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INTRODUCTION 
 

Aortic dissection (AD) is one of the most common life-

threatening cardiovascular diseases characterized by a 

tear and bleeding of inner aortic layer and wall. The 
annual incidence of AD is approximately 3 to 6 cases per 

100,000 people, and the incidence has been dramatically 

increasing in recent years [1]. Based on whether the 

ascending aorta is involved, AD is divided into type A 

aortic dissection (TAAD) and type B aortic dissection 
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90% with aortic rupture [3]. However, the precise 

pathogenesis of TAAD remains unclear, and this disease 

condition is considered to be the result of a combination 

of multiple factors, including genetic, topographic 

anatomical, molecular biological, hemodynamic and 

immunological factors [4]. Therefore, there is an urgent 

need for understanding the potential etiology and 

screening novel biomarkers to improve the diagnosis and 

prognosis for TAAD. 

 

AS a special form of programmed cell death (PCD), 

anoikis is characterized by the detachment of extra-

cellular matrix (ECM) to avoid cells’ abnormal 

proliferating and growing after attaching to inappropriate 

matrix, which is essential for apoptosis [5]. Current 

studies have started to investigate the potential 

regulatory mechanism of anoikis through multiple 

intrinsic and extrinsic pathways, such as integrins, 

epidermal growth factor receptor (EGFR), TGF-β 

signaling, NF-κB signaling, hypoxia, reactive oxygen 

species (ROS), hippo pathway and so on [6, 7]. Matrix 

metalloproteinases (MMPs) have been reported to cause 

the formation of AD via promote degradation of elastin 

and collagen in ECM [8]. Through activating the HIF-

1A pathway, hypoxia can promote the up-regulation of 

MMP-2/9 and further participate in the formation of AD 

[9]. In addition, several inflammatory factors, including 

TNFA and FASL, can also cause the caspase cascade in 

AD via binding to their corresponding receptors [10]. 

These studies indicated that anoikis might play an 

essential role in regulating the formation and progression 

of TAAD patients. There are increasing evidences that 

identifying anoikis-related genes (ARGs) as the novel 

biomarkers for the diagnosis of various diseases, such as 

tumor (lung adenocarcinoma, hepatocellular carcinoma) 

[11, 12], cardiovascular disease (ischemic stroke) [13] 

and so on. However, there is still lacking studies 

focusing on the role of ARGs in TAAD and exploring 

the potential correlations between ARGs and TAAD 

patients at cellular aspects. 

 

In this study, based on the datasets of transcriptome 

sequencing, we firstly identified variant transcript 

patterns and further screened diagnostic ARGs for the 

diagnosis of TAAD patients, which were verified in 

multiple external datasets. In addition, potential targeted 

regulatory micro-RNAs were predicted to construct the 

complex regulatory networks for the diagnostic ARGs, 

and corresponding expression of miRNAs was 

successfully validated in datasets of non-code RNA-seq. 

Moreover, we comprehensively evaluated immune-cell 

landscapes and successfully validated them at cellular 

aspect via single cell RNA sequence (scRNA-seq) 
technology. Finally, we investigated the potential 

relationships of diagnostic ARGs and differentiation of 

vital cellular subtypes and further identified fatal ARGs 

in TAAD patients. In summary, our findings generated 

an in-depth understanding of ARGs diagnostic worth 

and the exploration of potential correlations between 

immune microenvironment and ARGs at single-cell 

levels, to help interpret possible anoikis-related 

mechanism for TAAD patients. 

 

MATERIALS AND METHODS 
 

TAAD datasets collection and preprocessing 

 

A total of four transcriptome files were obtained from the 

Gene Expression Omnibus (GEO) database by searching 

the “type A aortic dissection” and “RNA sequencing” as 

the keywords (https://www.ncbi.nlm.nih.gov/geo/). 

These datasets included the sequencing data of aortic 

tissues samples from 27 TAAD and 24 HC cohorts, 

including GSE153434 (10 TAAD vs 10 HC), GSE98770 

(6 TAAD vs 5 HC), GSE52093 (7 TAAD vs 5 HC) and 

GSE190635 (4 TAAD vs 4 HC) respectively. All these 

datasets were transformed into fragments per kilobase 

million/FPKM values and genes with mean expression<1 

were eliminated. Subsequently, the probes were 

converted into corresponding symbols according to the 

platform annotation file and the data normalization was 

further conducted using the “normalizeBetweenArrays” 

function of Limma package [14]. The GSE153434 

dataset was applied to perform subsequent analysis and 

the other three datasets were used as validation cohorts. 

