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Abstract 

Background:  Chest computed tomography (CT) image quality impacts radiologists’ 
diagnoses. Pre-diagnostic image quality assessment is essential but labor-intensive 
and may have human limitations (fatigue, perceptual biases, and cognitive biases). 
This study aims to develop and validate a deep learning (DL)-driven multi-view multi-
task image quality assessment (M2IQA) method for assessing the quality of chest CT 
images in patients, to determine if they are suitable for assessing the patient’s physical 
condition.

Methods:  This retrospective study utilizes and analyzes chest CT images from 327 
patients. Among them, 1613 images from 286 patients are used for model training 
and validation, while the remaining 41 patients are reserved as an additional test set 
for conducting ablation studies, comparative studies, and observer studies. The M 2IQA 
method is driven by DL technology and employs a multi-view fusion strategy, which 
incorporates three scanning planes (coronal, axial, and sagittal). It assesses image qual-
ity for multiple tasks, including inspiration evaluation, position evaluation, radiation 
protection evaluation, and artifact evaluation. Four algorithms (pixel threshold, neural 
statistics, region measurement, and distance measurement) have been proposed, each 
tailored for specific evaluation tasks, with the aim of optimizing the evaluation perfor-
mance of the M 2IQA method.

Results:  In the additional test set, the M 2IQA method achieved 87% precision, 93% 
sensitivity, 69% specificity, and a 0.90 F1-score. Extensive ablation and comparative 
studies have demonstrated the effectiveness of the proposed algorithms and the gen-
eralization performance of the proposed method across various assessment tasks.

Conclusion:  This study develops and validates a DL-driven M 2IQA method, comple-
mented by four proposed algorithms. It holds great promise in automating the assess-
ment of chest CT image quality. The performance of this method, as well as the effec-
tiveness of the four algorithms, is demonstrated on an additional test set.
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Introduction
Computed tomography (CT) is commonly performed in the diagnostic radiographic 
examination. The image quality of chest CT affects the diagnostic decision of radiolo-
gists [1, 2], which mainly reflects in chest CT images with poor quality will make the 
lesion site indistinct, thus, image quality assessment (IQA) for chest CT images is very 
important.

CT scan will cause a certain amount of radiation to the patient; high-dose radiation 
is detrimental to health [3]. Radiologists may require patients with poor CT image 
quality to undergo additional scans or even re-scans, which leads to an increase in the 
amount of radiation the patient is exposed to. In most cases, CT image quality is influ-
enced by many factors (inspiration [4], the field of view (FOV) [5], and position [6], 
etc.). The patient’s respiratory pattern during the CT examination can affect the qual-
ity of the CT image [4]. Incorrect respiratory pattern, leading to insufficient inspiration, 
is also the major fault affecting image quality [7]. Thus standard breathing instructions 
were used across examinations to avoid that impact: on inspiration, “take a deep breath 
in and hold”; on expiration, “breathe out and hold” (end-expiratory) [8]. Radiologists 
instruct the patient to maintain a certain posture and follow standard breathing instruc-
tions during the CT examination, the reason is that body shaking, breathing, or swal-
lowing during the scan will lead to artifacts in CT images, which will reduce the quality 
and diagnosability of the images, and may even cause problems such as misdiagnosis or 
incomplete scan.

The artifact in the CT image is one of the factors affecting the image quality, and 
caused not only by the inappropriate movement (i.e., respiratory motion and incor-
rect positioning) of the patient but also by other external factors [9]. Specifically, 
inappropriate patient positioning may cause motion artifacts as shown in Fig. 1e and 
metallic objects may cause metal artifacts as shown in Fig. 1f, both of these artifacts 
can decrease image quality [6, 9], thus, patients are instructed to position their arms 
above their head (Fig. 1a) to minimize even avoid motion artifacts [10], and take off 
metal jewelry before CT examination to avoid metal artifacts as much as possible, and 
wear radiation-protective products on their neck and abdomen to minimize radia-
tion damage [11]. It is worth mentioning that respiratory movement can be avoided 
using standard breathing instructions. Whether the patient follows these instructions 
can be judged by observing the presence of respiratory movement-induced artifacts. 
In addition, comprehensive consideration of three aspects, tracheal carina morphol-
ogy, bronchial beam clarity, and ribs clarity can evaluate the respiratory adequacy of 
the patient, and further judge the adherence to standard breathing instructions. Tra-
cheal morphology and bronchial beam clarity will change as the patient breathes [8, 
12], and the position of the ribs moves with respiratory motion [13, 14]. Specifically, 
based on the retrotracheal membrane configuration, patient with sufficient inspira-
tion tended to have an ovoid tracheal carina (Fig. 2a), those with average inspiratory 
adequacy tended to have a bullet-shaped tracheal carina (as shown in Fig.  2b), and 
those with poor inspiratory adequacy tended to have a lunate shaped tracheal carina 
(Fig. 2c). In this study, we defined these three morphologies as convex, flat, and con-
cave, respectively, based on the position of the retrotracheal membrane relative to 
the endotracheal lumen. The more sufficient inspiration, the clearer bronchial beam. 
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There are many other factors affecting CT image quality, and the field of view (FOV) 
is one of them [5]. The scan FOV is determined by the X-ray source and the detec-
tor array which rotate along the central axis of the scan FOV. The CT image quality 
will decrease caused by truncation artifacts, which is due to the incorrect body posi-
tion of the patient [15]. To avoid the generation of truncation artifacts, patients are 
demanded to undergo CT examination within the specified scanning FOV. Figure 1c 
shows the patient’s body within the prescribed scan FOV range, and Fig.  1d shows 
the patient’s body offset from the prescribed scan FOV. In addition, the overlayer of 
the Digital Imaging and Communications in Medicine (DICOM) file can be used to 
determine whether the region the patient receives a scan in the scanning FOV is the 

