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Abstract 

Purpose:  To develop a comprehensive multi-classification model that combines 
radiomics and clinic-radiological features to accurately predict the invasiveness and dif-
ferentiation of pulmonary adenocarcinoma nodules.

Methods:  A retrospective analysis was conducted on a cohort comprising 500 
patients diagnosed with lung adenocarcinoma between January 2020 and December 
2022. The dataset included preoperative CT images and histological reports of adeno-
carcinoma in situ (AIS, n = 97), minimally invasive adenocarcinoma (MIA, n = 139), 
and invasive adenocarcinoma (IAC, n = 264) with well-differentiated (WIAC, n = 99), 
moderately differentiated (MIAC, n = 84), and poorly differentiated IAC (PIAC, n = 81). 
The patients were classified into two groups (IAC and non-IAC) for binary classification 
and further divided into three and five groups for multi-classification. Feature selection 
was performed using the least absolute shrinkage and selection operator (LASSO) algo-
rithm to identify the most informative radiomics and clinic-radiological features. Eight 
machine learning (ML) models were developed using these features, and their perfor-
mance was evaluated using accuracy (ACC) and the area under the receiver-operating 
characteristic curve (AUC).

Results:  The combined model, utilizing the support vector machine (SVM) algorithm, 
demonstrated improved performance in the testing cohort, achieving an AUC of 0.942 
and an ACC of 0.894 for the two-classification task. For the three- and five-classification 
tasks, the combined model employing the one versus one strategy of SVM (SVM-
OVO) outperformed other models, with ACC values of 0.767 and 0.607, respectively. 
The AUC values for histological subtypes ranged from 0.787 to 0.929 in the testing 
cohort, while the Macro-AUC and Micro-AUC of the multi-classification models ranged 
from 0.858 to 0.896.

Conclusions:  A multi-classification radiomics model combined with clinic-radiolog-
ical features, using the SVM-OVO algorithm, holds promise for accurately predicting 
the histological characteristics of pulmonary adenocarcinoma nodules, which contrib-
utes to personalized treatment strategies for patients with lung adenocarcinoma.
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Introduction
Pulmonary nodules are prevalent during CT screening, with at least one nodule detected 
in up to 51% of initial screenings [1]. Despite over 95% of the nodules being ultimately 
determined as benign, a significant number of malignant pulmonary nodules are still 
detected due to the vast number of cases screened [2, 3]. Lung adenocarcinoma (LAC) 
is the dominant histological subtype of malignant pulmonary nodules [4, 5]. As per the 
pathological classification by the World Health Organization, LAC is categorized into 
three types based on the level of invasiveness—adenocarcinoma in situ (AIS), minimally 
invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) [6]. In 2020, the 
International Association for the Study of Lung Cancer (IASLC) reclassified IAC into 
three grades based on varying levels of differentiation including well-differentiated IAC 
(WIAC), moderately differentiated IAC (MIAC), and poorly differentiated IAC (PIAC), 
which proved superior to models incorporating nuclear or cytologic grade [7]. Each 
LAC subtype exhibits distinct biological characteristics and prognosis. As a preinva-
sive lesion, AIS is typically managed through follow-up surveillance, but some nodules 
may progress to MIA or IAC [8]. AIS and MIA perform the excellent prognosis after 
sub-lobar resection [9], while poorly and moderately differentiated IAC exhibit higher 
postoperative recurrence rates compared to well-differentiated IAC [7, 10]. Therefore, 
accurately identifying the invasiveness and differentiation of adenocarcinoma to classify 
LAC may provide guidance for surveillance, surgical strategy, and prognosis based on 
preoperative CT images.

Traditionally, the classification of LAC subtypes relies on visual assessment and verbal 
description of radiological features. Previous investigations have highlighted the signifi-
cance of nodule characteristics, including size, type, margin, pleural indentation, vacuole 
sign, and vascular convergence sign, in determining the pathological nature of pulmo-
nary nodules [11–14]. However, accurate classification heavily relies on the expertise 
and diagnostic proficiency of radiologists. Li et al. found that senior radiologists exhib-
ited superior predictive capabilities in discerning the grading of IAC compared to their 
junior counterparts [15]. Presently, histological classification necessitates invasive tissue 
sampling through surgery or needle biopsy, which can be burdensome. Therefore, the 
development of a non-invasive and convenient approach to anticipate the histological 
subtypes of pulmonary nodules holds significant clinical implications.