 

Identification of variant transcript patterns for 

TAAD patients 

 

To investigate the difference of transcript patterns 

between TAAD and healthy cohorts, we performed the 

multiple comparative analysis including principal 

component analysis (PCA), differential expressional 

genes (DEGs) identification and comprehensive 

functional enrichment analysis. The PCA was 

performed by the “factoextra” package (https://cloud.r-

project.org/package=factoextra/) to expound the integral 

transcript difference for TAAD patients and the DEGs 

were defined with absolute log(fold-change/FC) >1 and 

adjusted p-value <0.05. The functional annotations of 

TAAD were conducted by Gene Ontology (GO) 

enrichment with ClusterProfiler package [15], Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

enrichment with ClueGO plug-in in Cytoscape software 

[16] and Gene Set Enrichment Analysis (GSEA) with 

GseaVis package [17]. 

 

Screening diagnostic anoikis-related biomarkers for 

TAAD patients 

 

A total of 338 anoikis-related genes (ARGs)  

were obtained from the GeneCards database 
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(https://www.genecards.org/), and ARGs with the 

relevance score >1 was comprised in our study. KEGG 

functional enrichment analysis was applied to assess 

the function of these differential ARGs. Differential 

expressional ARGs were further screened via 

intersecting DEGs with above ARGs. Subsequently, 

we performed univariate logistical [18], and LASSO 

regression [19] to select diagnostic ARG-related 

biomarkers for TAAD patients. 

 

Evaluating the diagnostic efficacy for ARGs and 

validation in external datasets 

 

The pROC package was applied to evaluate the 

diagnostic efficacy of diagnostic markers with area 

under curve (AUC) values [20]. To further validate the 

diagnostic efficacy of markers, the corresponding 

expression of markers was compared between TAAD 

and HC cohorts in other external validation cohorts. 

 

Identification of targeted-regulatory miRNA for 

ARGs 

 

To further screen potential targeted-regulatory micro-

RNA (miRNA) of these diagnostic ARGs, we applied 

a powerful R package, called multiMiR, which 

included 8 predicted databases, 3 validated databases 

and 3 drug/disease-related databases [21]. Through 

setting parameter as “validated”, we identified 

diagnostic ARGs-related regulatory miRNAs with 

experiment’s validation. The regulatory networks 

between miRNAs and ARGs were constructed by  

the Cytoscape software [22] and the expressional 

levels of these miRNAs in TAAD patients were further 

validated in GSE190635 with non-code RNA 

sequencing. 

 

Immune cell infiltration analysis for TAAD 

 

Subsequently, we systematically evaluated the 

comprehensive characteristics of immune micro-

environment in TAAD tissues via a single-sample gene 

set enrichment analysis (ssGSEA) algorithm of GSVA 

package based on 28 immune cells [23]. The 

enrichment scores of each cell were then compared 

between TAAD and HC cohorts using boxplots 

generated by the ggplot2 package [24]. 

 

Quality control and scRNA-Seq data pre-processing 

 

Moreover, to validate the immune microenvironment and 

further explore the potential correlation between immune 

cells and ARGs, we gained a current single-cell RNA 
sequencing (scRNA-seq) dataset (GSE213740) to 

perform related analysis and validation, including 6 

TAAD patients and 3HC cohorts. We downloaded the 

normalized 10X files with expressional matrix, cell 

barcodes and features in each sample, and then created 

the seurat object by the Read10X and CreateSeuratObject 

function of Seurat package [25]. Low-quality cells with 

over 5,000, below 200 expressed genes or more than 10% 

of mitochondrial and hemoglobin-related genes were 

removed. DoubletFinder package [26] was applied to 

remove double cells with an expected doublet rate of 

0.075 and Harmony package [27] was used to remove the 

batch effects among individuals with RunHarmony 

function. 

 

Cellular subtypes identification and functional 

annotation 

 

To identify cellular clusters, we selected 2000 highly-

variable genes to perform the PCA dimensionality 

reduction and applied the RunUMAP function to 

conduct Uniform Manifold Approximation and 

Projection (UMAP) dimension reduction with 30 

principal components. Then, the cellular clusters were 

identified by FindClusters function with resolution as 

0.3. Cell clusters were further annotated based on the 

comparison between cluster’s markers and Zhang et al. 

annotated markers. The expression of cellular markers 

was exhibited in bubble diagram by DotPlot function 

and cellular proportions among groups were further 

compared to validate the results of ssGSEA. Based on 

the Wilcoxon rank sum test, DEGs of each cell were 

also identified between TAAD and HC groups using the 

“find_diff_genes” function of Scillus package 

(https://github.com/xmc811/Scillus) and functional 

annotation of each cell in TAAD patients was 

performed by GSEA using the test_GSEA and 

plot_GSEA function. 

