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Abstract 

Objectives:  The aim of this study was to investigate the generalization perfor-
mance of deep learning segmentation models on a large cohort intravascular ultra-
sound (IVUS) image dataset over the lumen and external elastic membrane (EEM), 
and to assess the consistency and accuracy of automated IVUS quantitative measure-
ment parameters.

Methods:  A total of 11,070 IVUS images from 113 patients and pullbacks were col-
lected and annotated by cardiologists to train and test deep learning segmentation 
models. A comparison of five state of the art medical image segmentation models 
was performed by evaluating the segmentation of the lumen and EEM. Dice similar-
ity coefficient (DSC), intersection over union (IoU) and Hausdorff distance (HD) were 
calculated for the overall and for subsets of different IVUS image categories. Further, 
the agreement between the IVUS quantitative measurement parameters calculated 
by automatic segmentation and those calculated by manual segmentation was evalu-
ated. Finally, the segmentation performance of our model was also compared with pre-
vious studies.

Results:  CENet achieved the best performance in DSC (0.958 for lumen, 0.921 
for EEM) and IoU (0.975 for lumen, 0.951 for EEM) among all models, while Res-UNet 
was the best performer in HD (0.219 for lumen, 0.178 for EEM). The mean intraclass 
correlation coefficient (ICC) and Bland–Altman plot demonstrated the extremely 
strong agreement (0.855, 95% CI 0.822–0.887) between model’s automatic prediction 
and manual measurements.

Conclusions:  Deep learning models based on large cohort image datasets were capa-
ble of achieving state of the art (SOTA) results in lumen and EEM segmentation. It can 
be used for IVUS clinical evaluation and achieve excellent agreement with clinicians 
on quantitative parameter measurements.
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Introduction
Intravascular ultrasound (IVUS) is a cutting-edge medical imaging technique used in 
cardiology to visualize the interior of coronary artery with exceptional clarity [1]. IVUS 
offers a unique perspective by providing real-time cross-sectional images of the blood 
vessel walls, allowing physicians to obtain detailed information about the structure, 
composition and extent of atherosclerotic plaques. IVUS plays a very important role in 
improving the understanding of coronary lesions and guiding interventional treatment 
by accurately measuring lumen and vessel diameter as well as determining the nature 
and severity of plaque [2]. The different echogenic properties of the coronary vessel wall 
allow for a clear interpretation of the vessel structure on IVUS images. In the clinical 
analysis of IVUS images, accurate segmentation of the lumen and external elastic mem-
brane (EEM) from IVUS images is of great clinical importance and helps to quantita-
tively assess atherosclerotic plaques by measuring lumen diameter, lumen area, plaque 
burden and plaque eccentricity, etc. IVUS images exhibit a variety of features, includ-
ing bifurcation, side vessels, branch confluence, ultrasound artifacts, thrombosis, stent, 
coarctation, and various plaques, especially calcified plaques. Given this complexity of 
IVUS images, it can take several years to train an experienced IVUS reader. In clinical 
practice having a physician manually contour the lumen and EEM can be very time con-
suming and difficult to guarantee accuracy. Therefore, an automated method of lumen 
and EEM segmentation that balances speed and accuracy is urgently needed in clinical 
research.

Deep learning-based medical image segmentation algorithms have made remarkable 
progress in recent years, and new concepts and methods are constantly being introduced 
into the field [3–7]. Yang et  al. proposed a fully convolutional network (FCN)-based 
IVUS-Net to segment the lumen and EEM on a dataset of 435 IVUS images including 
10 cases, and achieved better results than traditional image segmentation methods [8]. 
This work provides a benchmark for deep learning-based methods for IVUS segmen-
tation. Tong et al. presented an automated method for detecting lumen borders based 
on dictionary learning. This method required manual extraction of texture features of 
the image and was only used to segment the lumen [9]. Dong et al. proposed an 8-layer 
U-Net network based on segmentation of the lumen and EEM, but the sample size was 
too small and no further generalization performance was verified on multiple IVUS 
images [10]. In contrast, the study by Du et al. remedied these shortcomings. They con-
structed a multicenter, IVUS dataset containing 6516 images, synthetically measured 
multiple convolutional segmentation networks, and validated the generalization perfor-
mance on a variety of IVUS images [11]. Combining the above related studies, we believe 
it is necessary to measure the segmentation effect of IVUS lumen and EEM on a larger 
dataset using the latest models in the field of image segmentation.

