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INTRODUCTION 
 

Acute myeloid leukemia is highly malignant and 

patients have a poor prognosis [1]. With current advances 

in treatment, many patients have significantly longer 

survival times, but remain incurable [2]. Therefore, it  

is important to explore new therapeutic targets and 

prognostic predictors. 
 

Many studies have shown that individual aging influ-

ences cellular senescence, and the biological processes 

associated with cellular senescence are closely related to 

a variety of diseases including cancer [3, 4]. As a stress 

response, cellular senescence is characterized at the 

genomic level by various degrees of exhaustion and 

impaired signaling functions [3, 5, 6] and induces gene 

expression variation [7]. Moreover, cellular senescence 

is closely associated with the tumor microenvironment 

(TME), including the activation of various cancer-

promoting signaling molecules and cytokines [8–10], 

and plays a role in promoting the accumulation of 

multiple immunosuppressive cells. These biological 

behaviors profoundly influence the remodeling of the 

TME and tumor survival [11, 12]. More importantly, 

malignant behavior mediated by cell senescence can 

disrupt the adaptability of immune cells, thus inhibiting 
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ABSTRACT 
 

Cellular senescence is closely related to the occurrence, development, and immune regulation of cancer. 
However, the predictive value of cellular senescence-related signature in clinical outcome and treatment 
response in acute myeloid leukemia (AML) remains unexplored. By analyzing the expression profile of cellular 
senescence-related genes (CSRGs) in AML samples in the TCGA database, we found that cellular senescence is 
closely related to the prognosis and tumor microenvironment of AML patients, and compared with normal 
samples, the overall expression level of senescent inducing genes in AML samples was down-regulated, while 
inhibitory genes were up-regulated. The risk score model further constructed and verified based on CSRGs 
could be used as an independent prognostic predictor for AML patients, and the overall survival (OS) of high-
risk patients was significantly shortened. The area under ROC curve (AUC) values for the prediction of 1-, 3- and 
5-year OS were 0.759, 0.749, and 0.806, respectively. In addition, patients with high-risk scores are more 
sensitive to treatment with cytarabine and may benefit from anti-PD-1 immunotherapy. In conclusion, our 
results suggest that the cellular senescence-related signature is a strong biomarker of immunotherapy response 
and prognosis in AML. 
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the effect of anti-tumor immunity and related immuno-

therapy [13, 14]. However, how cellular senescence 

affects the TME remains unclear, and the value of 

cellular senescence-related genes (CSRGs) in evaluating 

patient prognosis and therapeutic efficacy needs to be 

further explored. 

 
In this project, based on the transcriptomic data of  

AML samples, we analyzed the relationship between 

CSRGs and the activity changes of signaling pathways 

and immune cell infiltration characteristics. We also 

constructed and validated a CSRG-based scoring model 

to predict overall survival (OS) and therapeutic response 

to chemotherapeutic drugs or immune checkpoint 

inhibitors (ICIs) in individual AML patients. These 

bioinformatics results reveal a link between CSRGs and 

the TME in AML and assist in the assessment of AML 

patient survival and treatment. 

 
METHODS 

 
Data acquisition and processing 

 
We downloaded the normalized RNA-seq data (TPM 

values) of 173 TCGA-LAML (The Cancer Genome 

Atlas-Acute Myeloid Leukemia) samples and 337 

normal GTEx (Genome Tissue Expression)-whole 

blood samples from the UCSC XENA database 

(https://xenabrowser.net/datapages/). For the validation 

cohorts GSE14468 and GSE10358, we downloaded  

the original microarray data “cel” file from Gene 

Expression Omnibus (GEO) database (https://www. 

ncbi.nlm.nih.gov/geo/) and used the robust multiarray 

averaging (RMA) method to standardize it. For another 

validation cohort GSE71014, we downloaded the 

normalized matrix file. Somatic mutation data of AML 

patients were downloaded from the TCGA database 

(https://portal.gdc.cancer.gov/). We extracted 274 CSRGs 

from the CellAge database (https://genomics.senescence. 

info/cells/), including 153 induced genes and 121 

inhibited genes. Based on the expression of two types  

of genes, we used the gene set variation analysis 

(GSVA) algorithm to calculate the cell senescence 

induction and inhibition scores of AML patients in the 

TCGA database, respectively. Cell senescence score 

(CS-score) = induction score − inhibition score. 

