occurs, the patient’s life expectancy sharply 

decreases [29]. If left untreated, a concerning 80–90% 

of UVM patients will face metastasis [30]. Despite 

significant advancements in diagnostics and treatments 

over the past decade, metastasis rates persistently 

remain around 50%, with the majority of patients 

succumbing within a year [31]. Identifying prognostic 

risk factors or molecular markers could facilitate the 

early removal of emerging metastatic sites and more 

careful monitoring, potentially improving both the 

quality and duration of life. 

Numerous studies have emphasized the crucial role of 

TPM in cancer progression [14, 32]. Decreased levels  

of TPM have been reported in various malignancies, 

including UVM [33]. Importantly, TPM plays a vital 

role in T-cell regulation and immune cell infiltration 

within tumor environments [34]. The expression of 

IDO1 has been shown to correlate with immune 

infiltration in multiple types of cancer [35]. Motivated 

by these findings, we sought to investigate the 

relationship between Trp, cancer traits, and the immune 

landscape in UVM. To this end, we delved into 

 

 
 

Figure 6. Prognostic TMRGs intervene in immune infiltration in UVM. (A) Correlations between risk score and immune, stromal 

and ESTIMATE scores; (B) Heatmap of the immune cells, five differential gene and the risk score; (C–H) Correlation between the risk score 
and the abundance of immune cells, including (C) Dendritic cells resting, (D) Macrophages M1, (E) T cells CD4 memory resting, (F) T cells 
regulatory (Tregs), (G) B cells naive, (H) Plasma cells. 

 

 
 

Figure 7. Drug sensitivity for TMRGs in UVM. (A–I) Correlations between the risk score and AMG. 706 (A), Temsirolimus (B), SL.0101.1 

(C), PF.4708671 (D), RO.3306 (E), WZ.1.84 (F), X17.AAG (G), Vinorelbine (H), Etoposide (I), and FH535 (J) sensitivity. 
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analyzing the TRMGs expression patterns in UVM, 

striving to decipher the intricate associations between 

these genes, clinicopathological features, and the 

broader immune context of the disease. 

 

We began by examining the variations in TRMGs 

expression in UVM patients from the TCGA cohort, 

recognizing the intricate interplay between gene 

expression, methylation changes, and their potential 

influence on patient survival. Our findings highlighted 

those aberrant expressions of WARS1, KMP, IDO1, 

OGDHL, HAAO, EHHADH, ALDH9A1, ALDH1B1, 

and AANAT were significantly associated with reduced 

survival rates in UVM patients. Elevated methylation 

levels of ALDH7A1 and EHHADH, as well as 

decreased methylation of IDO2, MAOB, INMT, and 

DDC, were found to correlate with unfavorable patient 

outcomes. Additionally, we identified CNVs across all 

TRMGs. Based on these observations, we propose that 

TPH1, IDO2, IDO1, EHHADH, and CAT could be 

pivotal prognostic markers for UVM patients. 

 

Following a rigorous univariate Cox regression 

analysis, we identified a specific set of eight TRMGs 

(specifically, ALDH9A1, CAT, CYP1A1, ECHS1, 

EHHADH, IL4I1, OGDH, and TPH2). Using these 

genes, we established two Trp subcategories based on 

patient data from TCGA and GSE22138 databases. 

 