Fig. 1  The results of patients who met and did not meet the requirements of filming. a Indicates that the 
patient raising arms above head, wearing radiation-protective products on neck and abdomen, and no metal 
objects while filming. b Is the CT image of a after overlaying the scan baseline. c Represents the patient 
filming at the prescribed scan FOV range, while d represents the patient with a portion of body outside the 
prescribed scan FOV range. e Indicates the presence of motion artifacts. f Indicates the presence of metal 
artifacts

Fig. 2  Different morphologies of tracheal carina under different levels of inspiratory adequacy. a Represents 
a sufficient inspiratory adequacy, b represents a average inspiratory adequacy, and c represents a poor 
inspiratory adequacy
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region of interest (ROI), which is also helpful to evaluate the image quality [16–19]. 
The overlayer representation is shown in Fig. 1b.

IQA is an effective approach to assess the quality of perceived visual stimuli and fall 
into two categories: subjective assessment by human and objective assessment by algo-
rithms designed to mimic the subjective judgment [20]. Subjective assessment always 
regarded as the gold standard to evaluate images, however, IQA remains a manual evalu-
ation process, and is limited by poor inter-observer agreement [21]. These limitations 
make it difficult for radiologists to make an objective diagnosis for patients undergoing 
CT examination, and cause energy and time waste. According to the availability of refer-
ence images, objective medical image IQA methods can be divided into three categories: 
(i) full reference-IQA (FR-IQA) where there is a perfect reference image for comparison 
with the test image; (ii) reduced reference-IQA (RR-IQA), which contains partial infor-
mation of the reference image, and (iii) no reference-IQA (NR-IQA), where there is not 
perfect image as reference for the test image [22]. Both FR-IQA and RR-IQA are usu-
ally used for natural image evaluation, due to the availability of reference images. How-
ever, for medical image evaluation, there is no perfect medical image as reference for 
IQA. Therefore, in CT imaging, NR-IQA is the most appropriate method for the quality 
assessment of CT images.

In recent years, deep learning (DL) algorithms have been more and more widely used 
in many fields [23–25]. In the field of medical image processing, it provides substantial 
improvements for diagnosis as a Computer Aided Diagnosis (CAD) tool. The image pro-
cessing applications of magnetic resonance image (MRI), CT image, ultrasound image 
and other radiological images usually include classification [26], segmentation [27], 
and detection [28]. Deep neural networks (DNNs), as a promising option to solve the 
NR-IQA task, can automatically extract deep features related to image quality assess-
ment and optimize these features through backpropagation methods to improve predic-
tion performance [29]. In 2019, Kashyap et al. [30] proposed an automatic classification 
method based on DenseNet121 architecture, to detect suboptimal anterior–posterior 
(AP) chest radiographs caused by technical deficiencies such as over- or under-exposure 
or wrong positioning of the patients. Although the automatic classification of AP chest 
radiographs with or without technical deficiencies achieved a specificity of 100% and 
an area under the receiver operator curve (AUC) of 0.93, they did not target identify-
ing the specific reason for failure along with the determination of the need for repeat 
radiograph. In 2021, Nousiainen et al. [31] used a variety of ResNet50 and DenseNet121 
networks, to estimate the lung inclusion, patient rotation, and inspiration on poste-
rior–anterior (PA) chest radiographs. Although the model performed well on two test 
datasets, the scoring ambiguity (inter-observer variability) raises some bias in model 
performance. Poggenborg et  al. [32] developed a real-time Artificial Intelligence (AI) 
image quality feedback tool, to help radiologists analyze whether PA chest radiographs 
were adherence to desired standards of collimation, patient rotation and inspiration or 
not right after the completion of the examination at the X-ray system. Compared to the 
image quality prior to the use of the real-time AI image quality feedback tool, there was 
indeed a relative increase of images with optimal image quality with respect to collima-
tion, patient rotation and inspiration, which was achieved by 30%. However, the tool 
only evaluated image quality in three aspects, and there was only a relative increase of 
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4% of images with optimal inspiration. In 2022, Meng et  al. [33] develop a fully auto-
matic system to assess the image layout and position of chest radiographs, which used 
an encoder–decoder network that was similar to the U-Net framework to perform land-
mark detection and image segmentation. Although the system provided assessments 
similar to the mean opinion scores (MOS) of radiologists regarding image layout and 
position, and the mean absolute perception error (MAPE) of the layout was 3.05%, and 
that of the position was 5.72%, inspiration, the important factor affecting image quality, 
was not under consideration.

As a summary, most studies have primarily addressed IQA in chest radiographs, with 
limited exploration in the realm of chest CT image. In addition, there are many factors 
that affect image quality, and there are even fewer studies on chest CT image IQA com-
prehensively considering multiple factors. Thus, this study presents a multi-view multi-
task image quality assessment method for chest CT image IQA. The proposed method 
detects and segments the regions of interest (ROIs) on coronal, axial, and sagittal chest 
CT images, and the proposed four algorithms (pixel threshold, neural statistics, region 
measurement, and distance measurement) are used to mimic the reviewing strategy of 
radiologists.

The major contributions of this study are summarized as follows: 

1)	 A multi-view multi-task image quality assessment (M2IQA) method is presented, for 
chest CT image quality assessment. Compared with the previous IQA methods, the 
proposed method can evaluate the image quality from four aspects (inspiration, posi-
tion, radiation protection, artifact), effectively screen out the chest CT images that 
cannot be used for the patient’s physical condition assessment, and improve prog-
nostic accuracy and reliability.