 

Differentiation trajectory analysis with comparison 

of anoikis 

 

Anoikis scores were calculated for each cell using the 

AddModuleScore function based on above diagnostic 

ARGs, and scores were further compared in each cell 

to identify anoikis-related cells in TAAD. To further 

expound the intercellular differentiation trajectory  

with changes of anoikis scores, we applied cell 

trajectory reconstruction analysis using the monocle2 

package [28]. 

 

Statistical analysis 

 

All related statistical analysis was performed in R 

software (version 4.1.6). The continuous variables were 

exhibited as mean ± standard deviation and the 
comparison between groups was tested with Wilcox 

test. The statistical significance was considered with 

two-tailed adjusted p-value <0.05. 
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Availability of data 

 

Publicly available datasets were analyzed in this  

study. This data can be found here: Gene Expression 

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 

(Accessions: GSE153434, GSE98770, GSE52093 and 

GSE190635); The scRNA-seq dataset was obtained 

from the GSE213740 datasets. 

 

RESULTS 
 

Abnormal transcript patterns in TAAD patients 

 

The workflow diagram of this study was displayed in the 

Figure 1 and datasets used in this study were summarized 

in Supplementary Table 1. To explore the integral 

transcript abnormities of TAAD patients, we conducted 

the PCA analysis and it revealed that TAAD and HC 

cohorts were significantly distributed in two different 

cohorts (Figure 2A). A total of 578 up-regulated and 

1058 down-regulated DEGs were identified for TAAD 

and exhibited in the volcano plots with top genes  

(Figure 2B and Supplementary Tables 2, 3). To further 

explain the functional annotation of DEGs for TAAD, we 

performed the comprehensive analysis including GO, 

KEGG and GSEA enrichments. The GO enrichment 

analysis exhibited various response-related biological 

processes were significant activated in TAAD, such as 

Inflammatory Response, Response to Stress, Response to 

Cytokine, Response to Stimulus and so on. Contrastively, 

structure development-related processes were obviously 

inhibited in TAAD patients, including System 

Development, Anatomical Structure Development and 

Developmental Process (Figure 2C and Supplementary 

Table 4). In addition, we further demonstrated 

inflammatory-related pathways were significant enriched 

including TNF, JAK-STAT, IL-17 signaling, Cytokine-

cytokine receptor interaction and NF-kappa B signaling 

pathway, while cardiomyocyte-related pathways were 

down-regulated, including Dilated cardiomyopathy, 

Adrenergic signaling in cardiomyocytes, Calcium  

and Wnt signaling pathway (Figure 2D, 2E and 

Supplementary Table 5). Using all genes with logFC in 

each pathway, the GSEA further validated the activation 

of JAK-STAT signaling, NOD-like and Toll-like receptor 

signaling, and Apoptosis in TAAD patients, with a 

coinstantaneous inhabitation of Dilated cardiomyopathy, 

Cell adhesion molecules, Vascular smooth muscle 

contraction (Figure 2F and Supplementary Table 6). All 

these pathways were enriched with high NES scores and 

significant adjusted p-values. 

 

Identification of diagnostic ARGs for TAAD patients 
 

To further identify the diagnostic anoikis-related 

markers for TAAD patients, a total of 338 known 

ARGs were used to be intersected with DEGs 

(Supplementary Table 7). Subsequently, 31 up-

regulated and 20 down-regulated ARGs were selected 

and their expressional levels exhibited significant 

divisional capacity for TAAD patients (Figure 3A, 

3B). The KEGG enrichment analysis revealed that 

these up-regulated ARGs were correlated to HIF-1 

signaling pathway, ECM-receptor interaction, Focal 

adhesion and cancer-related pathways, but the  

down-regulated ARGs were enriched in Dilated 

cardiomyopathy and Hypertrophic cardiomyopathy 

(Figure 3C, 3D). After filtering with univariate 

logistical regression and LASSO regression, 8 

diagnostic ARGs were ultimately ensured for TAAD 

including CHEK2, HIF1A, HK2, HMGA1, SERPINA1, 

PTPN1, SLC2A1 and VEGFA (Figure 3E). 