Radiomics, a highly promising methodology, involves the extraction of numer-
ous high-dimensional, retrievable features from medical imaging data, either inde-
pendently or in conjunction with clinical features [16–18]. This approach has shown 
utility in distinguishing between benign and malignant lung nodules, predicting the 
invasiveness of lung adenocarcinoma, and identifying the preoperative IASLC grade 
of IAC [19–22]. Several studies have developed radiomics models to categorize and 
predict the pathological attributes of specific nodules, such as pure ground-glass 
nodules (pGGNs), mixed ground-glass nodules (mGGNs), and solid nodules (SNs), 
demonstrating robust predictive capabilities [23–25]. However, these studies have 
primarily focused on two or three-classification radiomics, thus lacking coverage of 
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the majority of nodule types and new pathological gradings. Therefore, the develop-
ment of a multi-classification radiomics approach that can predict the pathological 
invasiveness and differentiation of pulmonary nodules holds greater clinical value and 
practicality [26].

With this foundation in mind, the objective of this investigation is to construct a 
five-classification radiomics model integrating clinic-radiological features for the pre-
diction of invasiveness and differentiation of adenocarcinoma nodules, encompassing 
AIS, MIA, WIAC, MIAC, and PIAC. The ultimate aim is to establish a non-invasive 
approach that enables comprehensive assessment of the histological classifications of 
pulmonary nodules.

Materials and methods
Patients

A total of 951 patients who underwent complete resection for suspected lung cancer 
were included in this study, with clinical data and preoperative CT images collected 
between January 2020 and December 2022. To enhance the homogeneity of the patient 
cohorts, specific exclusion criteria were applied, which encompassed: (1) patients with 
confirmed non-adenocarcinoma histology, such as squamous carcinoma, mucinous 
adenocarcinoma, metastases, and others (n = 187); (2) lung nodules larger than 3 cm in 
diameter (n = 192); (3) patients who received clinical treatment and needle biopsy prior 
to the CT examination (n = 76); (4) CT images of inadequate quality (n = 27); and (5) 
patients with lymph-node metastases (n = 45). Ultimately, a total of 500 patients (201 
men and 299 women) were retrospectively enrolled in this study, with a median age of 
59 years (age range: 19–83 years). Among these patients, there were 97 cases of AIS, 139 
cases of MIA, 99 cases of WIAC, 84 cases of MIAC, and 81 cases of PIAC. The detailed 
process of patient recruitment is presented in Fig. 1.

Histopathological evaluation

All lung specimens that underwent surgical resection were meticulously examined fol-
lowing the 2021 WHO classification of thoracic tumors and the newly proposed grading 
system by the IASLC [6, 7]. The diagnosis of LAC was made based on comprehensive 
histologic patterns, which encompassed lepidic, acinar, papillary, micropapillary, solid, 
cribriform, and complex glandular patterns [27]. The proportion of each histologic pat-
tern was recorded in 5% increments to determine the predominant histologic subtype 
and quantify any patterns for tumor grading. Adenocarcinoma was categorized into two 
groups based on the degree of invasion: non-IAC (including AIS and MIA) and IAC 
(including WIAC, MIAC, and PIAC). Within the IAC group, low-grade subtypes were 
further divided into WIAC and MIAC, while high-grade subtypes (PIAC) were also con-
sidered. This grading scheme was showed in Table  1 [7]. According to the pathologi-
cal invasiveness and differentiation of pulmonary nodules, the definition of two-, three-, 
five-classification task was as follows: two-classification was (AIS, MIA) vs (WIAC, 
MIAC, and PIAC), three-classification was (AIS, MIA) vs (WIAC, MIAC) vs (PIAC), 
and five-classification was (AIS) vs (MIA) vs (WIAC) vs (MIAC) vs (PIAC).
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CT acquisition

The patients underwent CT plain imaging of the lungs using one of three CT sys-
tems: Somatom Definition AS 64 (Siemens Healthcare, Germany), Somatom Defini-
tion Flash (Siemens Healthcare, Germany), GE Discovery CT750 HD (GE Medical 
Systems, USA). Patients were scanned in the supine position with complete inspira-
tion and breath-holding, from the apex of the lung to the diaphragm. The scanning 
process utilized a tube voltage of 120  kV, automatic tube current, and reconstruc-
tion slice thickness and interval of 1 or 1.25 mm. Reconstruction settings included a 
lung window with a mean of -500 HU and a width of 1500 HU, with a matrix size of 
512 × 512.