In this study, we constructed IVUS image dataset containing over 11,000 images with 
diverse features and categories. Second, we comprehensively compared the segmenta-
tion performance of the latest image segmentation models on lumen and EEM based 
on recent model advances in the field of image segmentation, and performed diversity 
generalization performance tests. Further, we compared the agreement of relevant quan-
titative clinical parameters with manual segmentation computations based on the best 
segmentation results.
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Results
Demographics of the study cohort

We performed a demographic analysis of 11,070 IVUS images of all 113 cases on the 
full study cohort and analyzed the statistical differences between them in the Table 1. 
There were no significant differences between the cohorts in terms of the proportion of 
male patients, age and the proportion of patients with CAD, which also suggests that the 
internal distribution in our randomly divided data cohort is reasonable. In terms of the 
coronary vessels involved, although the vast majority of lesions were concentrated in the 
left anterior descending (LAD) (65.49%), the distribution of lesion cases across vessels 
was relatively even in three study cohorts. In terms of IVUS image categories, we divided 
all images into seven categories: calcified plaque, bifurcation, adjacent vessels, stents, 
guidewire artifacts, lipid fibrous plaque and normal vessels (None), with a relatively large 
proportion of calcified plaque, guidewire artifacts and lipid fibrous plaque, but with little 
difference in overall distribution.

Performance of different models

Table  2 shows the segmentation performance of the five segmentation models for the 
lumen and EEM on the test set images. The segmentation metrics (mean ± standard 
deviation) include dice similarity coefficients (DSC), intersection over union (IoU) and 
Hausdorff distance (HD). Among them CENet achieved the highest in both DSC and 
IoU for the lumen and EEM segmentation. Res-UNet, on the other hand, performed 

Table 1  Overview of the baseline characteristics of all study cohort

Analysis of variance (ANOVA) was used as the test for the difference of mean for continuous variables such as Age, Pullbacks 
and Images. Chi-squared test was used to test for the difference of proportion for categorical variables such as Patient with 
CAD, Males, Age > 60, Involved vessel and IVUS image category. Multiple categories may exist for the same IVUS image

CAD coronary artery disease, LAD left anterior descending, LCX left circumflex, RCA​ right coronary artery

Training cohort, n = 79 Validation 
cohort, 
n = 11

Testing cohort, n = 23 P-value

Patients with CAD, n (%) 78 (98.73) 10 (90.91) 22 (95.65) 0.27

Males, n (%) 45 (56.96) 7(63.64) 15 (65.22) 0.74

Age, mean ± SD 68.46 ± 8.86 73.0 ± 3.56 69.0 ± 4.44 0.40

Age > 60, n (%) 30 (37.98) 3 (27.27) 6 (26.09) 0.50

Involved vessel

 LAD, n (%) 50 (63.29) 8 (72.73) 16 (69.56) 0.74

 LCX, n (%) 7 (8.86) 0 (0) 2 (8.70) 0.59

 RCA, n (%) 13 (16.46) 3 (27.27) 5 (21.74) 0.63

Pullbacks 79 11 23 < 0.001

Images 7808 1073 2189 < 0.001

IVUS image categories

 Calcified plaque, n (%) 2425 (31.06) 393 (36.63) 651 (29.74) < 0.001

 Bifurcation, n (%) 338 (4.33) 55 (5.13) 145 (6.62) < 0.001

 Adjacent vessels, n (%) 916 (11.73) 199 (18.55) 197 (9.00) < 0.001

 Stent, n (%) 171 (2.19) 62 (5.78) 60 (2.74) < 0.001

 Guidewire artifacts, n (%) 2518 (32.25) 223 (20.78) 945 (43.17) < 0.001

 Lipid fibrous plaque, n (%) 3962 (50.74) 467 (43.52) 1109 (50.67) < 0.001

 None, n (%) 1411 (18.07) 203 (18.92) 422 (19.28) 0.39
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best in HD, with HD of 0.219 and 0.178 for the lumen and EEM, respectively. Figure 1 
further showed the variability between the segmentation performance of different mod-
els in terms of statistical tests.