 

ROC evaluation and validation of diagnostic ARGs 

 

The ROC analysis revealed that these diagnostic  

ARGs exhibited prominent diagnostic efficiency for 

TAAD patients with high AUC values including 

CHEK2/0.95, HIF1A/0.99, HK2/0.99, HMGA1/0.95, 

SERPINA1/0.98, PTPN1/0.98, SLC2A1/0.86 and 

VEGFA/1.0, respectively (Figure 3F). To further 

validate the expressional difference of these diagnostic 

ARGs, we applied other 3 external datasets for TAAD. 

Due to the limitation of sample numbers, we didn’t 

perform the ROC analysis. All these markers exhibited 

higher expression in TAAD tissues than that of HC 

cohorts, including GSE98770, GSE52093 and 

GSE190635 (Figure 4A, 4B, 4E). 

 

Definition and validation of Targeted miRNA for 

diagnostic ARGs 

 

Moreover, we successfully defined 651 potential 

miRNAs to regulate the expression of 8 diagnostic 

ARGs and constructed a regulatory network via 

multiMiR package (Figure 4C). Through the 

intersected miRNAs with diagnostic ARGs, a total  

of 13 targeted miRNAs were screened in an elaborate 

network (Figure 4D and Supplementary Table 8).  

We then applied the GSE190635, a dataset including 

non-code RNA sequence, to validate the differential 

expression of targeted miRNAs. It revealed 5 miRNAs 

(has-miR-124-3p, has-miR-128-3p, has-miR-155-5p, 

has-miR-195-5p and has-miR-23b-3p) were up-

regulated and 4 miRNAs (has-miR-1-3p, has-miR-

145-5p, has-miR-20a-5p and has-miR-34a-5p) were 

down-regulated in TAAD patients compared to  

HC cohorts (Figure 4F). The remaining 4 miRNAs 

were not detected in this dataset and these results 
implied the complex potential regulatory relationship 

between miRNAs and diagnostic ARGs in TAAD 

patients. 

https://www.ncbi.nlm.nih.gov/geo/
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Figure 1. The workflow chart of this study. 
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Figure 2. Identification of DEGs and functional annotation for TAAD patients. (A) Principal component analysis showing 
transcriptome signatures sorted TAAD and control cohorts into two clusters. (B) Volcano plots showing the DEGs between TAAD and HC 
cohorts with p<0.05 and absolute log (FC) >1. (C) The GO functional analysis of upregulated and downregulated DEGs. (D, E) The KEGG 
functional analysis of up-regulated and downregulated signatures. (F) The GSEA indicating the functional difference between TAAD and HC 
cohorts. 



www.aging-us.com 11274 AGING 

 
 

Figure 3. Identification of diagnostic ARGs and ROC evaluation for TAAD patients. (A) Veen plots identified 31 up-regulated and 20 
down-regulated differential ARGs. (B) The expression of differential ARGs between TAAD and HC tissues in heatmaps. (C, D) The KEGG 
functional analysis of up-regulated and downregulated differential ARGs. (E) The results of LASSO regression screening the eight diagnostic 
ARGs for TAAD. (F) The ROC analysis revealed that these diagnostic ARGs exhibited prominent diagnostic efficiency for TAAD patients with 
high AUC values including CHEK2/0.95, HIF1A/0.99, HK2/0.99, HMGA1/0.95, SERPINA1/0.98, PTPN1/0.98, SLC2A1/0.86 and VEGFA/1.0. 
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Figure 4. Definition and validation of targeted miRNA for diagnostic ARGs. (A, B) Validation of higher expression of diagnostic ARGs 

in GSE98770 and GSE52093. (C) Global between diagnostic ARGs and predicted miRNAs. (D) The vital regulatory network of common miRNAs 
to regulate the diagnostic ARGs. (E) Validation of higher expression of diagnostic ARGs in non-code RNA dataset (GSE190635). (F) Validation 
of the expressional levels of common miRNAs in TAAD based on GSE190635. (G) The heatmap of 28 immune cells’ ssGSEA scores between 
TAAD and HC cohorts. (H) The boxplot demonstrated the activation of macrophages, monocytes, activated dendritic cells and CD56+ dim NK 
cells, and the inhabitation of Th1 cells, B cells and CD56+ bright NK cells. 
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Immune cell landscapes in TAAD 

 

The infiltration of 28 immune cells were summarized in 

Figure 4G, 4H. Compared to HC cohorts, the TAAD 

patients exhibited higher infiltration scores in innate 

immune-associated cells, including macrophages, 

monocytes, activated dendritic cells and CD56+ dim 

NK cells. For the adaptive immune-associated cells, the 

TAAD patients exhibited mild infiltrate difference with 

activation of activated CD4+ T cells and type 17 T 

helper (Th17) cells, and the inhabitation of Th1 cells, 

activated B cells and immature B cells (Figure 4G, 4H 

and Supplementary Table 9). These findings indicated 

the infiltration of immune cells in TAAD was mainly 

characterized by innate immune-associated cells, 

especially for macrophages and monocytes. 