2)	 Two optimization algorithms (pixel threshold and neural statistics) are proposed to 
enhance the accuracy of the inspiration evaluation model. The pixel threshold algo-
rithm is utilized for assessing the tracheal carina, while the neural statistics algorithm 
is employed for the evaluation of bronchial beams and ribs. The effectiveness of these 
two algorithms is demonstrated through ablation studies.

3)	 Two decision algorithms (region measurement and distance measurement), are pro-
posed to further categorize the model’s evaluation results in the position evaluation. 
The region measurement algorithm is utilized to determine whether the body is 
positioned at the center of the scan FOV, while the distance measurement algorithm 
is employed to assess the accuracy of aligning the start and end of the scan baseline. 
For the position evaluation task, the absence of these two decision algorithms would 
prevent the model from obtaining normal classification results, highlighting the sig-
nificance of these two decision algorithms. The performance results of the position 
evaluation model reflect the effectiveness of these two algorithms.

Results
In this section, the performance of the object detection model (YOLOv8) and the 
semantic segmentation model (U-Net) used in this study is evaluated. Additionally, abla-
tion studies are conducted to validate the reliability of the proposed M 2IQA method, 
and a detailed discussion will be presented.
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Ablation studies

The results of the ablation studies are presented in Table 1, which are crucial for under-
standing the performance of different algorithms in the proposed method. It is impor-
tant to note that these experiments were conducted on the additional test set to verify 
the robustness of the proposed method. The experimental results demonstrate that for 
the inspiration evaluation task, incorporating the pixel threshold (PT) algorithm or 
the neural statistics (NS) algorithm can improve the model’s performance in terms of 
precision, sensitivity, and F1-score. The combination of the PT algorithm and the NS 
algorithm achieves the best overall performance, with an F1-score of 0.43, which is an 
improvement over the baseline model by 0.11, indicating that the combined effect of the 
two algorithms enhances the model’s performance. The impact of the NS algorithm on 
the baseline model is significant, with an F1-score that is 0.11 higher than the model 
with the PT algorithm alone.

The experimental results validate our hypothesis that the PT algorithm can address 
the issue of similar tracheal carina morphology, and the NS algorithm can effectively 
mimic the assessment paradigm of radiologists.

Detailed statistical analysis and discussions regarding these findings will be described 
in section Statistical analysis and discussion of ablation results.

Comparative studies

Due to the relatively simple ROI segmentation requirements in this study, the commonly 
used U-Net as a semantic segmentation model is sufficient to meet the segmentation 
needs of the method. However, some ROIs in this experiment, such as bronchial beams 
and ribs, are difficult to detect. Therefore, multiple object detection models were trained 
and their performances were compared. It is important to note that, to ensure accuracy, 
only bounding boxes with an intersection over union (IoU) greater than 0.70 were con-
sidered. Table  2 presents the experimental results of testing multiple object detection 
models on the test dataset. The results indicate that YOLOv8 outperformed other mod-
els (YOLOv7, RetinaNet, CenterNet, Faster R-CNN) in all three metrics (precision, sen-
sitivity, F1-score). Specifically, YOLOv8 achieved the highest F1-score in each evaluation 
sub-parts, demonstrating superior performance. Therefore, YOLOv8, which exhibits 
good generalization ability, was selected as the target detection model for the M 2IQA 
method.

Table 3 represents the training time of the DL models.
Detailed statistical analysis and discussions regarding these findings will be described 

in section Statistical analysis and discussion of observer study results.

Table 1  The ablation result of four different models

Precision Sensitivity Specificity F1-score P-value

Baseline 0.20 0.80 0.56 0.32 1.09E−07

Baseline + PT 0.20 0.80 0.56 0.32 1.20E−07

Baseline + NS 0.33 0.60 0.83 0.43 8.44E−01

Baseline + PT+NS
(M2IQA)

0.33 0.60 0.83 0.43 8.43E−01
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Observer studies

In the observer study, the proposed method was compared with the assessment abil-
ity of radiologists on the additional test set and two public datasets (LungCT-Diagno-
sis [34] and CMB-LCA [35]). Four experienced radiologists, who were blinded for the 
study, participated in the observer study. To obtain more reliable scoring results, the 
MOS of the four radiologists was compared with the proposed method.In addition, 
three control groups were formed, consisting of M 2IQA vs. Ground Truth (GT), MOS 
vs. GT, and M 2IQA vs. MOS.

When evaluating on the additional test set, three confusion matrices, as shown 
in Fig. 3, were used to visually observe the similarities and differences in evaluation 
results. Based on the three confusion matrices, multiple evaluation metrics were 
derived and presented in Table 4.

According to Table 4, our proposed M 2IQA method achieved an F1-score of 0.90, 
while the MOS of the four radiologists’ F1-score reached 0.84, with a slight difference 
of 0.06 lower than our proposed M 2IQA method. The experimental results indicate 
that for the additional test set, our M 2IQA method’s evaluation capability is slightly 
superior to that of radiologists. Furthermore, the F1-score of 0.87 for the M 2IQA vs. 

Table 2  The comparison results of the five evaluation sub-parts under five different detection 
models

Sub-parts Evaluation 
metrics

YOLOv8 
(avg ± std)

YOLOv7 
(avg ± std)

RetinaNet 
(avg ± std)

CenterNet 
(avg ± std)

Faster 
R-CNN 
(avg ± std)

Artifact Precision 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.00 ± 0.00 0.95 ± 0.01

Sensitivity 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.02 0.00 ± 0.00 1.00 ± 0.00

F1-score 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.00 ± 0.00 0.97 ± 0.01

Arms position Precision 0.99 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.00 ± 0.00 0.88 ± 0.00