Fig. 1  Flowchart of the patient selection

Table 1  Grading scheme for invasive adenocarcinomas of pulmonary nodules

High-grade patterns include solid, micropapillary, and complex glandular patterns

Grade Differentiation Patterns

1 Well differentiated Lepidic predominant with no or less than 20% of 
high-grade patterns

2 Moderately differentiated Acinar or papillary predominant with no or less than 
20% of high-grade patterns

3 Poorly differentiated Any tumor with 20% or more of high-grade patterns
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Clinical and radiological features

The clinical data, including gender, age, smoking history, hypertension, diabetes, and 
neoplasia history, was retrieved from the hospital information system. The radio-
logical characteristics were assessed by two thoracic specialists, and a consensus 
was reached. These characteristics encompassed the involved lobe (right upper lobe, 
right middle lobe, right lower lobe, left upper lobe, and left lower lobe), nodule shape 
(regular and irregular), nodule type (including pGGNs, mGGNs, and SNs), boundary 
(clear or blurred border definition), lobulation (indentation at the edge of a round 
or oval lesion), speculation (linear strands extending into the lung parenchyma but 
not touching the pleural surface), vacuole (small focal areas of low attenuation within 
the nodule), air bronchogram (tubelike or branched air structure within the nod-
ule), vascular convergence (multiple supplying vessels converging toward the lesion), 
pleural retraction (linear strands extending toward the pleura or major/minor fissure 
from the mass, causing pleural distortion), bronchial cut-off (sudden truncation of a 
bronchus due to obstruction within the nodule), and presence of abnormal vessels 
within the nodules (distorted, dilated, and complicated vessels within the lesions) [14, 
28–30].

Pulmonary nodules’ segmentation

A single radiologist (with 10 years of experience in chest imaging), who was blinded to 
the pathological results, conducted semi-automated lesion segmentation on CT images 
with lung window settings using the Radcloud Platform [31] (version 7.5; Huiying Medi-
cal Technology Co., Ltd., Beijing). The segmentation process involved delineating the 
pulmonary nodules on a section-by-section basis to generate a three-dimensional region 
of interest (ROI). After a month, 50 cases were randomly selected, and the same radi-
ologist repeated the segmentation to assess intra- and interobserver reproducibility. The 
aforementioned segmentation results were further validated by an experienced radiolo-
gist (with 15 years of experience in chest imaging).

Radiomics and clinic‑radiological features extraction and selection

The extraction of image features plays a fundamental and crucial role in radiomics analy-
sis, as it enables the identification of relevant features that effectively capture the bio-
logical characteristics of lesions and tumor heterogeneity. In this study, the Radcloud 
platform was utilized for the extraction of radiomics features. Specifically, the plat-
form employed PyRadiomics [32] (version 3.1.0, https://​pyrad​iomics.​readt​hedocs.​io/), 
a Python-based library, to extract a comprehensive set of radiomics features from the 
medical images. To enhance the reproducibility of the radiomics analyses, pre-process-
ing steps were meticulously addressed. Prior to feature extraction, z  normalization of 
CT images was conducted using PyRadiomics. Additionally, grayscale discretization 
employed fixed Bin Width values set at 25HU, and voxel size resampling was executed at 
1 × 1 × 1 mm3 using PyRadiomics [33].

In our study, we extracted a total of 1688 image features belonging to five major cat-
egories from the ROI of each patient. These categories include first-order statistics, 3D 
shape features, gray-level co-occurrence matrix (GLCM) features, gray-level run length 
matrix (GLRL) features, gray-level size zone matrix (GLSZM) features, neighboring gray 

https://pyradiomics.readthedocs.io/
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tone difference matrix (NGTDM) features, and gray-level dependence matrix (GLDM) 
features. Notably, shape features were solely derived from the original images, while the 
remaining features were obtained by applying various filters such as wavelet, square, 
square root, gradient, logarithm, exponential, local binary pattern in 2D (LBP-2D), and 
local binary pattern in 3D (LBP-3D). For the extraction of texture features, preprocessed 
CT images underwent wavelet filtering, which involved transforming the VOI into the 
wavelet domain while preserving low-pass (LLL) and high-pass (HHH) subbands and 
assigning different weights to other subbands (LHL, LHH, LLH, HLL, HHL, and HLH). 
Additionally, the LBP-3D image type comprised three subcategories, including the kur-
tosis map (LBP-3D-k), as well as two categories calculated using different levels of spher-
ical harmonics, namely LBP-3D-m1 and LBP-3D-m2. It is worth mentioning that all the 
aforementioned radiological features adhere to the Image Biomarker Standardization 
Initiative (IBSI, https://​theib​si.​github.​io).