 

Cellular landscapes validation and anoikis scores 

estimation 

 

By evaluating cell type specific gene expression, we 

identified a total of 8 cell types in aortic tissues including 

3 stroma cells (endothelial cells, smooth muscle cells 

(SMC) and fibroblasts) and 5 immune cells (T cells, B 

cells, macrophage, monocyte and mesenchymal cells) 

(Figure 5A). The top 5 cellular markers were displayed in 

bubble diagram and exhibited their specificity for each 

cell (Figure 5B and Supplementary Table 10). Through 

counting the cellular numbers and ratio, we found the 

difference between TAAD and HC cohorts was focused 

on the increase of endothelial cells, fibroblasts, 

macrophages, monocytes and SMC while the difference 

of B cells, Mesenchymal cells and T cells was not 

obvious, consistent with the cellular infiltration of 

ssGSEA analysis (Figure 5C, 5D). 

 

The DEGs of each cell were further identified, and we 

found interferon-related genes (ISG15, IFI27, IFITM3) 

and immunoglobulin-related genes (IGKC, IGHA1) were 

upregulated in macrophages and monocytes of TAAD 

patients respectively (Figure 5E). The GSEA also 

demonstrated the activation of inflammatory and 

metabolic pathways in endothelial cells, fibroblasts, B 

cells, macrophages and monocytes of TAAD, including 

interferon-gamma/alpha response, TNFA signaling  

via NFKB, inflammatory response, IL6-JAK-STAT3 

signaling, Hypoxia and Glycolysis. In addition, 

epithelial-mesenchymal transition and angiogenesis were 

also enriched but several signal transduction pathways 

were down-regulated in TAAD, such as TGF-Beta 

signaling, MTORC1 signaling, oxidative phosphorylation 

and so on (Figure 5F). 

 
To validate the landscape characteristics of T cells in 

TAAD, we further divided T cells into various cellular 

subtypes and compared the cellular ratio between 

TAAD and HC groups. After subjected to dimension 

reduction, T cell profiles were divided into 6 clusters 

and annotated as naïve T, CD8+ effector memory T 

(EMT), CD8+ exhausted T (EXT), CD8+ NKT, CD4+ 

S100A8+ T and CD8+ IFITM3+ T cells (Figure 6A). 

The violin plot showed that cellular markers were 

coincident with subtypes, such as IL7R and CCR7 for 

naïve T cells, GZMK and GZMA for NKT and CD8+ 

EXT cells and so on (Figure 6B). CD8+ EMT cells 

were found significantly decreased while other 4 cells 

were prominently increased in TAAD patients 

compared to HC cohorts (Figure 6C, 6D). All these T 

cells exhibited higher anoikis scores in TAAD patients, 

especially in S100A8+ T cells, suggesting the potential 

correlation between T cells and anoikis (Figure 6E). 

 

Potential relationships between macrophages and 

anoikis scores in TAAD 

 

We also compared the levels of anoikis scores between 

TAAD and HC groups in each cellular subtype and 

indicated the elevation of scores was primarily focused 

on macrophages and monocytes (Figure 7A, 7B). 

Moreover, we further defined 10 classifications of 

macrophages and monocytes (5 subtypes for each cell) 

and annotated them with significant markers, including 

FCGBP+ mono1, TAGLN+ mono2, STMN1+ mono3, 

DCN+ mono4, AREG+ mono5, FABP5+ macro1, 

TIMP1+ macro2, S100A8+ macro3, RNASE1+ macro4 

and ISG15+ macro5 (Figure 7C, 7D). Except macro5 

and mono4, the cellular ratios of most macrophages and 

monocytes were significant elevated in TAAD patients, 

particularly in macro1-4 and mono1 (Figure 7E, 7F). 

The GSEA further demonstrated that macrophages and 

monocytes were major vital cells for TAAD, with the 

coincident activation of multiple inflammatory and 

metabolic signaling pathways (Figure 7G). 