 
Pathway activity assessment and function 

enrichment analysis 

 
We used the GSVA algorithm to calculate an 

enrichment score for a gene set based on the expression 

levels of all genes in the gene set, thereby quantifying 

the activity of the corresponding biological process or 

signaling pathway. For the identification of signaling 

pathways with differential activity between two groups, 

we used the gene set enrichment analysis (GSEA) 

algorithm to determine. All of these were performed in 

the “clusterProfiler” package [15]. 

 
Evaluation of immune cell infiltration levels 

 

We used the CIBERSORT algorithm, which is based on 

support vector regression, to calculate the infiltration 

proportion of immune cells in AML samples [16]. The 

matrix file of LM22 signatures was downloaded in the 

supplemental file of the study. 

 
Construction of risk score model 

 

We first identified genes significantly associated with 

prognosis in AML patients by univariate Cox regression 

analysis (P < 0.001) and constructed a risk score  

model by multivariate Cox regression analysis. The  

risk score was calculated using the following equation: 

Risk score = ABI3 × 0.158767529566805 + SOCS1 × 

0.339547286870344 + PIM1 × 0.230120859832003 + 

SFN × 0.876243162175369, where gene ID refers to the 

expression value of each gene. 

 
Prediction of immunotherapy response and drug 

sensitivity 

 

The half-maximal inhibitory concentration (IC50) 

value of each AML sample to the commonly used 

chemotherapy drugs cytarabine, doxorubicin, or the 

targeted drug midostaurin was quantified using the 

“pRRophetic” package based on the Genomics of  

Drug Sensitivity in Cancer (GDSC; https://www.cancer 

rxgene.org/) database. For predicting the immuno-

therapeutic response to ICI anti-PD-1 and anti- 

CTLA4 in low- and high-risk score groups, we used 

SubMap (https://cloud.genepattern.org/gp) algorithm to 

perform it. 

 
Real-time quantitative PCR (RT-PCR) 

 

This project was approved by the Ethics Committee of 

the Second Affiliated Hospital of Nanchang University, 

and 15 AML samples and 15 normal samples were 

collected. All subjects signed an informed consent form. 

We extracted RNA from mononuclear cells and reverse 

transcribed it. The expression of the four model genes 

was detected by RT-PCR using the Japanese TAKARA 

kit on an ABI7500 detection instrument. The results 

were calculated using the 2−ΔΔCT method. 
 

Statistical analysis 

 

The Wilcoxon rank sum test and Kruskal-Wallis test 

were used to determine differences between two or 
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more groups. The “survminer” package divides patients 

into high- and low-risk score groups based on the cut-

off point at the minimum p-value of the log-rank test. In 

the Kaplan-Meier survival curve analysis, the log-rank 

test was used to determine the p-value between groups. 

Univariate and multivariate Cox regression analysis was 

used to determine the prognostic value of variables. The 

prediction efficiency was further verified by the analysis 

of the receiver operating characteristic (ROC) curve. The 

“maftools” package was used to demonstrate somatic 

mutation signatures of AML patients. A two-sided  

P value of < 0.05 was considered statistically significant. 

 
Availability of data and materials 

 
All data used in this work can be acquired from  

the Gene-Expression Omnibus (GEO; https://www. 

ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas 

(TCGA) database (https://portal.gdc.cancer.gov/). 

 
Code availability 

 
Analyses were conducted using R (version 4.1.2). The 

codes used to support the findings of this study are 

available from the corresponding author on reasonable 

request. 

 
RESULTS 

 
Cell senescence is associated with the prognosis and 

biological characteristics of AML patients 

 
Through GSVA analysis, we calculated the CS-score of 

each AML patient in the TCGA database, and survival 

analysis showed that the OS of patients with high CS-

score was shorter than that of patients with low CS-

score (Figure 1A), indicating that the cellular senescence 

characteristics were correlated with the prognosis of 

AML patients. Pathway enrichment analysis showed 

that immune-related signaling pathways such as Th1 

and Th2 cell differentiation, B cell receptor signaling 

pathway, Toll-like receptor signaling pathway, and 

Notch signaling pathway was significantly enriched in 

the high CS-score group (Figure 1B), The enrichment 

scores of Mismatch repair, Homologous recombination, 

Cell cycle, and Nucleotide excision repair were higher 

in the group with low CS-score (Figure 1C). Immune 

infiltration analysis showed that the infiltration of 

resting NK cells and monocytes was significant in the 

high CS-score group, while the proportion of resting 

mast cells and eosinophils was higher in the low CS-

score group (Figure 1D). In addition, the expression of 

immune checkpoints CTLA-4, LAG3, PD-1, and CD86 

was significantly up-regulated in the high CS-score 

group (Figure 1E). 