In Table  3, we further compared the segmentation performance of the five models 
on seven different subsets of the IVUS categories in the testing cohort, including calci-
fied plaque, bifurcation, adjacent vessels, stent, guidewire artifacts, lipid fibrous plaques 
and normal images (None). There was crossover between subsets, meaning that a sin-
gle IVUS image may have several IVUS image categories. The results in Table 3 can be 
used as a further breakdown of Table 2, and thus the performance comparison between 
the models in Table 3 is consistent with Table 2. Both Res-UNet and CENet performed 
very robustly on each subset. Overall, Res-UNet performed relatively better on lumen 
segmentation for each subset, while CENet was better on EEM. Figure 2 exhibited the 
visualization of the segmentation contours of the 5 models on different IVUS image 
categories.

Agreement of IVUS quantitative measurement parameters

The ICC of IVUS quantitative measurement parameters between model segmentations 
and manual measurements is shown in Table 4. Eight of all 12 parameters had extremely 
strong ICC (ICC > 0.9), two had a strong consistency (0.6 < ICC < 0.8), and the remaining 

Table 2  Performance of the five segmentation models on the testing cohort for lumen and EEM 
segmentation with metrics including dice similarity coefficient (DSC), intersection over union (IoU) 
and Hausdorff distance (HD)

The number of parameters representing the size of the model was also listed

The bold values indicate the optimal values for different models at the current metrics

Models Lumen EEM Parameters 
(M)

DSC IoU HD (mm) DSC IoU HD (mm)

Res-UNet 0.958 ± 0.037 0.921 ± 0.058 0.219 ± 0.210 0.974 ± 0.024 0.951 ± 0.043 0.178 ± 0.200 24.45

DeepLab 
v3 plus

0.952 ± 0.040 0.911 ± 0.064 0.243 ± 0.226 0.972 ± 0.027 0.947 ± 0.046 0.190 ± 0.192 54.11

Swin-
UNet

0.944 ± 0.045 0.897 ± 0.070 0.321 ± 0.242 0.961 ± 0.037 0.927 ± 0.062 0.312 ± 0.231 41.39

UNeXt 0.946 ± 0.039 0.900 ± 0.064 0.310 ± 0.276 0.960 ± 0.046 0.926 ± 0.073 0.321 ± 0.330 1.47

CENet 0.958 ± 0.035 0.921 ± 0.057 0.237 ± 0.223 0.975 ± 0.024 0.951 ± 0.042 0.184 ± 0.197 29.00

Fig. 1  Comparison of the performance of the 5 segmentation models for lumen (left subplot) and EEM (right 
subplot). ANOVA was used to statistically analyze the variability in the performance of the different models. 
*0.01 ≤ P < 0.05; **0.001 ≤ P < 0.01; ***P < 0.001
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two had a moderate consistency (0.4 < ICC < 0.6). The Bland–Altman plot in Fig. 3 also 
demonstrated the extremely strong agreement between the model’s prediction and man-
ual parameters.

Comparison with previous studies

We also compared the metrics of our best model with the metrics of previous related 
studies in Table 5. Our model achieved the best current segmentation performance, and 
obtained optimal values on all metrics with DSC, IoU and HD.