Prior to selecting radiomics features, Z-score normalization was applied to all fea-
tures. Each patient possessed a total of 1688 features, resulting in a significant amount 
of redundancy. To avoid diminishing the predictive performance of the model and to 
reduce computational time, it is necessary to perform feature selection in training set 
before model development. First, the evaluation of interobserver reproducibility for 
radiomics features was conducted utilizing the intraclass correlation coefficient (ICC). 
Specifically, ICC values falling below 0.5, between 0.5 and 0.75, between 0.75 and 0.9, 
and exceeding 0.90 are indicative of poor, moderate, good, and excellent reliability, 
respectively [34]. Consequently, features with ICC values surpassing 0.75 were retained 
for subsequent stages of feature selection. Subsequently, a variance threshold of 0.8 was 
employed to refine the feature selection process. Furthermore, the univariate analysis 
method, SelectKBest, was utilized to identify features with a p value less than 0.05 for 
further analysis. Finally, the least absolute shrinkage and selection operator (LASSO) 
regression method with tenfold cross-validation was employed to assist in feature selec-
tion, aiming to identify relevant and informative features associated with lung cancer 
classification.

On the other hand, LASSO regression is also applicable for the selection of clinic-radi-
ological features [35], integrating radiological scores with independent clinical risk factor 
scores to establish a predictive model for lung cancer classification. Specifically, LASSO 
shrinks all regression coefficients close to zero based on a regularization parameter λ 
and precisely sets the coefficients of many irrelevant features to zero. To determine the 
optimal value of λ, we employed a tenfold cross-validation with a minimum criterion, 
resulting in the λ value that yielded the lowest cross-validation error. The retained non-
zero coefficient features were used to fit the regression model and combined into a radi-
omics and clinic-radiological features model. The predicted values of the model for each 
patient were computed through a linear combination weighted by the correlation coef-
ficients of the selected features.

Given the involvement of two-classification, three-classification, and five-classification 
tasks in our study, it is essential to note that the LASSO labels employed during fea-
ture selection are tailored to the specific categorization requirements of each respective 
task. In other words, the labels used in the LASSO regularization process correspond 
uniquely to the distinct classification schemes associated with the two-classification, 

https://theibsi.github.io
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three-classification, and five-classification tasks. This tailored approach ensures the rel-
evance and appropriateness of the selected features for each specific classification task 
within our study framework.

Development of machine learning (ML) models

The features extracted from lesion segmentation using computer learning techniques 
are subjected to data analysis and model construction, enabling the reflection of lesion 
information and prediction of the lesions. The radiomics dataset comprises a training 
set for training and a testing set for model testing. Currently, commonly used radiom-
ics models include logistic regression (LR), support vector machine (SVM), K-nearest 
neighbors (KNN), decision tree (DT), random forest (RF), gradient boosting decision 
tree (GBDT), among others. One versus rest (OVR) and one versus one (OVO) are two 
well-known strategies that decompose multi-class classification problems into multiple 
binary classification problems. Since LR and SVM are two-classification models, this 
study categorizes them into LR-OVR, SVM-OVR, LR-OVO, and SVM-OVO for three-
classification and five-classification tasks, while also comparing them with other multi-
classification models, such as KNN, DT, RF, and GBDT.

Validation of the optimizing ML models

In the evaluation of the testing cohort, the performance of the two-classification 
problem was assessed using quantitative measures, such as accuracy (ACC), sen-
sitivity, specificity, and the area under the receiver-operating characteristic curve 
(AUC). Furthermore, considering the inherent characteristics of the multi-classifica-
tion problem, the predictive capabilities of the models designed for multiple classes 
were examined by computing macro- and micro-averaged AUCs [36]. Additionally, 
macro-average accuracy, F1-score, recall, and precision were calculated to evalu-
ate the classification performance of the multi-classification models. Notably, in 
addition to the radiomics model, the same methodology was employed to develop 
the clinic-radiological model and combined model, with the objective of verifying 

Fig. 2  Workflow of necessary steps in current study. LASSO least absolute shrinkage and selection operator, 
ROC receiver-operating characteristic
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whether the inclusion of clinical variables enhances the classification performance 
of the machine learning models for pulmonary nodules. Our study flow diagram is 
shown in Fig. 2.

Statistical analyses

The statistical analyses were conducted using R software (version 4.2.1; https://​www.r-​
proje​ct.​org/) to compare the differences in clinical and radiological data among the five 
groups. For categorical variables, the Chi-square test was employed, and in terms of 
quantitative variables, the Mann–Whitney U test was applied. The overall performance 
of the multi-classification models in the development and testing cohorts was evaluated 
through receiver-operating characteristic (ROC) curve analysis and the calculation of 
micro- and macro-AUC. All statistical tests were two-sided, and a significance level of 
P < 0.05 was deemed statistically significant throughout the entire study duration.