The expression variation landscape of CSRGs 

 

In terms of somatic mutation characteristics, patients 

with high CS-score had the highest mutation frequency 

of DNMT3A and NPM1 (Figure 2A), while WT1, 

TTN, MUC16, and TACC2 were the top mutant genes 

in patients with low CS-score (Figure 2B). The overall 

CSRG expression was also significantly different in 

AML and normal samples. Compared with normal 

samples, more inhibited genes and fewer induced 

genes were up-regulated in AML samples (Figure 2C, 

2D), indicating that AML cells had resistance to 

cellular senescence. Based on Cox regression analysis, 

we identified 30 CSRGs that were significantly 

associated with the prognosis of AML patients (Figure 

2E). 

 

Construction and validation of the risk score model 

 

We further evaluated the prognostic value of CSRG by 

multivariate Cox regression analysis. Four CSRG 

genes (ABI3, SOCS1, PIM1, and SFN) were used to 

construct the risk score model. TCGA-LAML patients 

were divided into high- and low-risk score groups 

based on the optimal cut-off value. Survival analysis 

showed that patients in the high-risk group had 

significantly shorter OS than those in the low-risk 

group (Figure 3A). ROC curve analysis showed that 

the AUC values of the risk score model in predicting 

1-, 3- and 5-year OS were 0.759, 0.749, and 0.806, 

respectively, indicating that the risk score model had 

high prognostic accuracy (Figure 3B). Univariate and 

multivariate Cox analyses showed that risk score was 

an independent prognostic factor for AML patients 

(P < 0.001) (Figure 3C). In all three validation cohorts, 

we observed that patients with high-risk scores had 

worse outcomes, confirming the predictive power of 

the risk score model (Figure 3D–3F). ROC curve 

analysis also confirmed the predictive accuracy of the 

risk score model in predicting the prognosis (Figure 

3G–3I). For example, in the GSE71014 cohort, the 

AUC values of the risk score model for predicting 1-, 

3- and 5-year OS were 0. 735, 0. 643, and 0. 676, 

respectively. 

 

Nomogram facilitate clinical decision making 

 

To better apply to clinical decision-making, we combined 

risk score with clinicopathological factors (cytogenetic 

risk and age) that were significantly associated with 

prognosis in AML patients to construct a nomogram 

(Figure 4A). Compared with other predictors, the pre-

dictive power of the nomogram was further improved 
(Figure 4B). Univariate and multivariate Cox analysis 

confirmed the independent predictive ability of the 

nomogram (P < 0.001) (Figure 4C, 4D). 

https://portal.gdc.cancer.gov/
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Figure 1. Changes in prognosis, signaling pathways, and immune function between high and low CS-score groups. (A) 

Differences in patients’ overall survival (OS) in the high and low CS-score groups, log-rank test. (B, C) Gene set enrichment analysis revealed 
the signaling pathways that were significantly enriched differently between high and low CS-score groups. (B) High CS-score group; (C) Low 
CS-score group. (D) Differences in Infiltration levels of 22 immune cells between high and low CS-score groups. (E) Differences in expression 
of immune checkpoints between high and low CS-score groups. *P < 0.05, **P < 0.01, ***P < 0.001. 

 

 
 

Figure 2. The expression variation landscape and prognostic analysis of cellular senescence-related genes (CSRGs). (A, B) 

Somatic mutation characteristics of high and low CS-score groups. (A) High CS-score group; (B) low CS-score group. (C) Differences in 
expression of cellular senescence-induced genes between AML and normal samples. (D) Differences in expression of cellular senescence-
inhibited genes between AML and normal samples. (E) Identification of CSRGs significantly related to the prognosis of AML patients.  
*P < 0.05, **P < 0.01, ***P < 0.001. 
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Biological characteristics and prediction of 

treatment response in high-and low-risk score 

groups 

 

The prognosis of patients in the high- and low-risk 

score groups showed great differences, and we sought 

to explore the biological mechanisms between them. 