Sensitivity 0.96 ± 0.00 0.91 ± 0.00 0.89 ± 0.00 0.00 ± 0.00 0.91 ± 0.00

F1-score 0.97 ± 0.00 0.94 ± 0.00 0.92 ± 0.00 0.00 ± 0.00 0.90 ± 0.00

Radiation 
protection

Precision 0.99 ± 0.02 0.99 ± 0.02 1.00 ± 0.00 0.50 ± 0.71 0.88 ± 0.04

Sensitivity 0.97 ± 0.01 0.90 ± 0.04 0.52 ± 0.52 0.01 ± 0.02 0.95 ± 0.03

F1-score 0.98 ± 0.00 0.94 ± 0.01 0.60 ± 0.47 0.02 ± 0.03 0.92 ± 0.03

Rib Precision 0.90 ± 0.08 0.77 ± 0.01 0.79 ± 0.13 0.25 ± 0.50 0.16 ± 0.19

Sensitivity 0.82 ± 0.11 0.71 ± 0.15 0.74 ± 0.14 0.01 ± 0.02 0.14 ± 0.18

F1-score 0.85 ± 0.06 0.73 ± 0.01 0.76 ± 0.13 0.02 ± 0.03 0.14 ± 0.17

Bronchial 
beam

Precision 0.90 ± 0.09 0.63 ± 0.10 0.86 ± 0.07 0.60 ± 0.43 0.37 ± 0.04

Sensitivity 0.92 ± 0.01 0.62 ± 0.09 0.88 ± 0.03 0.36 ± 0.25 0.44 ± 0.15

F1-score 0.91 ± 0.05 0.62 ± 0.10 0.87 ± 0.03 0.44 ± 0.29 0.40 ± 0.09

Table 3  The training time of the DL models

Tracheal 
carina

Bronchial 
beam

Rib Arms 
position

Scan 
baseline 
position

Body 
position

Radiation 
protection

Artifact Total

Model
training
time(h)

0.80 0.47 0.47 0.56 1.60 1.11 0.87 1.62 7.50
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MOS comparison group suggests that our proposed M 2IQA method demonstrates 
good agreement with the radiologists’ MOS.

For LungCT-Diagnosis and CMB-LCA, the evaluation focused on five specific sub-
parts (artifact, tracheal carina, rib, bronchial beam, and body position) when com-
paring the assessment ability of the proposed M 2IQA method with MOS on public 
datasets. This selection was dictated by the absence of CT images for the evaluation 
of three sub-parts (arms position, scan baseline, and radiation protection). The results 
of multiple evaluation metrics in the three control groups on the additional test set, 
LungCT-Diagnosis, and CMB-LCA are presented in Table  5 when considering only 
these five evaluation sub-parts.

It is noteworthy that both manual and computer evaluations are time-consuming. 
Therefore, comparing the time consumed by the M 2IQA method with that of MOS on 
the dataset holds significance. Table 6 provides the evaluation time required for the 
M 2IQA method and MOS on three datasets.

Fig. 3  Three confusion matrices that compare the similarities and differences in evaluation results between 
our M 2IQA method, MOS, and GT on the additional test set

Table 4  The multiple evaluation metrics results of the three control groups

Precision Sensitivity Specificity F1-score P-value

M2IQA VS GT 0.87 0.93 0.69 0.90 0.44

MOS VS GT 0.77 0.92 0.56 0.84 0.39

M2IQA VS MOS 0.92 0.82 0.85 0.87 0.18

Table 5  The multiple evaluation metrics results of the three control groups on three datasets

Dataset Precision Sensitivity F1-score P-value

Additional test set M2IQA VS GT 0.91 0.81 0.85 0.61

MOS VS GT 0.88 0.85 0.86 0.42

M2IQA VS MOS 0.94 0.86 0.90 0.27

LungCT-Diagnosis M2IQA VS GT 1.00 0.83 0.91 0.73

MOS VS GT 1.00 0.67 0.80 0.54

M2IQA VS MOS 0.70 0.88 0.78 0.85

CMB-LCA M2IQA VS GT 0.86 0.75 0.80 0.45

MOS VS GT 0.86 0.75 0.80 0.36

M2IQA VS MOS 0.86 0.86 0.86 0.90
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Detailed statistical analysis and discussions regarding these findings will be described 
in section Statistical analysis and discussions of observer study results.

Statistical analysis and discussion
This section will conduct statistical analysis and discussion on the experimental results 
mentioned above. All statistical analyzes were performed on excel (version 11.1., KING-
SOFT) and p-values were obtained by two-tailed t-test, and p < 0.05 was considered a 
significant difference.

Statistical analysis and discussion of ablation results

The results of the ablation studies showed that the inclusion of PT and NS algorithms 
improved the performance of the model. However, upon closer analysis, it was observed 
that the addition of the PT algorithm did not significantly improve the model’s perfor-
mance in terms of precision, sensitivity, specificity, and F1-score. To better understand 
the impact of the PT algorithm on the model’s performance, a two-tailed t-test was per-
formed on the evaluation scores obtained by each model, and the p-values are presented 
in the last column of Table 1. Additionally, the box plots shown in Fig. 4 also illustrate 
the differences in evaluation scores obtained by different models.