Table 3  Means and standard deviations of the dice similarity coefficient (DSC), intersection over 
union (IoU) and Hausdorff distance (HD) of five segmentation models evaluated on seven different 
IVUS categories subsets of the testing cohort

R Res-UNet, D DeepLab v3 plus, S Swin-UNet, U UNeXt, C CENet

The bold values indicate the optimal values for different models at the current categories and metrics

Models Lumen EEM

DSC IoU HD (mm) DSC IoU HD (mm)

Calcified 
plaque (651 
images)

R 0.961 ± 0.026 0.925 ± 0.045 0.202 ± 0.188 0.963 ± 0.030 0.930 ± 0.051 0.257 ± 0.228

D 0.955 ± 0.032 0.915 ± 0.053 0.227 ± 0.230 0.962 ± 0.027 0.929 ± 0.047 0.259 ± 0.215

S 0.947 ± 0.032 0.902 ± 0.054 0.303 ± 0.210 0.951 ± 0.034 0.908 ± 0.058 0.379 ± 0.233

U 0.950 ± 0.032 0.906 ± 0.054 0.294 ± 0.294 0.950 ± 0.040 0.907 ± 0.067 0.414 ± 0.373

C 0.960 ± 0.024 0.924 ± 0.043 0.222 ± 0.208 0.964 ± 0.028 0.932 ± 0.049 0.262 ± 0.246

Bifurca-
tion (145 
image ± s)

R 0.953 ± 0.044 0.913 ± 0.071 0.274 ± 0.325 0.969 ± 0.031 0.942 ± 0.053 0.267 ± 0.403

D 0.947 ± 0.047 0.903 ± 0.075 0.318 ± 0.413 0.968 ± 0.030 0.939 ± 0.051 0.281 ± 0.407

S 0.941 ± 0.041 0.891 ± 0.067 0.393 ± 0.328 0.955 ± 0.038 0.916 ± 0.063 0.401 ± 0.311

U 0.933 ± 0.049 0.879 ± 0.080 0.473 ± 0.518 0.953 ± 0.045 0.913 ± 0.073 0.585 ± 0.724

C 0.955 ± 0.041 0.917 ± 0.068 0.294 ± 0.387 0.969 ± 0.035 0.943 ± 0.058 0.271 ± 0.410

Adjacent 
vessels (197 
images)

R 0.962 ± 0.027 0.928 ± 0.046 0.161 ± 0.112 0.971 ± 0.031 0.945 ± 0.054 0.160 ± 0.181

D 0.956 ± 0.028 0.917 ± 0.048 0.187 ± 0.129 0.963 ± 0.049 0.932 ± 0.077 0.220 ± 0.255

S 0.944 ± 0.043 0.897 ± 0.067 0.277 ± 0.165 0.940 ± 0.065 0.892 ± 0.101 0.398 ± 0.312

U 0.947 ± 0.037 0.901 ± 0.061 0.297 ± 0.342 0.928 ± 0.086 0.876 ± 0.129 0.552 ± 0.605

C 0.962 ± 0.024 0.928 ± 0.042 0.168 ± 0.109 0.973 ± 0.024 0.949 ± 0.042 0.194 ± 0.298

Stent (60 
images)

R 0.957 ± 0.020 0.918 ± 0.036 0.241 ± 0.165 0.968 ± 0.020 0.939 ± 0.036 0.229 ± 0.147

D 0.948 ± 0.022 0.902 ± 0.039 0.270 ± 0.150 0.968 ± 0.019 0.939 ± 0.034 0.234 ± 0.151

S 0.936 ± 0.036 0.881 ± 0.061 0.381 ± 0.208 0.956 ± 0.024 0.917 ± 0.043 0.380 ± 0.215

U 0.945 ± 0.027 0.897 ± 0.047 0.33 ± 0.188 0.951 ± 0.038 0.908 ± 0.066 0.407 ± 0.295

C 0.956 ± 0.018 0.916 ± 0.032 0.251 ± 0.159 0.968 ± 0.017 0.939 ± 0.032 0.244 ± 0.141

Guidewire 
artifacts (945 
images)