ALDH9A1, a member of the aldehyde dehydrogenases 

(ALDH) family, facilitates the conversion of gamma- 

aminobutyraldehyde (ABAL) to GABA. Notably, Zhang 

et al. [36] highlighted its association with melanoma 

development and drug resistance. The CAT gene 

encodes catalase, an essential antioxidant enzyme 

defending against oxidative stress. An imbalance in 

antioxidants has been associated with melanoma 

progression [37]. Recent studies indicate a heightened 

expression of CYP1A1 in G0-positive melanoma  

cells, emphasizing its significance in cancer progression 

[38]. The ECHS1 gene, crucial for fatty acid beta-

oxidation, interacts with STAT3 [39] and has been 

linked to metastatic melanoma. EHHADH, essential  

for the peroxisomal beta-oxidation process, has shown 

increased mRNA expression in some melanoma  

cell lines [40]. IL4I1, expressed by CD11b+ myeloid 

cells, modifies the immune landscape in melanoma 

[41]. In melanoma cells with suppressed SIRT3,  

OGDH expression was found reduced [42]. Lastly, 

TPH1, involved in 5-methoxytryptophan synthesis, 

exhibited increased levels in melanoma cells compared 

to tumor-infiltrating lymphocytes [43]. Collectively,  

these genes offer promising avenues for inhibiting 

UVM malignancy by altering metabolism and immune 

regulation. 

 

Among the subtypes, subtype A showed a more 

favorable survival outcome. GO and KEGG enrichment 

analyses, performed using GSVA, revealed that sub-

type A was mainly enriched in cancer and metabolic 

pathways. Furthermore, based on prognosis-related 

DEGs, three distinct gene subtypes were identified. Of 

these, subtype A presented a survival advantage over 

the others, underscoring the prognostic potential of our 

Trp-associated signature. 

 

Following the Cox analysis, we identified  

ATP13A3, CHST11, TPST2, TAPBPL, and MRRL24 

as significant prognostic markers for UVM in both  

the TCGA and GSE22138 cohorts, leading to the 

development of a prognostic model. Notably, the risk 

score distribution showed variation across both the 

TMG and gene clusters. Patients categorized in the low- 

risk group had notably longer overall survival than 

 

 
 

Figure 8. The effect of TPM on UVM cells. (A, B) Cell proliferation detected using CCK-8 assay (A) and colony formation assay (B); 

(C) Cell apoptosis detected using flow cytometry; (D) Cell migration measured using wound healing test; (E) Cell invasive ability detected 
using Transwell assay. Abbreviation: TPM: tryptophan metabolism. 
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those in the high-risk group. The accuracy and 

reliability of this prognostic signature were affirmed 

through internal validation, using both ROC and 

calibration chart evaluations. Further analysis from the 

Cox assessment identified gender and risk score as 

independent prognostic factors for UVM patients. 

While some studies found no gender differences in 

UVM outcomes [44], others have reported increased 

metastasis rates and shorter survival times for male 

patients [6]. This aligns with our findings, where male 

patients predominantly fell into the high-risk category 

and showed a correlation with reduced UVM survival 

durations. 

 
Exploring the intricate immune landscapes of UVM,  

we observed a deep interconnection between TPM and 

the immunological intricacies of the disease. Patients  

in the high-risk group exhibited pronounced increases  

in stromal, immune, and ESTIMATE scores. Our 

CIBERSORTx analysis revealed a marked infiltration 

of diverse immune cells, particularly macrophages and 

T cells, which interact closely with TRMGs. Notably, 

M1 macrophages displayed a significant association 

with TRMGs. These M1 macrophages play a critical 

role in promoting tumor growth and inducing immuno-

suppressive effects [45]. Our findings suggest that high 

TRMGs values, indicative of increased tryptophan 

catabolism and reduced tryptophan availability, may 

signal an increased infiltration of M1 macrophages, 

leading to immunosuppression [46]. Tumors have been 

observed to recruit circulating monocytes and local 

macrophages, triggering a shift from M1 to M2 

macrophages [47]. This transformation results in the 

formation of tumor-associated macrophages (TAMs), 

which produce cytokines known to inhibit T-cell 

activity and increase immunosuppressive proteins [48]. 

Our analysis revealed a strong negative association 

between T-cells and TRMGs. The immunosuppressive 

capabilities of TAMs facilitate immune evasion in 

UVM, suggesting a poor prognosis for UVM patients 

with elevated TRMGs. 