From Table 1, it can be observed that the p-value for the baseline model is 1.09E−07, 
indicating a significant difference between the evaluation scores of the baseline model 
and those of the additional test set. After incorporating the PT algorithm (Baseline+PT), 
the p-value increased to 1.20E−07, indicating an increased but still significant differ-
ence. The improvement of the Baseline+PT model’s evaluation score accuracy can be 
attributed to this reduced difference. On the other hand, the inclusion of the NS algo-
rithm resulted in a significant improvement in the model’s performance compared to the 
models without NS (Baseline and Baseline+PT). This improvement could be attributed 
to two reasons. Firstly, the NS algorithm operates on two sub-projects (bronchial beam 

Table 6  The evaluation time of the M 2IQA method and the MOS on different datasets

Dataset

Additional test set LungCT-Diagnosis CMB-LCA

M2IQA MOS M2IQA MOS M2IQA MOS

Tracheal carina 0.00 ± 0.00 4.19 ± 1.24 0.00 ± 0.00 5.97 ± 1.61 0.00 ± 0.00 6.16 ± 1.16

Bronchial beam 14.67 ± 1.78 30.21 ± 3.68 3.77 ± 0.91 10.45 ± 2.21 5.21 ± 1.68 8.84 ± 2.60

Rib 6.75 ± 0.95 25.95 ± 4.00 1.79 ± 0.41 21.02 ± 5.78 2.52 ± 0.87 17.15 ± 2.68

Arms position 0.04 ± 0.03 0.93 ± 0.24 N/A N/A N/A N/A

Evalua-
tion time 
(s)
(avg ± 
std)

Scan baseline 
position

0.14 ± 0.15 1.36 ± 0.40 N/A N/A N/A N/A

Body position 0.01 ± 0.00 3.64 ± 0.93 0.01 ± 0.00 4.36 ± 1.09 0.01 ± 0.00 5.05 ± 0.97

Radiation 
protection

0.03 ± 0.03 1.01 ± 0.31 N/A N/A N/A N/A

Artifact 1.59 ± 0.78 6.08 ± 2.95 2.10 ± 1.11 6.91 ± 2.77 2.74 ± 1.19 7.57 ± 3.93

Total 23.02 ± 2.86 70.07 ± 9.07 7.67 ± 2.15 48.72 ± 9.44 10.48 ± 3.29 44.78 ± 6.39
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and rib) rather than just one (tracheal carina) like the PT algorithm. This provides addi-
tional opportunities for performance improvement. Secondly, the NS algorithm aims 
to imitate the evaluation paradigm of radiologists by considering multiple CT images 
to obtain evaluation results. This helps mitigate the impact of model accuracy because 
without the NS algorithm, the model derives the evaluation result from only one CT 
image. If the model happens to make an incorrect prediction for that particular image, it 
may lead to an erroneous evaluation. The NS algorithm, by considering multiple images, 
provides more robust evaluation results.

Statistical analysis and discussion of comparative study results

From Table 2, it is evident that the YOLOv8 object detection model demonstrates opti-
mal performance, thus, this study ultimately adopts it as the chosen object detection 
model. However, a notable observation is the notably poor performance of the Center-
Net model, particularly evident in the artifact evaluation and arms position evaluation 
tasks. Additionally, the results across the remaining three sub-parts (radiation protec-
tion evaluation, rib evaluation, and bronchial beam evaluation) are also unsatisfactory.

The reasons for such outcomes are likely twofold. On the one hand, it is plausible 
that CenterNet’s inherent performance may not align well with the evaluation tasks in 
this study. On the other hand, it could be attributed to the study’s specific methodol-
ogy aimed at achieving more accurate detection results. This methodology involves con-
sidering only bounding boxes with confidence scores exceeding 0.70, which inherently 
imposes higher precision requirements on each model’s detections. Under these intensi-
fied competitive conditions, CenterNet might have struggled, resulting in the appear-
ance of zero values in precision, sensitivity, and F1-score metrics.

After conducting comparative experimental evaluations, the final model training time 
for each evaluation task is presented in Table 3. Due to the implementation of transfer 
learning, the training time for each model is relatively short, with a total training time of 
only 7.5 h for all eight models.

Fig. 4  Evaluation scores of four different models
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Statistical analysis and discussion of observer study results

From Table  4, M 2IQA can be observed that achieve a precision of 0.87, sensitivity of 
0.93, specificity of 0.69, and F1-score of 0.90, while MOS achieves a precision of 0.77, 
sensitivity of 0.92, specificity of 0.56, and F1-score of 0.84. All four metrics of M 2IQA 
outperform those of MOS. Specifically, precision indicates the accuracy of correctly 
predicting positive samples among all predicted positive samples, sensitivity reflects 
the accuracy of correctly predicting positive samples among all actual positive samples, 
specificity represents the accuracy of correctly predicting negative samples among all 
actual negative samples, and F1-score is the weighted harmonic mean of the first two, 
where higher values are desirable. The F1-score of radiologists is slightly lower than our 
proposed M 2IQA by a margin of 0.06.

The three confusion matrices shown in Fig.  3 illustrate the agreement between M 2

IQA, MOS, and GT. From the figures, it can be observed that M 2IQA has 26 true posi-
tive (TP), 9 true negative (TN), and 35 correctly predicted samples, with 4 false positive 
(FP) and 2 false negative (FN), resulting in 6 misclassified samples. On the other hand, 
MOS has 23 TP, 11 TN, and 34 correctly predicted samples, with 2 FP and 5 FN, result-
ing in 7 misclassified samples. In the additional test set, M 2IQA exhibits better predic-
tive capabilities than MOS, with a p-value of 0.44 compared to MOS’s p-value of 0.39. 
This suggests that both M 2IQA and MOS show no significant differences from GT, but 
the larger p-value indicates potentially smaller significant differences, implying that M 2

IQA has better agreement than MOS.
The above experimental results indicate that when considering all evaluation tasks 

(eight evaluation tasks), for the additional test set, our M 2IQA’s assessment capability 
is slightly superior to that of radiologists. Furthermore, the F1-score of M 2IQA vs. MOS 
reaches 0.87, indicating a high degree of agreement between our proposed M 2IQA and 
radiologists. This to some extent indicates that our model’s assessment capability might 
not be inferior to radiologists’ for the data beyond the scope of our study.

The above experimental results indicate that when considering all evaluation tasks 
(eight evaluation tasks), for the additional test set, our M 2IQA’s assessment capability 
is slightly superior to that of radiologists. Furthermore, the F1-score of M 2IQA vs. MOS 
reaches 0.87, indicating a high degree of agreement between our proposed M 2IQA and 
radiologists. This to some extent indicates that our model’s assessment capability might 
not be inferior to radiologists’ for the data beyond the scope of our study.