Results
Patient characteristics

Table  2 displays the comprehensive clinical and radiological features observed in a 
cohort of 500 patients. The enrolled patients underwent random allocation into a train-
ing set (n = 349) and a testing set (n = 151) at a ratio of 7:3. Statistical analysis revealed 
significant differences among the five histological subtypes for various clinical and radio-
logical features, including gender, smoking history, hypertension, age, nodule boundary, 
lobulation sign, bronchial cut-off sign, speculation sign, vacuole sign, air bronchogram 
sign, vascular convergence sign, pleural retraction, abnormal vessels within nodules, and 
nodule type (p < 0.05).

Consequently, two-classification system comprised non-IAC (AIS, MIA, n = 236) and 
IAC (WIAC, MIAC, and PIAC, n = 264). The three-classification system comprised 
non-IAC (AIS, MIA, n = 236), low-grade IAC (WIAC, MIAC, n = 183), and high-grade 
IAC (PIAC, n = 81). In the five-classification system, the subtypes included AIS (n = 97), 
MIA (n = 139), WIAC (n = 99), MIAC (n = 84), and PIAC (n = 81).

The selected radiomics and clinic‑radiological features in varying classification models

After extracting a total of 1688 radiomics features, only those demonstrating good 
feature consistency (ICC≧0.75) were selected for further analysis. For the two-clas-
sification model, a combination of variance thresholding, SelectKBest, and LASSO 
regression methods was utilized to identify 31 non-zero coefficient radiomics features 
from the CT sequences. These selected features were then used to calculate the 2-Rad-
score for each patient in both the training and testing cohorts. The calculation of the 
2-Rad-score involved summing the products of the corresponding feature values and 
their respective weights. Similarly, for the 17 clinic-radiological features, LASSO regres-
sion was employed to extract 11 non-zero coefficient clinic-radiological features. This 
process resulted in the computation of the 2-clinic-radiological-score using the same 
methodology.

Following the same approach, the 3-rad-score and 3-clinic-radiological-score for the 
three-classification model were calculated using 39 retained radiomics features and 14 

https://www.r-project.org/
https://www.r-project.org/
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retained clinic-radiological features, respectively. Additionally, for the five-classification 
model, 26 radiomics features and 11 clinic-radiological features were preserved to calcu-
late the 5-rad-score and 5-clinic-radiological-score, respectively.

Table 2  The clinical and radiological features of patients in the histological classifications

AIS adenocarcinoma in situ, MIA minimally invasive adenocarcinoma, WIAC well-differentiated invasive adenocarcinoma, 
MIAC moderately differentiated invasive adenocarcinoma, PIAC poorly differentiated invasive adenocarcinoma, pGGN pure 
ground-glass nodule, mGGN mixed ground-glass nodule, SN solid nodules, RUL right upper lobe, RML right middle lobe, RLL 
right lower lobe, LUL left upper lobe, LLL left lower lobe

*p value was calculated with the Mann–Whitney U test < 0.05
§ p value was calculated with the Chi-square test < 0.05

Variable Total
(n = 500)

AIS
(n = 97)

MIA
(n = 139)

WIAC
(n = 99)

MIAC
(n = 84)

PIAC
(n = 81)

p

Gender, n (%) Male 201 (40) 31 (32) 46 (33) 38 (38) 33 (39) 51 (63)  < 0.001*

female 299 (60) 66 (68) 91 (65) 61 (62) 51 (61) 30 (37)

Smoking history, 
n (%)

No 384 (77) 86 (89) 116 (83) 76 (77) 62 (74) 44 (54)  < 0.001*

Yes 116 (23) 11 (11) 23 (17) 23 (23) 22 (26) 37 (46)

Hypertension, 
n (%)

No 308 (62) 69 (71) 93 (67) 54 (55) 48 (57) 44 (54) 0.041*

Yes 192 (38) 28 (29) 46 (33) 45 (45) 36 (43) 37 (46)

Diabetes, n (%) No 427 (85) 85 (88) 119 (86) 84 (85) 71 (85) 68 (84) 0.963

Yes 73 (15) 12 (12) 20 (14) 15 (15) 13 (15) 13 (16)

History of tumor, 
n (%)

No 462 (92) 88 (91) 127 (91) 97 (98) 76 (90) 74 (91) 0.235

Yes 38 (8) 9 (9) 12 (9) 2 (2) 8 (10) 7 (9)

Nodule involved 
lobe, n (%)

RUL 187 (37) 40 (41) 42 (30) 45 (45) 28 (33) 32 (40) 0.218

RML 31 (6) 8 (8) 7 (5) 3 (3) 7 (8) 6 (7)