 
The field of tumor immunotherapy aims to enhance  

the body’s defense against tumor evasion while 

minimizing adverse effects [49]. This therapeutic 

approach encompasses immune checkpoint inhibitors 

(ICIs), thymosin, and biologically-derived cells such  

as dendritic cells and chimeric antigen receptor T  

cells [50]. Notably, CTLA-4, PD-1, and PD-L1 have 

gained prominence in clinical research due to their 

demonstrated safety and efficacy [51]. The application 

of ICIs against UVM has shown promise. Our findings 

reveal increased expression of checkpoints in high- 

risk patients, indicating the potential for improved 

responsiveness to treatment. These high-risk patients 

might have a greater sensitivity to ICIs, and drugs like 

AMG.706, temsirolimus, SL.0101.1, PF.4708671, 

RO.3306, WZ.1.84, and X17.AAG could offer 

therapeutic benefits within this vulnerable group. 

 
In our effort to understand the effects of Trp on  

UVM malignancy in vitro, we performed various  

assays on UVM cell lines C918 and M619. These 

assays included evaluations of cell viability, apoptosis, 

migration, and invasiveness. Post-DMT treatment, we 

observed a decrease in cell viability and a reduction 

in the migratory and invasive abilities of UVM cells.  

On the other hand, apoptosis in UVM cells increased. 

These results highlight the suppressive effect of Trp  

on UVM cells, emphasizing its importance in UVM 

progression and hinting at its potential therapeutic  

value for UVM patients. 

 
The newly developed prognostic model, centered  

on the expression of five critical TMRGs, presents a 

transformative approach for clinicians. By distinguishing 

patients into high-risk and low-risk categories, it enables 

tailored surveillance strategies, allowing for adaptable 

frequency of consultations and depth of examinations. 

This stratification becomes all the more vital, as the 

Kaplan-Meier survival curves demonstrate a markedly 

reduced overall survival for the high-risk cohort. A 

nuanced grasp of the UVM immune landscape, as 

delineated by the TMRG model, unveils promising 

therapeutic possibilities. The pronounced prevalence of 

specific immune cells, such as resting dendritic cells and 

M1 macrophages in the high-risk faction, compared to 

their counterparts in the low-risk segment, provides 

invaluable insights for immunotherapy interventions. 

Amplifying this perspective is the finding that indivi-

duals in the high-risk category display an enhanced 

susceptibility to select immunotherapeutic drugs. 

Recognizing the clinical ramifications of TMRGs can 

steer future investigations towards uncovering correlated 

genes, interconnected metabolic pathways, or external 

determinants influencing TMRGs’ expression or function. 

Periodical assessments of TMRGs expression or tracking 

their metabolic by-products could serve as a barometer 

for treatment success or the looming threat of recurrence. 

 

While our study aligns with several others that report 

similar findings, it’s not without limitations. The main 

challenges include differences in sequencing methods 

and data preprocessing across the two cohorts studied. 

Additionally, as our model was based on existing data-

bases, caution is advised when applying our findings to 

the broader patient population. Furthermore, the detailed 

functions and regulations of Trp genes in both in vitro 
and in vivo settings warrant deeper investigation. Lastly, 

the exact mechanism through which TPM affects UVM’s 

immune environment remains a puzzle that calls for 

more in-depth research and understanding. 
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CONCLUSION 
 
Our findings elucidate the close association between  

the expression patterns of TrMGs and the clinico-

pathological and immunological characteristics of UVM. 

The novel TPM assessment score system exhibits a 

strong potential to predict the outcomes for individuals 

diagnosed with UVM. Moreover, a higher risk score—

suggesting increased tryptophan catabolism and reduced 

tryptophan availability—foreshadows enhanced immune 

infiltration, immunosuppression, and the presence of 

numerous immunotherapeutic targets. Such insights 

underscore the potential of using TRMGs to guide 

immunotherapy approaches in UVM. 
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Supplementary File 1. The processed data from TCGA UVM and GSE22138. 
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