The LungCT-Diagnosis and CMB-LCA public datasets were used to validate the above 
hypothesis. Due to limitations in the public datasets (lacking images required for the 
arms position, scan baseline, and radiation protection evaluation tasks), this experi-
ment assessed only the remaining five evaluation tasks. The experimental results, as 
shown in Table 5, reveal an F1-score of 0.91 for M 2IQA on the LungCT-Diagnosis data-
set. The MOS, with a slight difference of 0.11, is slightly lower than our proposed M 2

IQA method. However, for the CMB-LCA dataset, M 2IQA achieves an F1-score of 0.80 
which is the same as MOS. The p-values of M 2IQA vs. MOS are 0.85 and 0.90 on the 
LungCT-Diagnosis and CMB-LCA datasets, respectively. The results indicate that their 
performance does not significantly differ on different datasets, providing support for our 
hypothesis that our model’s assessment capability might not be inferior to radiologists’ 
for the data beyond the scope of our study.



Page 12 of 25Su et al. BioMedical Engineering OnLine          (2023) 22:117 

The features for distinguishing different descriptive indicators are extremely subtle, 
and M 2IQA’s advantage lies in its efficient automated evaluation and assessment capa-
bilities trained through extensive data. Human assessment (i.e., MOS) requires expe-
rienced radiologists to meticulously search, which is time-consuming and prone to 
fatigue-induced judgment errors. This might explain why MOS’s assessment capabil-
ity lags behind M 2IQA. However, both M 2IQA and MOS have their own strengths and 
weaknesses. While M 2IQA offers stability in performance and less evaluation time (as 
shown in Table 6), it may struggle to recognize features it has not been trained on. On 
the other hand, MOS, despite underperforming M 2IQA in the additional test set (due 
to human limitations such as fatigue, perceptual biases, and cognitive biases), might 
provide more accurate judgments for novel cases due to its rich experience. Hence, M 2

IQA as a computer-aided tool in collaboration with radiologists could combine their 
strengths and complement each other effectively.

Conclusions and future work
In this study, a comprehensive M 2IQA framework for evaluating image quality in chest 
CT scans is proposed. Our approach combines advanced deep learning techniques with 
multi-view to address the challenges posed by various evaluation tasks. Through incor-
porating multiple scan planes and the leveraging of task-specific features, our M 2IQA 
framework effectively assesses various aspects of image quality.

Table 1 demonstrates that our proposed algorithms (pixel threshold and neural statis-
tics) improve the model’s evaluation performance for specific tasks (inspiration evalua-
tion). However, in the position evaluation task, the absence of our proposed algorithms 
(region measurement and distance measurement) renders the evaluation infeasible. It is 
noteworthy that the multi-view fusion strategy significantly enhances the task specificity 
and robustness of the model’s evaluations.

While our M 2IQA framework has demonstrated promising results, certain limitations 
remain. Future research will concentrate on refining our proposed methodology. Firstly, 
our dataset is not sufficiently diverse. Expanding the dataset to include a broader range 
of patient populations could enhance the model’s generalization capability. Secondly, 
the datasets used in this study are limited. Integrating our M 2IQA method into clini-
cal workflows to aid radiologists in real-time image quality assessment could not only 
improve diagnostic accuracy and efficiency but also validate the reliability and clinical 
efficacy of our approach. Furthermore, investigating methods to enhance the interpret-
ability of model predictions, such as generating heatmaps to visualize ROIs, could offer 
radiologists more insights for clinical decision-making. Additionally, this study focused 
only on four aspects of chest CT image quality assessment: inspiration evaluation, posi-
tion evaluation, radiation protection evaluation, and artifact evaluation. Other factors 
influencing CT image quality may not have been considered, warranting further explo-
ration in this direction.

In conclusion, the M 2IQA method presents a promising tool for automated chest CT 
image quality assessment, showcasing superior performance compared to human radi-
ologists in the additional test set. However, further efforts are required, including data-
set expansion, method integration into clinical workflows, enhanced interpretability, and 
exploration of additional factors influencing CT image quality.
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Materials and methods
Datasets

The Institutional Review Board (IRB) of Fujian Putian Hospital in China approved our 
retrospective study, and the requirement for informed consent was waived.

The method was evaluated on a dataset consisting of 1613 images from 286 patients. 
The images were collected by radiologists at the Fujian Putian Hospital between Janu-
ary 1, 2020, and November 31, 2022. The patients were primarily scanned using two 
CT scanners: the SIEMENS SOMATOM DEFINITION DUAL SOURCE and the GE 
LIGHTSPEED. The tube voltage ranged from 120 to 150 kV, and the tube current was 
controlled using automatic tube current modulation technology, typically ranging from 
50 to 800mA. The CT images were acquired with a thin layer thickness for the lung win-
dow, ranging from 0.625 to 1 mm.

To ensure the quality and diversity of the data used for deep learning tasks, radiolo-
gists carefully selected CT images from different scanning planes and considering the 
desired evaluation criteria. The dataset was divided into two parts. One part was split 
into three subsets with a ratio of 7:2:1 for training, validation, and testing, respectively, 
with the testing subset also used for comparative studies. The other part was reserved 
as an additional test set for the ablation studies and observer studies. It’s worth noting 
that a portion of both the LungCT-Diagnosis and CMB-LCA public datasets were incor-
porated into the observer studies, with the aim of validating the robustness and effec-
tiveness of the proposed M 2IQA method across different patient populations. Table  7 
provides a detailed description of the dataset composition. In the table, the dataset used 
for training, validation, and testing is described in terms of the number of images. On 
the other hand, the dataset used for the observer study is described in terms of the num-
ber of patients. This distinction is made because the two parts of the dataset serve differ-
ent purposes.