RLL 93 (19) 22 (23) 24 (17) 18 (18) 14 (17) 15 (19)

LUL 108 (22) 12 (12) 41 (29) 21 (21) 17 (20) 17 (21)

LLL 81 (16) 15 (15) 25 (18) 12 (12) 18 (21) 11 (14)

Age, median 
(Q1,Q3)

59(52, 67) 55(48, 59) 57(50, 64) 64(58, 70) 62(55, 68) 65(59, 70)  < 0.001§

Boundary, n (%) Ill-defined 109 (22) 36 (37) 29 (21) 21 (21) 13 (15) 10 (12)  < 0.001*

Well-defined 391 (78) 61 (63) 110 (79) 78 (79) 71 (85) 71 (88)

Lobulation sign, 
n (%) 

No 371 (74) 91 (94) 134 (96) 73 (74) 46 (55) 27 (33)  < 0.001*

Yes 129 (26) 6 (6) 5 (4) 26 (26) 38 (45) 54 (67)

Bronchial cut-off 
sign, n (%)

No 461 (92) 97 (100) 139 (100) 96 (97) 77 (92) 52 (64)  < 0.001*

Yes 39 (8) 0 (0) 0 (0) 3 (3) 7 (8) 29 (36)

Speculation 
sign, n (%)

No 373 (75) 91 (94) 128 (92) 76 (77) 42 (50) 36 (44)  < 0.001*

Yes 127 (25) 6 (6) 11 (8) 23 (23) 42 (50) 45 (56)

Vacuole sign, 
n (%) 

No 389 (78) 85 (88) 122 (88) 73 (74) 61 (73) 48 (59)  < 0.001*

Yes 111 (22) 12 (12) 17 (12) 26 (26) 23 (27) 33 (41)

Air broncho-
gram sign, n (%)

No 397 (79) 87 (90) 126 (91) 77 (78) 56 (67) 51 (63)  < 0.001*

Yes 103 (21) 10 (10) 13 (9) 22 (22) 28 (33) 30 (37)

Vascular con-
vergence sign, 
n (%) 

No 413 (83) 97 (100) 128 (92) 83 (84) 62 (74) 43 (53)  < 0.001*

Yes 87 (17) 0 (0) 11 (8) 16 (16) 22 (26) 38 (47)

Pleural retrac-
tion, n (%) 

No 264 (53) 86 (89) 99 (71) 39 (39) 29 (35) 11 (14)  < 0.001*

Yes 236 (47) 11 (11) 40 (29) 60 (61) 55 (65) 70 (86)

Abnormal 
vessels within 
nodules, n (%)

No 326 (65) 69 (71) 110 (79) 45 (45) 51 (61) 51 (63)  < 0.001*

Yes 174 (35) 28 (29) 29 (21) 54 (55) 33 (39) 30 (37)

Nodule type, 
n (%) 

pGGN 166 (33) 69 (71) 74 (53) 19 (19) 4 (5) 0 (0)  < 0.001*

mGGN 239 (48) 25 (26) 63 (45) 73 (74) 51 (61) 27 (33)

SN 95 (19) 3 (3) 2 (1) 7 (7) 29 (35) 54 (67)
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Performance of the ML models in different classifications

Clinic-radiological, radiomics, and combined models were constructed for the two-classifi-
cation task using LR, SVM, KNN, DT, RF, and GBDT algorithms. The performance of these 
ML models in the testing cohort was evaluated, and the results are presented in Table 3. 
All ML models exhibited satisfactory performance in predicting non-IAC and IAC. The 
SVM model showed the best overall performance, achieving the highest AUC and ACC 
values. Notably, the combined model demonstrated improved performance compared to 
the clinic-radiological and radiomics models, achieving an AUC of 0.942 and an ACC of 
0.894, whereas the clinic-radiological and radiomics models achieved AUC values of 0.905 
and 0.938, and ACC values of 0.848 and 0.868, respectively.

Similarly, for the three-classification task, clinic-radiological, radiomics, and combined 
models were constructed using LR-OVR, SVM-OVR, LR-OVO, SVM-OVO, KNN, DT, RF, 
and GBDT algorithms. The performance of these models in predicting non-IAC, low-grade 
IAC, and high-grade IAC was evaluated, and the results are presented in Table 4. The SVM-
OVO model demonstrated the best overall performance among all ML models in the test-
ing cohort, regardless of the clinic-radiological, radiomics, or combined model. However, 
the combined model achieved a higher ACC compared to the other two models, with a 
value of 0.767 versus 0.740 and 0.753, respectively.