The results of immune cell infiltration analysis showed 

that the high-risk score group was enriched with more 

regulatory T cells and activated NK cells, while the 

low-risk score group exhibited a higher infiltrated 

proportion of memory B cells and resting mast cells 

(Figure 5A). The results of GSVA enrichment analysis 

then indicated the great differences between the  

two groups in the hallmark signaling pathways of 

cancer, and the activities of these pathways were  

all significantly higher in the high-risk score group 

(Figure 5B), indicating that the changes in the pathway 

level may be closely related to the disease development 

and prognosis of the two groups of patients. We also 

observed that the CS-score was significantly higher in 

the high-risk score group (Figure 5C). 

 

In addition, we predicted sensitivity to chemo-

therapeutic agents and responsiveness to ICIs  

in both groups. Interestingly, patients in the high- 

risk score group were significantly less sensitive  

to treatment with cytarabine, more sensitive to 

doxorubicin (Figure 5D, 5E), and more responsive to 

anti-PD-1 therapy than patients in the low-risk score 

group (Figure 5F). 

 

Validation in a clinically independent cohort 

 

TCGA cohort analysis showed that the expression of four 

model genes was significantly down-regulated in AML 

 

 
 

Figure 3. Construction and validation of the risk score model. (A) Survival analysis between the high- and low-risk score groups in 

the TCGA cohort. (B) ROC curve analysis of the risk score in the TCGA cohort. (C) Cox regression analysis of clinicopathologic factors and risk 
score in the TCGA cohort. (D–F) Survival analysis between the high- and low-risk score groups in the GEO cohorts; (D) GSE71014; 
(E) GSE14468; (F) GSE10358; Log-rank test. (G–I) ROC curve analysis of the risk score in the GEO cohorts; (G) GSE71014; (H) GSE14468; 
(I) GSE10358. 



www.aging-us.com 11222 AGING 

 
 

Figure 4. Predictive value of risk score combined with prognosis-related clinicopathological factors. (A) Nomogram predicting 

OS for AML patients in TCGA cohort. (B) ROC curves for risk score, nomogram, and other clinicopathological factors. (C, D) Cox regression 
analysis of the nomogram. (C) Univariate; (D) multivariate. 

 

 
 

Figure 5. Differences in biological characteristics and treatment response between high- and low-risk score groups. 
(A) Infiltration levels of 22 immune cells. (B) Enrichment scores of cancer-related hallmark gene sets. (C) Differences in CS-score between 
high-and low-risk score groups. (D, E) Therapeutic sensitivity of two commonly used chemotherapeutic drugs for AML. (F) Response 
prediction to immunotherapy (anti-PD-1 and anti-CTLA4) between the low- and high-risk score groups. *P < 0.05. 
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samples compared with normal samples (Figure 6A).  

To validate the results of bioinformatics analysis,  

we collected clinical samples for verification, and the 

results of PCR experiments also showed that the 

expression of several model genes was significantly 

down-regulated in AML samples compared with normal 

samples (Figure 6B). This indicates that the data 

analysis results are reliable and have potential research 

value. 

 

DISCUSSION 
 

Cellular senescence is an irreversible result of cell cycle 

arrest [17]. It occurs not only in normal tissue cells, but 

also in tumor suppression under oncogene activation 

[18]. However, research has shown that senescent 

cancer cells not only inhibit tumorigenesis, but also 

promote tumor survival. Cellular senescence ensures  

the timely elimination of senescent cancer cells during 

the body’s immune surveillance [19]. As the relevant 

mechanisms continue to be clarified, inducing cellular 

senescence has potential anticancer properties [20]. 

 

This project aims to explore the relationship between 

cellular senescence and the prognosis and treatment of 

AML. We used CS-score to characterize the cellular 

senescence of AML patients by calculating the ex-

pression of cellular senescence-induced and inhibited 

genes. We found that patients with high CS-score  

had a significantly worse prognosis, accompanied by 

activation of immune-related signaling pathways and 

high expression of immune checkpoints. These findings 

suggest that cellular senescence in AML cells may 

crosstalk the immune function and mediate immuno-

suppression. The signaling pathway related to DNA 

damage repair was more active in patients with low CS-

score, indicating that cellular senescence is related to 

the variation of genetic information. In the subsequent 

somatic mutation analysis, we observed that patients 

with high CS-score were accompanied by a higher 

proportion of gene mutations, while patients with low 

CS-score were in contrast, which may be related to their 

repair mechanism. In addition, we observed that the 

overall expression level of senescent-induced genes and 

inhibited genes was lower in AML samples than in 

normal samples, suggesting that the resistance of AML 

cells to cellular senescence may be one of the causes of 

their malignant proliferation. These results indicate that 

cellular senescence is closely related to the occurrence 

and progression of AML. 