Methodology

In this section, the proposed method for M 2IQA is introduced step by step. Firstly, 
the overall assessment process of the M 2IQA method is briefly outlined. Subsequently, 

Table 7  The detailed description of the dataset composition

Type Training set Validation set Testing set Additional test 
set

LungCT-
Diagnosis

CMB-LCA

Inspiration 41 12 10

 Tracheal 
carina

94 27 13

 Bronchial 
beam

280 80 40

 Rib 112 32 16

Position

 Body position 335 95 48

 Scan baseline 70 20 10

 Arms position 125 35 18

 Radiation 
protection

32 9 5

 Artifact 82 23 12
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detailed assessments are discussed, including inspiration, position, radiation protec-
tion, and artifact. Lastly, the multi-view fusion strategy of the M 2IQA method and the 
detailed multi-task strategy, designed to mimic the assessment paradigm of radiologists, 
are presented.

Overview of M 2IQA

To overcome the limitations of a single-view model, three scanning planes (coronal, 
axial, and sagittal) are used to comprehensively evaluate whether CT examinations pro-
duce high-quality images that are suitable for prognosis. As depicted in Fig. 5, a meticu-
lously designed M 2IQA method is proposed, which considers four aspects to evaluate 
the image quality of patient CT images: inspiration, position, radiation protection, and 
artifact. Specifically, the inspiration aspect aims to assess patient inspiration adequacy 
from three perspectives: tracheal carina morphology, bronchial beam clarity, and rib 
clarity. The position aspect evaluates the patient’s position during the scan from three 
aspects: accurate alignment of the scan baseline at the beginning and end, the proper 
position of the body within the scanning FOV, and whether the arms are raised above 
the head. The radiation protection aspect determines the patient’s radiation protec-
tion status by examining whether the patient wears radiation-protective products on 
the neck and abdomen during the scan. The artifact aspect aims to identify whether the 
patient removed metallic objects or other objects that may interfere with the prognosis.

All the assessment results are obtained using the object detection model and semantic 
segmentation model. The object detection model aims to accurately enclose the ROIs 
with bounding boxes, while the semantic segmentation model aims to accurately seg-
ment the ROIs. By leveraging these two deep learning models, a multi-task strategy is 
proposed to comprehensively consider the information from multiple views and evaluate 
CT image quality as comprehensively as possible. Additionally, each aspect is assigned a 
corresponding score, which is then integrated to provide an image quality score for the 
series of CT images obtained from each patient. The entire evaluation process is end-
to-end and automated, aiming to minimize the workload of radiologists and improve 
screening efficiency.

Fig. 5  The overall evaluation flowchart of the M 2IQA method. The three red boxes on the right side of 
the image together form the inspiration evaluation task, the three green boxes together form the position 
evaluation task, the blue box is for the artifact evaluation task, and the yellow box is for the radiation 
protection evaluation task
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Inspiration evaluation

To comprehensively evaluate the adequacy of patient inspiration, three aspects (i.e., 
tracheal carina morphology, bronchial beam clarity, and rib clarity) are considered. the 
object detection model (YOLOv8) is utilized to obtain ROIs (i.e., tracheal carina, bron-
chial beam, and rib) from a series of CT images. Since CT scanning saves the results 
of the current scanning position at regular intervals, typically only one CT image in 
the series contains the most suitable tracheal carina image for evaluation. For tracheal 
carina evaluation, further segmentation using the semantic segmentation model (U-Net) 
is performed based on the YOLOv8 detection result to segment the tracheal carina. The 
final score is derived from the segmentation result. The architecture and implementa-
tion of the three sub-parts of the evaluation are illustrated in Fig. 6.

It is worth noting that due to the similarity between convex and flat tracheal carina (as 
shown in Fig. 4b, f ), a PT algorithm for tracheal carina segmentation result is proposed 
to address segmentation result misjudgment caused by similar morphology. Inspired by 
[36], the optimization algorithm improves the segmentation result assessment. Addi-
tionally, many CT images in a series of CT images contain detection results for bron-
chial beams and ribs. Thus, a NS algorithm, aiming to mimic the assessment paradigm 
of radiologists, is proposed. These two optimization algorithms will be described in the 
next section.

Optimization algorithms In this study, the images used are three-channel images, i.e., 
the red, green, and blue channels. The segmentation results of the tracheal carina can be 
classified based on the following rules: a white mask represents a convex morphology, a 
green mask represents a flat morphology, and a red mask represents a concave morphol-
ogy. The PT algorithm involves computing the three-channel values of each pixel in the 
image and then classifying each pixel based on the set threshold values. The calculation 
process of the PT algorithm is illustrated in the dashed rectangular box on the right side 
of Fig. 6.

Fig. 6  The architecture of the inspiration evaluation. a Represents the original CT image sequence, b 
shows the CT image with the tracheal carina visible, c displays the CT image sequence with bronchial 
beam detection results, d depicts the CT image sequence with rib detection results, and e showcases the 
segmentation result of the tracheal carina. The dashed rectangular boxes on the right and bottom represents 
the implementation details of the pixel threshold algorithm and neural statistics algorithm, respectively
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For a pixel, if the values of the red, green, and blue channels simultaneously fall within 
the range of [200, 255], the count of white pixels is incremented by one. If the value of 
the red channel falls within the range of [150, 255], the count of red pixels is incremented 
by one. Similarly, if the value of the green channel falls within the range of [150, 255], the 
count of green pixels is incremented by one. The threshold-based decision formula can 
be defined as follows:

where Pixel represents the current pixel, and R(x, y), G(x, y), B(x, y) represents the values 
of the red, green, and blue channels of the current pixel, respectively.