 

Differentiation trajectory analysis of macrophages 

and diagnostic ARGs 

 

Notably, most macrophage and monocyte subtypes of 

TAAD patients exhibited higher levels of anoikis scores 

than HC cohorts, especially for macro1-3 subtypes 

(Figure 8A and Supplementary Table 11). The 

pseudotime trajectory analysis further revealed the 

arrangement of these cellular subtypes formed a certain 

differentiation rule based on its spatial relationships. 

Concretely, the trajectory analysis revealed that macro1 

and macro2 were distributed at the origination of the 

trajectory and the differentiated into mixed cells of 

cluster1 (mono1 and mono4) and cluster2 (mono2, 

macro3 and macro5). The cluster3 (mono1 and mono3) 
were distributed at the middle while the cluster4 

(macro4, mono4 and mono5) were distributed at end of 

the trajectory (Figure 8B, 8C). Finally, we further 
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Figure 5. Validation of immune cell landscapes through scRNA-seq. (A) Integral cellular distribution between TAAD and HC cohorts; 

(B) The top5 corresponding cellular markers of each cell; (C, D) The comparison of cellular numbers and ratio between TAAD and HC in each 
cell; (E) The DEGs of TAAD in each cell. (F) the GSEA of each cell between TAAD and HC cohorts. 
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evaluated the pseudotime expressional changes of 8 

diagnostic ARGs along with different macrophage and 

monocyte subtypes in TAAD patients. It revealed that  

4 vital ARGs were high-expressed in the start and 

middle of the differentiation trajectory and significantly 

decreased at the end of trajectory, including HIF1A, 

HMGA1, SERPINA1 and VEGFA (Figure 8D). The 

trajectory plots further demonstrated the corresponding 

differential trajectory between cellular subtypes and 

vital ARGs and major expressions were concentrated on 

macro1-3, mono1-2 and mono4 subtypes, implying 

these cells might participate in the activation of ARGs 

in TAAD patients (Figure 8E). 

DISCUSSION 
 

As a life-threatening abrupt cardiovascular emergency, 

TAAD patients always exhibit poor prognosis with high 

mortality. However, the precise pathogenesis of TAAD 

remains still unclear, leading to delaying the early 

diagnosis and intervention of disease, thus identification 

of novel reliable objective indicators for accurate 

diagnosis for TAAD is urgently needed. Anoikis is a 

special form related to apoptosis, characterized by 

anchorage cells’ detachment from ECM or adjacent 

cells, resulting in the incompatibility with the tissue’s 

microenvironment. Recently, studies have indicated 

 

 
 

Figure 6. Validation of T cells subtypes for ssGSEA algorithm. (A) Identification of six T-cell subtypes between TAAD and HC; (B) The 

corresponding cellular markers with high-expression in each cell; (C, D) The comparison of cellular numbers and ratio between TAAD and HC 
in each cell; (E) The comparison of anoikis scores between TAAD and HC in different T cell subtypes. 
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Figure 7. Anoikis scores estimation a vital macrophage subtypes identification. (A, B) The comparison of anoikis scores between 

TAAD and HC in all cell subtypes showing macrophages and monocytes were major cells for high anoikis scores; (C) Identification of five 
macrophage subtypes and five monocyte subtypes between TAAD and HC; (D) The corresponding cellular markers with high-expression in 
each subtype; (E) The comparison of cellular numbers and ratio between TAAD and HC in each subtype; (F) The GSEA of each macrophage 
and monocyte subtype between TAAD and HC cohorts. 
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the potential regulatory mechanism of anoikis  

on TAAD through multiple pathways, including  

ECM’s degradation, hypoxia, oxidative stress and 

proinflammatory factors. Therefore, we infer anoikis-

related genes might be suitable as candidates for the 

precise diagnosis for TAAD and associated with the 

abnormal immune microenvironment of TAAD. 

Through variant transcript analysis, we identified 

massive DEGs for TAAD patients and these DEGs 

were significant enriched in the activation of 

inflammatory signaling and response to stimulus or 

stress, including TNF, JAK-STAT, IL-17 signalings, 

Cytokine-cytokine receptor interaction, NF-kappa B 

signaling pathway, and Fluid shear stress and 

 

 
 

Figure 8. Differentiation trajectory analysis of macrophages subtypes with expression of diagnostic ARGs. (A) The comparison 

of anoikis scores between TAAD and HC in different macrophage and monocyte subtypes. (B, C) The differentiation trajectory of macrophage 
and monocyte subtypes with pseudotime. (D) The expression of eight diagnostic ARGs in macrophage and monocyte subtypes with 
pseudotime. (E) The trajectory distribution of four vital diagnostic ARGs in macrophage and monocyte subtypes of TAAD patients. 
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atherosclerosis. In contrast, cardiomyocyte-related 

pathways were significantly inhibited in these patients, 

including Dilated cardiomyopathy, Adrenergic 

signaling in cardiomyocytes, Vascular smooth muscle 

contraction, Calcium and Wnt signaling pathway.  