 

We further evaluated the prognostic value of CSRGs. 

By analyzing the TCGA data, we constructed the 

prognostic risk score signature for CSRGs. Survival 

time was significantly reduced in high-risk score 

patients, and the same results were found in the  

three validation cohorts. Further univariate and multi- 

variate Cox analyses confirmed that risk score was 

independent prognostic factor for AML. Moreover,  

we combined other clinicopathological factors to 

construct a nomogram to predict the survival of AML  

patients. Encouragingly, the prognostic efficacy of the 

nomogram has been further improved, which has 

important reference value for clinical decision- 

making. Cytarabine and anthracycline drugs such as 

doxorubicin are commonly used chemotherapeutics  

in the clinical treatment of AML. We predicted the 

sensitivity of patients with high and low risk scores to 

these drugs. Patients with high-risk scores showed 

significantly reduced sensitivity to cytarabine and 

showed higher sensitivity to doxorubicin. We also 

observed that high-risk score patients had a higher 

 

 
 

Figure 6. Validation of model gene expression. (A) Difference analysis of four model genes in 173 TCGA-LAML samples and 337 

normal GTEx samples. (B) RT-PCR was used to detect the mRNA expression of the four model genes in 15 AML clinical samples and 15 
normal samples. *P < 0.05, ***P < 0.001. 
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CS-score, suggesting that high-risk score patients may 

benefit more from treatment with ICIs. Interestingly, 

high-risk score patients had a higher predicted response 

to immunotherapy with anti-PD-1 compared to low-risk 

score patients. Related studies have shown that the 

enhancement of senescence-related secretory pheno- 

type of tumor cells can increase the sensitivity to ICIs 

[21]. The loss of senescent-induced genes and the 

amplification of inhibited genes are one of intrinsic 

reasons for tumor cells to resist ICIs [22]. 

 
Finally, we verified the expression of the four model 

genes in AML samples by RT-PCR, and the experi-

mental results were consistent with the bioinformatics 

results, indicating the reliability of our analysis. Among 

the four model genes, SOCS1 is a widely recognized 

tumor suppressor gene, and its downregulation has been 

detected in various malignant tumors, including AML 

[23]. In AML cells, Gfi-1 can silence SOCS1 through 

epigenetic modification [24]. Moreover, the silencing of 

SOCS1 by gene methylation overcomes the inhibition 

of SOCS2 on the downstream JAK1/STAT signaling 

pathway and promotes the growth and proliferation of 

AML cells [25]. PIM1 protein is the product of proto-

oncogenes family [26]. As a serine-threonine kinase, its 

expression is up-regulated in various malignant tumors 

and plays a significant role in promoting cancer by 

enhancing hematopoietic cell survival and inhibiting 

cell apoptosis [27, 28]. PIM1 expression appears to be 

upregulated by STAT5 and is overexpressed in primary 

AML blast samples [29]. Notably, PIM1 has been 

implicated in FLT3-mediated leukemogenesis in FLT3-

ITD AML and may be an effective therapeutic target for 

this disease [30, 31]. Up-regulation of SFN expression 

is associated with cisplatin chemotherapy failure and 

poor prognosis in NSCLC [32], and it regulates lung 

cancer progression through the induction of autophagy 

by nucleating Vps34-BECN1-TRAF6 complex [33]. 

SFN may also interact with CDC25B to promote the 

growth and proliferation of HCC [34]. Previous reports 

have shown that ABI3 expression is lost in follicular 

thyroid carcinoma and its restoration significantly 

inhibits cell proliferation, invasion, migration and tumor 

formation, acting as a tumor suppressor gene [35, 36]. 

However, few studies on SFN and ABI3 in AML have 

been reported, and further studies are needed to explore 

their biological functions in AML. 

 
In conclusion, the risk score model constructed based 

on CSRGs can be used to evaluate the prognosis  

of AML patients and guide clinical treatment. Our  

study not only provides new predictive signals for  

the prognosis of AML, but also guides the future  

treatment of AML. However, our study also has certain 

limitations. The prognostic independence and accuracy 

of the risk score model and nomogram need to be 

validated in more AML cohorts with clinical data, and 

the biological function of the risk model genes in AML 

cells remains to be elucidated. We will conduct these 

studies in future projects to fully reveal the biological 

value of CSRGs in AML. 
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