R 0.953 ± 0.047 0.913 ± 0.720 0.252 ± 0.243 0.976 ± 0.022 0.954 ± 0.039 0.183 ± 0.203

D 0.949 ± 0.045 0.906 ± 0.071 0.268 ± 0.248 0.975 ± 0.020 ±  0.952 ± 0.036 0.186 ± 0.192

S 0.943 ± 0.041 0.895 ± 0.066 0.334 ± 0.220 0.965 ± 0.032 0.933 ± 0.053 0.306 ± 0.220

U 0.942 ± 0.044 0.894 ± 0.069 0.346 ± 0.301 0.967 ± 0.029 0.937 ± 0.049 0.313 ± 0.338

C 0.954 ± 0.043 0.914 ± 0.067 0.273 ± 0.264 0.977 ± 0.021 0.955 ± 0.038 0.192 ± 0.231

None (422 
images)

R 0.966 ± 0.019 0.934 ± 0.035 0.180 ± 0.125 0.976 ± 0.025 0.954 ± 0.043 0.138 ± 0.136

D 0.961 ± 0.023 0.926 ± 0.041 0.202 ± 0.146 0.970 ± 0.041 0.945 ± 0.066 0.177 ± 0.202

S 0.953 ± 0.033 0.912 ± 0.053 0.265 ± 0.162 0.957 ± 0.052 0.922 ± 0.083 0.298 ± 0.233

U 0.956 ± 0.023 0.917 ± 0.041 0.260 ± 0.206 0.950 ± 0.069 0.912 ± 0.107 0.331 ± 0.362

C 0.964 ± 0.021 0.932 ± 0.038 0.202 ± 0.154 0.977 ± 0.023 0.955 ± 0.040 0.160 ± 0.204

Lipid fibrous 
plaques 
(1109 
images)

R 0.954 ± 0.046 0.914 ± 0.070 0.244 ± 0.243 0.980 ± 0.018 0.961 ± 0.032 0.144 ± 0.175

D 0.947 ± 0.048 0.902 ± 0.074 0.268 ± 0.245 0.978 ± 0.017 0.958 ± 0.031 0.155 ± 0.162

S 0.939 ± 0.054 0.889 ± 0.081 0.354 ± 0.277 0.968 ± 0.030 0.940 ± 0.050 0.278 ± 0.222

U 0.940 ± 0.046 0.890 ± 0.073 0.338 ± 0.284 0.970 ± 0.034 0.943 ± 0.054 0.262 ± 0.272

C 0.954 ± 0.043 0.915 ± 0.068 0.260 ± 0.250 0.980 ± 0.019 0.961 ± 0.033 0.148 ± 0.143
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Discussion
In this study, we aimed to explore the accurate segmentation performance of deep 
learning 2D image segmentation models on lumen and EEM under a very large IVUS 
image cohort dataset, as well as quantitative IVUS parameter evaluation based on 
segmentation. The results of the testing cohort showed that the CNN-based Res-
UNet and CENet network structures have outstanding performance on IVUS image 
segmentation. And the quantitative IVUS parameters obtained by automatic segmen-
tation based on the model were in excellent agreement with that calculated by manual 
segmentation.

The four main contributions of this work are as follows: (1) we have constructed 
a large image segmentation dataset of IVUS, with 11,070 images containing seven 

Fig. 2  Visualization of the lumen and EEM contours of the 5 segmentation models on the 7 IVUS image 
categories. The yellow, blue, green, and red contours correspond to the manually delineated lumen border, 
the manually delineated EEM border, the model segmented lumen border, and the model segmented EEM 
border, respectively
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diverse IVUS image categories, and also set up a professional annotation team to 
ensure the quality and reliability of lumen and EEM’s masks. (2) The performance of 
the latest state of the art (SOTA) medical image segmentation model on a large IVUS 
image dataset was tested to explore the segmentation generalizations capabilities of 
different IVUS image classes. (3) On IVUS images, the CNN-based 2D medical image 

Table 4  The ICC and 95% confidence interval (CI) for the comparison of all 12 IVUS quantitative 
measurement parameters between model segmentations and manual measurements