The results of the five-classification task, as presented in Table 5, were consistent with the 
three-classification results. The SVM-OVO model exhibited the best overall performance 
in predicting AIS, MIA, WIAC, MIAC, and PIAC. Once again, the combined model out-
performed the other two models in terms of ACC, achieving a value of 0.607 compared to 
0.513 and 0.553.

Optimal ML model classification evaluation

The SVM-OVO ML model, combined with radiomics and clinic-radiological features, 
exhibited excellent performance in classifying pulmonary adenocarcinoma nodules, as 
presented in Table 6. To visualize the correlation between radiomics features, clinic-radio-
logical scores, and histological types, a cluster graph was constructed using representative 
patient data, as shown in Fig. 3.

Figure  4 displays the confusion matrix of the combined model using SVM and SVM-
OVO in both the training and testing cohorts. The matrix illustrates that the selected 
models were not prone to making errors and effectively captured the relationships among 
histological subtypes. The ACC in the testing cohort exceeded 0.6, even for the challeng-
ing five-classification task. All histological subtypes in the three and five-classification 
tasks were accurately identified. The macro-AUC and micro-AUC values of the three-
classification model in the testing cohort were 0.884 and 0.896, respectively. Similarly, the 
macro-AUC and micro-AUC values of the five-classification model were 0.858 and 0.866, 
respectively. The AUC values of the histological subtypes ranged from 0.787 to 0.942, with 
the lowest AUC observed for MIAC in the testing cohort, as depicted in Fig. 5.

Discussion
In this research endeavor, our objective was to devise classification models for two, 
three, and five histological stratifications of pulmonary adenocarcinoma nodules by 
integrating radiomics features with clinic-radiological characteristics. Additionally, 
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we conducted a comprehensive comparison of various machine learning techniques, 
including LR-OVR, SVM-OVR, LR-OVO, SVM-OVO, DT, KNN, RF, and GBDT, to 
identify the most suitable model for multi-classification tasks in predicting the histo-
logical subtypes of pulmonary nodules. Consequently, the SVM-OVO model emerged 
as the optimal choice, exhibiting superior overall performance in accurately predict-
ing the histological subtypes of pulmonary nodules.

Undoubtedly, the accurate histological classification of LAC, which evaluates inva-
siveness and differentiation, is pivotal in determining appropriate treatment strate-
gies. Typically, this classification relies on postoperative pathological examination 
following complete surgical resection [9, 37]. Consequently, the development of 
a non-invasive and convenient method to predict the histological classification of 
pulmonary nodules based on preoperative CT images holds substantial clinical sig-
nificance. Radiomics, as a burgeoning field, has shown great promise in the diagno-
sis, treatment, and monitoring of pulmonary nodules, surpassing the capabilities of 

Fig. 3  The cluster graph provided a visual representation of the relative correlation between radiomics 
features, clinic-radiological scores, and histological types in a set of representative patients. CT images (a–e 
upper) and corresponding histological images (a–e lower, magnification × 200) of five representative patients 
are displayed. Patient 1, a 53-year-old woman with adenocarcinoma in situ (AIS), exhibited a CT image in 
the left upper lobe showing a ground-glass nodule (GGN) within a foci solid component (a). Patient 2, a 
74-year-old woman with minimally invasive adenocarcinoma (MIA), presented a CT image in the right upper 
lobe displaying a GGN within a blurred vessel (b). Patient 3, a 58-year-old woman with well-differentiated 
invasive adenocarcinoma (WIAC), demonstrated a CT image in the right lower lobe depicting a mixed GGN 
with lobulation, short speculation, and pleural retraction (c). Patient 4, a 53-year-old woman with moderately 
differentiated invasive adenocarcinoma (MIAC), showed a CT image in the right lower lobe exhibiting a solid 
nodule (SN) with lobulation, short speculation, and pleural retraction (d). Patient 5, a 70-year-old man with 
poorly differentiated invasive adenocarcinoma (PIAC), presented a CT image in the right upper lobe revealing 
an SN with lobulation, more short speculation, pleural retraction, and vascular convergence (e). Furthermore, 
a comparison of 36 radiomics features and the clinic-radiological score among the five patients is illustrated 
in panel (f)
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radiologist-based assessments, as evidenced by a growing body of literature [15, 21, 
22, 38].