Wu et al. demonstrated that degradation of ECM  

was associated with the development of AD and  

might serve as a potential target for the treatment of 

AD [29]. Moreover, VSMCs participate in the 

pathogenesis of AD via degrading ECM and 

weakening the aortic wall, along with increasing MMP 

production and pro-inflammatory responses [30]. Our 

results of function enrichment were consistent with 

above studies and well interpreted complex pathogenesis 

of AD. 

 

To further screen diagnostic ARGs for TAAD, we 

combined DEGs with ARGs and performed the machine 

learning of logistical and LASSO regression based on the 

51 different expressional ARGs. A total of 8 diagnostic 

ARGs were ultimately identified with significant 

diagnostic efficiency for TAAD, including CHEK2, 

HIF1A, HK2, HMGA1, SERPINA1, PTPN1, SLC2A1 

and VEGFA. All these biomarkers were significantly 

upregulated in TAAD patients and their high-expressions 

were repetitively validated in multiple external datasets. 

Interestingly, there are some classical biomarkers 

reported to be involved in the acknowledged AD-

associated mechanism. For example, by activating the 

HIF-1A pathway, hypoxia can promote the up-regulation 

of MMP-2/9 and further participate in the formation of 

AD and VEGFA also participates in the pathogenesis of 

AD via angiogenesis and remodeling [31]. HMGA1 has 

been found associated with the development of aortic 

aneurysm and dissection (AAD) via transcriptome-wide 

association study (TWAS) analysis [32] and SERPINA1 

has been identified as a reliable molecular marker for the 

early diagnosis of AD patients [33]. HK2 is also 

considered as one of biomarkers to predict the degree of 

arterial 18F-fluorodeoxyglucose (FDG) accumulation in 

carotid disease in patients [34]. These studies further 

interpret the potential diagnostic capacity of diagnostic 

ARGs for TAAD. 

 

Notably, we also screened vital targeted miRNAs to 

construct the complex regulatory networks for above 8 

diagnostic ARGs based on the prediction of databases 

and validation in the dataset of non-code RNA-seq. The 

regulatory role of fatal miRNAs was extremely 

complicated with homodromous or reversed regulations. 

We found that five homodromous miRNAs (has-miR-

124-3p, has-miR-128-3p, has-miR-155-5p, has-miR-

195-5p and has-miR-23b-3p) were significantly 
upregulated while four reversed miRNAs (has-miR-1-

3p, has-miR-145-5p, has-miR-20a-5p and has-miR-34a-

5p) were downregulated in TAAD patients. 

Immune cell infiltration has been raising the focus on the 

field of cardiovascular diseases in recent decades and 

macrophages have been found recalled and activated 

inside the aortic walls to be involved in the pathogenesis 

of TAAD through neoangiogenesis and matrix 

degradation [35]. In addition, through flow cytometry 

experiments, Flavia et al. identified the increase of NK 

cells and macrophages with the decrease of total T 

lymphocytes and T helper fractions in TAAD patients 

[36]. In this study, we drawn the immune cell landscape 

of TAAD by ssGSEA algorithm and demonstrated that 

innate immune-associated cells were more dominant 

than adaptive immune-related cells in tissues of TAAD, 

especially in macrophages, monocytes, activated 

dendritic cells and CD56+ dim NK cells. These results 

were consistent with previous studies and further 

verified in scRNA-seq datasets. In a recent scRNA-seq 

study, zhang et al. also identified specific cellular 

subtypes of macrophages and provided a preliminary 

evaluation of macrophages’ role in the development of 

TAAD [37]. Through integrated scRNA-seq analysis, 

we also investigated the functional enrichments of each 

cell in TAAD patients and identified the activation of 

multiple inflammatory-related signaling in B cells, 

fibroblasts, macrophages and monocytes including TNF, 

JAK-STAT and inflammation signaling. However, the 

inflammatory activation was not observed in T cells and 

significantly inhibited in SMC, suggesting the muscular 

damage and degradation of ECM. 