MinLD minimum lumen diameter, MaxLD maximum lumen diameter, LEI lumen eccentricity index, Lumen-CSA lumen cross-
sectional area, MinEEMD minimum EEM diameter, MaxEEMD maximum EEM diameter, EEM-CSA EEM cross-sectional area, 
MinPT minimum plaque thickness, MaxPT maximum plaque thickness, PEI plaque eccentricity index, PCSA plaque cross-
sectional area, PB plaque burden

Parameter types Parameters ICC 95% CI

Lumen MinLD 0.955 (0.938–0.968)

MaxLD 0.969 (0.953–0.980)

LEI 0.683 (0.641–0.719)

Lumen-CSA 0.983 (0.979–0.985)

EEM MinEEMD 0.961 (0.932–0.980)

MaxEEMD 0.967 (0.934–0.986)

EEM-CSA 0.986 (0.983–0.989)

Plaques MinPT 0.539 (0.428–0.669)

MaxPT 0.784 (0.723–0.840)

PEI 0.532 (0.459–0.607)

PCSA 0.951 (0.943–0.957)

PB 0.955 (0.948–0.961)

Fig. 3  The Bland–Altman plots for the comparison of all 12 IVUS quantitative measurement parameters 
between model segmentations and manual measurements. MinLD minimum lumen diameter, MaxLD 
maximum lumen diameter, LEI lumen eccentricity index, Lumen-CSA lumen cross-sectional area, MinEEMD 
minimum EEM diameter, MaxEEMD maximum EEM diameter, EEM-CSA EEM cross-sectional area, MinPT 
minimum plaque thickness, MaxPT maximum plaque thickness, PEI plaque eccentricity index, PCSA plaque 
cross-sectional area, PB plaque burden



Page 8 of 14Dong et al. BioMedical Engineering OnLine          (2023) 22:111 

segmentation model outperformed the currently popular Transformer and MLP 
structure-based image segmentation models. (4) The IVUS quantitative measurement 
parameters calculated based on the deep learning model segmentation have excellent 
agreement with the manually segmented measurement parameters.

Deep learning image segmentation models have made notable progress in recent 
years [14–16]. In terms of model structure, it is mainly divided into CNN based, 
Transformer and MLP based, and the recent prompt-based structural design [17, 18]. 
Although current Transformer-based segmentation models have achieved outper-
forming CNN-based models on some segmentation tasks, Swin-UNet does not stand 
out as far as IVUS segmentation was concerned. UNeXt is a lightweight segmenta-
tion model based on the MLP, which can be seen to have a parametric count of only 
1.47 million compared to other models, and in this respect UNeXt sacrifices some 
accuracy for speed. From Tables 2 and 3, the CNN-based segmentation models rep-
resented by CENet and Res-UNet outperform the Transformer structure-based seg-
mentation models under tens of thousands of orders of magnitude of data in the IVUS 
domain. We speculated that this may be related to the relatively fixed structural hier-
archy of the IVUS images themselves, which fits the learning characteristics of CNN.

Most of the IVUS measurement parameters predicted by our model were in excel-
lent agreement with those obtained from manual measurements, but the performance 
was mediocre for some of the extension and plaque measurement parameters (LEI, 
PEI, MinPT and MaxPT). The reason for this may be related to the relatively irregular 
morphological features of the plaques themselves on IVUS images compared to the 
fixed hierarchy of the lumen and EEM. We also made a comparison of metrics with 
previous studies, a comparison that was perhaps not so fair because everyone is not 
in the same baseline, and the datasets and models used are different.

Our study also had some limitations. First, because of timely reasons we did not 
collect data from multi-centers in this study, which may affect the generalization abil-
ity of the model to some extent. Expanding this study to multi-centers is something 
that needs to be dealt with urgently in the future. Second, the IVUS probes frequency 
we used was 40 MHz, which is the current mainstream probes frequency. But it might 
be better to supplement the images with a 60 MHz frequency. Third, we have directly 
used existing medical image segmentation models rather than designing our own, 
which somewhat detracts from the novelty of this work.