In our present investigation, we put forth multiple common machine learning mod-
els encompassing the diverse histopathologic stratifications of pulmonary adenocarci-
noma nodules, as per the fifth WHO classification of lung tumors. This encompassed 
the subtypes of AIS, MIA, WIAC, MIAC, and PIAC. Upon evaluating their discrimina-
tory abilities, we observed that the SVM model yielded the most favorable outcomes in 
the testing cohort for the two-classification task, while SVM-OVO demonstrated supe-
rior performance among the ML models in the testing cohort for the three- and five-
classification tasks. The area under the AUC ranged from 0.787 to 0.942, and the ACC 
ranged from 0.607 to 0.894. Notably, our findings align with previous research that high-
lighted the satisfactory performance of classifying pulmonary adenocarcinoma nodules 
in the two-classification task [22, 25, 39]. Furthermore, our results indicate that the ACC 
achieved in the five-classification task surpassed the previous multi-classification of the 
predominant histologic pattern [40].

Fig. 4  Confusion matrix on radiomics combined model: the two-classification in train cohort (a) and test 
cohort (b), the three-classification in train cohort (c) and test cohort (d), and the five-classification in train 
cohort (e) and test cohort (f)
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However, previous studies focusing on the classification of pulmonary nodules have 
generally overlooked the crucial aspect of selecting appropriate machine learning mod-
els. In light of this gap, our study sought to compare various models and assess their 
performance in classifying pulmonary nodules. Encouragingly, our findings aligned with 
prior research, demonstrating that the SVM outperformed other machine learning mod-
els in the testing cohort. SVM, widely employed for classification and predictive mod-
eling tasks, has established itself as a reliable choice, even when confronted with limited 
data availability [41–43].

In the realm of multi-class classification, two widely adopted strategies are the OVO 
and OVR approaches. Park et  al. utilized the OVO method to predict the three pri-
mary subtypes of lung adenocarcinoma, as described in their study [21]. Similarly, Chen 
et al. employed the OVR method to construct a three-classification model for the pre-
operative prediction of risk stratification in gastrointestinal stromal tumors [36]. In 
another investigation by Liu et al., a four-classification OVO model was established to 

Fig. 5  ROC curve on radiomics combined model: the two-classification in train cohort (a) and test cohort (b), 
the three-classification in train cohort (c) and test cohort (d), and the five-classification in train cohort (e) and 
test cohort (f)
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differentiate subtypes of non-small cell lung cancer [44]. When comparing the perfor-
mance of the ML models for multi-classification, it was consistently observed that the 
OVO approach outperformed the OVR method in the testing cohort, which aligns with 
the findings reported by Liu et al.

Previous studies have also highlighted the correlation between clinic-radiological 
features and the histological classification of pulmonary nodules. Consequently, expe-
rienced radiologists can utilize clinic-radiological features to classify the pathologic sub-
types of pulmonary nodules [2, 21, 45]. Certain unique or characteristic features, such as 
the presence of minute airspaces or dilated vessels within the lesions, play a significant 
role in nodule classification. However, these specific features may not exhibit a correla-
tion with the radiomics feature category [46]. To enhance the predictive capability of the 
radiomics model for the classification of pulmonary nodules, we developed a combined 
model that incorporates both radiomics and clinic-radiological features. Our study 
demonstrated that the predictive power of the combined model surpassed that of the 
radiomics and clinic-radiological models, regardless of whether the classification task 
involved two classes or multiple classes.

The predictive performance of high-grade IAC in the testing cohort of three-classifica-
tion combined models was found to be lower compared to non-IAC and low-grade IAC, 
which is in contrast to the results obtained from the five-classification model. This dis-
crepancy may be attributed to the relatively lower number of high-grade IAC patients, 
resulting in data bias. Additionally, the predictive power of MIAC in the five-classifica-
tion combined model was lower than that of other subtypes. This could be attributed to 
the insufficient sample size, leading to uncertainties in the analysis and slight variations 
in the proportion of invasive components within some MIAC patients.

It is important to acknowledge several limitations of the present study. First, the 
study’s retrospective design, utilization of a single central dataset, and absence of exter-
nal validation may limit the generalizability of the developed models. Second, the rel-
atively small sample size may impact the statistical power of the analysis. Third, the 
incorporation of deep learning and improvement of machine learning models are neces-
sary as more data become available. Fourth, the presence of spread through air spaces, 
which is commonly observed in patients with invasive adenocarcinoma, is closely linked 
to patient prognosis. Therefore, further investigations are warranted to establish addi-
tional radiomics classifications for predicting pathological characteristics.

In conclusion, this study underscores the importance of selecting appropriate machine 
learning models and demonstrates the utility of multi-classification radiomics combined 
with clinic-radiological features in predicting the invasiveness and differentiation of pul-
monary adenocarcinoma nodules. The SVM-OVO model for the multi-classification 
task exhibited the best overall performance and successfully predicted the histological 
stratification of non-invasive subtypes.
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