 

Metabolic reprogramming refers to the adaptation of 

cellular metabolism in response to changes in 

environmental and physiological conditions, which is 

essential for maintaining cellular homeostasis in various 

pathological conditions, such as cancer, obesity, and 

diabetes [38]. Besides inflammatory-related pathways, 

immune cells, especially for macrophages and mono-

cytes, exhibited significant activation of hypoxia and 

glycolysis process but with inhibition of oxidative 

phosphorylation, indicating the existence of metabolic 

reprogramming in macrophages and monocytes of 

TAAD patients. Lian et al. has also demonstrated that 

macrophages metabolic reprogramming could activated 

HIF-1α and ADAM17 signaling to aggravate AD via 

promoting vascular inflammation, elastic plate breakage 

and extracellular matrix degradation [39]. Moreover, we 

further compared the levels of anoikis scores among 

different cells and found the difference of anoikis scores 

between TAAD and HC cohorts was majorly dependent 

on macrophages and monocytes, suggesting the 

activation of anoikis in macrophages and monocytes 

might be fatal for TAAD. The differentiation trajectory 

analysis further identified the potential correlation 
among different macrophage subtypes and GSEA 

enrichment revealed the activation of inflammatory and 

metabolic reprogramming was dominated by macro1-3 
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and mono1/3/5 subtypes. Based on the expressional 

evolution of diagnostic ARGs on the trajectory, four 

vital ARGs, including HIF1A, HMGA1, SERPINA1 

and VEGFA, were identified along with the changes of 

differentiation trajectory, and major expressions were 

conformably concentrated on macro1-3, mono1-2 and 

mono4 subtypes, implying these subtypes might 

participate in the activation of ARGs in TAAD patients. 

 

However, there are still several limitations in our study. 

For one thing, although we have identified and 

validated eight diagnostic ARGs with high diagnostic 

efficiency, the number of each dataset is still limited 

and they were obtained from public databases. Hence, 

their corresponding diagnostic efficiency remains to be 

further explored through more external researches or 

clinical practice. For another, multiple immune cells, 

particularly in macrophages, were found significant 

association with anoikis scores in TAAD, indicating 

that macrophages subtypes might be responsible for the 

difference of anoikis. However, the concrete mechanism 

of macrophages leading to the development of TAAD 

by anoikis -related pathways remains to be further 

investigated and validated by more functional 

experiments in vivo and in vitro. 

 

CONCLUSIONS 
 

Our study first screens diagnostic ARGs as the novel 

biomarkers for the precise diagnosis of TAAD based 

on integrated analysis. A total of eight diagnostic 

ARGs were successfully identified with high 

diagnostic efficiency and their functional annotations 

were applied to expound potential mechanism of 

anoikis in TAAD. Integrated RNA-seq and scRNA-seq 

analysis revealed that inherent immunity-related cells, 

especially for macrophages and monocytes, were 

considered as primary pathogenic parts for the 

development of TAAD, with close connection to the 

anoikis process. These findings provide a promising 

diagnostic biomarker for the accurately diagnosing  

the disease and would be helpful to further explore  

the potential pathogenesis with anoikis process for 

TAAD. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

 

Please browse Full Text version to see the data of Supplementary Tables 2–11. 

 

Supplementary Table 1. Datasets used in this study. 

GEO id Samples Type Role 

GSE153434 10 TAAD and 10 HC bulk RNA-seq Training sets 

GSE98770 6 TAAD and 5 HC bulk RNA-seq Test sets 

GSE52093 7 TAAD and 5 HC bulk RNA-seq Test sets 

GSE190635 4 TAAD and 4 HC Whole-genome RNA-seq Test sets 

GSE213740 6 TAAD and 3 HC single-cell RNA-seq Exploring sets 

 

Supplementary Table 2. Results of up-regulated DEGs between TAAD and HC. 

 

Supplementary Table 3. Results of down-regulated DEGs between TAAD and HC. 

 

Supplementary Table 4. Results of GO and KEGG enrichment analysis of up-regulated DEGs. 

 

Supplementary Table 5. Results of GO and KEGG enrichment analysis of up-regulated DEGs. 

 

Supplementary Table 6. Results of GSEA enrichment analysis between TAAD and HC. 

 

Supplementary Table 7. 338 ARGs according to previous articles. 

 

Supplementary Table 8. Results of predicted miRNA of hub ARGs. 

 

Supplementary Table 9. Results of immune cell infiltration by ssGSEA. 

 

Supplementary Table 10. Top10 markers of different clusters of macrophages. 

 

Supplementary Table 11. Results of DEGs by differentiation trajectory analysis. 

 