Table 5  Comparison of IVUS segmentation metrics between our study and previous related studies

The segmentation performance of eight participants on two IVUS datasets is provided in the study by Balocco et al. [13] For 
comparison purposes, we selected the lumen and EEM optimal results for reference

The bold values indicate the optimal values for different studies

Related studies Lumen EEM

DSC IoU HD (mm) DSC IoU HD (mm)

Du et al. [11] 0.927 0.911 0.336 0.944 0.933 0.367

Kim et al. [12] 0.900 0.810 1.460 0.840 0.730 1.460

IVUS-Net [8] 0.947 0.900 0.260 0.925 0.860 0.480

Balocco et al. [13] 0.936 0.880 0.340 0.953 0.910 0.310

Ours 0.958 0.921 0.237 0.975 0.951 0.184
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Conclusion
In conclusion, we explored upper limits for automatic segmentation of IVUS lumen and 
EEM under large image cohorts. Deep learning-based segmentation of IVUS images can 
achieve excellent segmentation accuracy, and IVUS measurement parameters obtained 
based on segmentation calculations can be further used for clinical evaluation.

Methods
Data and annotations

As a retrospective study, we collected 134 IVUS pullbacks from 157 patient cases at the 
Second Affiliated Hospital of Zhejiang University School of Medicine between Decem-
ber 2020 and February 2022, 97% of which had coronary artery lesions. All IVUS images 
were in Digital Imaging and Communications in Medicine (DICOM) format and gener-
ated by Boston Scientific’s iLab with a 40-MHz OptiCross catheter. After excluding cases 
with severe artifacts, severely calcified plaques, poor imaging quality and some dupli-
cated, 113 pullbacks from 113 cases were ultimately retained. To reduce redundancy 
and avoid similarity between training images, we sampled about 90 to 110 images from 
each pullback, and the final amount of data obtained was 11,070 images. All images were 
anonymized and no personal patient information was involved. Patient inclusion and 
exclusion criteria are shown in Fig. 4.

The annotation requires the cardiologist to manually label the outline of the lumen 
and EEM and save it as a mask. To ensure the reliability and consistency of the anno-
tation, we assembled an IVUS image annotation team including three cardiology and 
ultrasound specialists. Two of them with at least 5 years of experience were dedicated 
to IVUS annotation, and the remaining one with at least 10  years of experience was 
responsible for the quality review of the annotation. The flow of the annotation is as 

Fig. 4  Flowchart shows patient inclusion and exclusion in deep learning segmentation. c cases, p pullbacks, 
i images
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follows: the two annotators perform the IVUS contouring separately, and if the intersec-
tion over union (IoU) between the two masks is greater than 0.98, we can assume that 
the annotation of the two is the same. If not, a third reviewer will make the determina-
tion. The annotation tool uses Labelme version 5.1.0, an open-source image polygonal 
annotation software with Python. Examples of the annotations of the IVUS images are 
demonstrated in Fig. 5. We then divided the full dataset, with 70% used for training the 
segmentation model, 10% for validation and 20% for testing.

Segmentation models

We experimented on our large cohort IVUS dataset with five classical, representative 
and recent network structures in medical image segmentation, namely Res-UNet, Deep-
lab v3 plus, Swin-UNet, UNeXt and CENet.

Res‑UNet

Res-UNet uses a UNet encoder-decoder backbone, in combination with residual con-
nections, atrous convolutions, pyramid scene parsing pooling, and multi-tasking infer-
ence [19]. To achieve consistent training as the depth of the network increases, the 
building blocks of the UNet architecture were replaced with modified residual blocks of 
convolutional layers [20]. For better understanding across scales, multiple parallel atrous 
convolutions with different dilation rates are employed within each residual building 
block. The pyramid scene parsing pooling layer is used to enhance the performance of 
the network by including background context information.

Deeplab v3 plus

Deeplab v3 plus is a novel encoder-decoder structure which employs Deeplab v3 as a 
powerful encoder module and a simple yet effective decoder module [21]. Deeplab v3 
plus adapts the Xception model for the segmentation task and applies depthwise sepa-
rable convolution to both atrous spatial pyramid pooling (ASPP) module and decoder 
module, resulting in a faster and stronger encoder-decoder with atrous convolution 
network [22, 23]. The atrous convolution is a powerful tool to control the resolution of 
features computed by deep convolutional neural networks and adjust the filter’s field-
of-view to capture multi-scale information, generalizing the standard convolution 

Fig. 5  A set of 5 images containing examples of IVUS lumen and EEM annotations
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operation. The depthwise separable convolution factorizes a standard convolution into a 
depthwise convolution followed by a point-wise convolution.

Swin‑UNet

Swin-UNet is a UNet-like pure Transformer for medical image segmentation [24]. 
The tokenized image patches are fed into the Transformer-based U-shaped Encoder–
Decoder architecture with skip-connections for local–global semantic feature learn-
ing. Swin-UNet consists of an encoder, bottleneck, decoder, and skip connections. The 
encoder uses hierarchical Swin Transformer with shifted windows to extract context fea-
tures [25]. The symmetric Swin Transformer-based decoder with patch expanding layer 
is designed to perform the up-sampling operation to restore the spatial resolution of the 
feature maps. Similar to the U-Net, the skip connections are used to fuse the multi-scale 
features from the encoder with the up-sampled features.

UNeXt

UNeXt is the first convolutional multilayer perceptron (MLP)-based network for image 
segmentation [26]. It is designed in an effective way with an early convolutional stage 
and an MLP stage in the latent stage. The tokenized MLP block is used to tokenize and 
project the convolutional features. The MLPs are used to model the representation and 
focus on learning local dependencies by shifting the channels of the inputs. The network 
also includes skip connections between various levels of encoder and decoder to fuse 
multi-scale features.

CENet

CENet is a context encoder network designed to capture more high-level information 
and preserve spatial information for 2D medical image segmentation [27]. It mainly con-
sists of three major components: a feature encoder module, a context extractor, and a 
feature decoder module. The feature encoder module uses a pretrained ResNet block as 
a fixed feature extractor. The context extractor module is formed by a newly proposed 
dense atrous convolution (DAC) block and residual multi-kernel pooling (RMP) block. 
The feature decoder module is used to restore the high-level semantic features extracted 
from the feature encoder module and context extractor module.

IVUS quantitative parameter measurement

The automated segmentation of the lumen and EEM from IVUS images allows us 
to measure a number of quantitative parameters that reflect the extent of coronary 
artery disease. Given a set of IVUS pullbacks, the lumen and EEM are segmented for 
all images and parameters including lumen measurement parameters, EEM measure-
ment parameters and plaque measurement parameters [28]. Specifically, the lumen 
measurement parameters include minimum lumen diameter, maximum lumen diam-
eter, lumen eccentricity index and lumen cross-sectional area (CSA). The EEM meas-
urement parameters include minimum EEM diameter, maximum EEM diameter and 
EEM-CSA. The plaque measurement parameters include maximum plaque thick-
ness, minimum plaque thickness, plaque eccentricity index, plaque CSA and plaque 
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burden. Both the minimum lumen diameter and the cross-sectional area are impor-
tant references for the degree of lumen stenosis.

Statistical analysis

All statistical analyses were performed using R statistical and computing software 
(http://​www.r-​proje​ct.​org). The statistical analysis of this study was reflected in three 
aspects. First, detailed demographic statistics and hypothesis testing were carried out 
on the study cohort and the divided dataset. Secondly, for the segmentation model 
results, dice similarity coefficient (DSC), intersection over union (IoU) and Hausdorff 
distance (HD) were used to measure the accuracy of the algorithm. Finally, for the 
IVUS quantitative measurement parameters, intraclass correlation coefficient (ICC) 
and Bland–Altman analysis were performed to analyses the agreement of the auto-
mated segmentation measurements with the manual segmentation measurements 
[29].
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