Then, the above formula is applied to each pixel in the image, and accumulates the 
number of white pixels, red pixels, and green pixels separately. The morphology rep-
resented by the highest count among these three categories will determine the current 
morphology of the tracheal carina. The formula is as follows:

where argmax() is a function that returns the parameter with the highest count among 
the given parameters. C() represents the counting function, which calculates the number 
of pixels corresponding to the given color parameters.

Since radiologists typically do not rely solely on the morphology of bronchial beams 
and ribs in a single CT image to get the final result but rather review multiple images 
repeatedly, this study uses an object detection model (YOLOv8) to mimic the radiol-
ogist’s process of searching for ROIs. The model can detect ROIs in multiple images. 
However, due to the limitations of model accuracy, not all detection results are cor-
rect. Therefore, a NS algorithm aims to mimic the cognitive and memory abilities of the 
human nervous system. In this study, it emulates the process where radiologists find 
ROIs and store cognitive information in the “memory storage system” of the brain. After 
reviewing all the images, the final assessment is made based on this information. The 
calculation process of the NS algorithm is shown in the dashed rectangular box at the 
bottom of Fig. 6.

In this study, the clarity of bronchial beams is classified into four categories: visible, 
fuzzy, double shadow, and curly. Similarly, the clarity of ribs is also classified into four 
categories: visible, corrugation, double shadow, and multiple shadows. For a series of CT 
images of a patient, the NS algorithm counts the number of detection boxes for each 
category and determines the category with the highest count as the final category assess-
ment. The computation formula for the algorithm is as follows:

where argmax() denotes the function that returns the category with the maximum 
count, and CategoryCount represents the count of detection boxes for each category.
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The classification rules mentioned above will be described in detail in Classification 
rules and scoring criteria.

Position evaluation

The position evaluation aims to evaluate whether the patient has a proper position based 
on three aspects: the position of the body within the scanning FOV, accurate alignment 
of the scan baseline at the beginning and end, and whether the arms are raised above 
the head. Prior to performing a CT scan, it is necessary to determine the start and end 
positions of the scan in order to define the scanning range. This helps to avoid unneces-
sary radiation exposure to additional body areas. By precisely defining the scan range, 
only the relevant ROI is exposed to radiation, minimizing radiation dose to other parts 
of the body that are not required for diagnostic purposes. This targeted approach helps 
in optimizing the scan parameters and reducing potential risks associated with exces-
sive radiation exposure. It is important to ensure that the body does not deviate from 
the scanning field of view as it can lead to the occurrence of artifacts. When the body is 
positioned outside the intended scanning area, it may result in incomplete imaging of 
certain structures, causing truncation artifacts in the final image. Therefore, maintaining 
proper alignment and positioning of the body within the scanning field of view is cru-
cial to obtain high-quality images and minimize the occurrence of artifacts. In addition, 
another factor that can contribute to the occurrence of artifacts is when the arms are 
not raised above the head. During a CT scan, if the arms are positioned incorrectly, such 
as being placed at the sides of the body, they may cause shadows or streaks in the final 
image, resulting in artifacts. Therefore, it is important to ensure that the patient’s arms 
are positioned correctly and raised above the head to minimize the occurrence of such 
artifacts and ensure image quality.

The object detection model (YOLOv8) and the semantic segmentation model (U-Net) 
are also used to obtain ROIs (body contour, lung contour, and arms) from a series of 
CT images. While U-Net provides segmentation results for the body and lung contours, 
this alone is insufficient to determine whether the body is positioned at the center of the 
scanning FOV or to assess the alignment accuracy of the start and end scan baselines. 
Therefore, the region measurement algorithm is proposed to determine the position of 
the body within the scanning FOV, and the distance measurement algorithm is proposed 
to assess the alignment accuracy of the start and end scan baselines. The architecture 
design and implementation of the three sub-parts of the assessment are illustrated in 
Fig. 7. The two decision algorithms will be described in the next section.

Decision algorithms The region measurement algorithm aims to further determine 
whether the patient’s body is centered within the scanning FOV using the body contour 
segmentation result obtained from the semantic segmentation model (U-Net). Specifi-
cally, after obtaining the body contour segmentation image, the algorithm calculates the 
center point of the image and draws a circular region with a radius of 50 pixels around 
that center point. Additionally, the algorithm obtains the center point of the body con-
tour. The dashed box on the right side of Fig. 7 presents the results of body contour seg-
mentation before and after undergoing the region measurement algorithm, where the 
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center of the circle is represented by a green dot and the center point of the body con-
tour is represented by a blue dot. The details of the algorithm are elaborated below.

To obtain a better body contour, the first step is to convert the image to grayscale. 
This conversion removes the color information from the image and represents it in 
shades of gray. This simplifies the image and reduces the influence of color variations 
on the subsequent processing steps. After converting the image to grayscale, the next 
step is to perform binarization. Binarization is the process of converting the grayscale 
image into a binary image, where each pixel is classified as either black or white based 
on a certain threshold value. Pixels with intensity values below the threshold are set 
to black, representing the background, while pixels with intensity values above the 

Fig. 7  The flowchart of three sub-evaluations in the position evaluation. a Is the original CT image sequence, 
b shows the detection result for the arms position evaluation from a after YOLOv8 detection. c, d depict 
the lung contour segmentation result used for the scan baseline position evaluation and the body contour 
segmentation result used for the body position evaluation from a through U-Net segmentation, respectively. 
The dashed rectangle box on the bottom illustrates the implementation details of the region measurement 
algorithm. e Is the CT image with the scan baseline, f is the extracted scan baseline image from e, g is the 
lung contour mask extracted from c, h is the result after canny detection of the lung contour mask in g, 
with the detected result surrounded by a green rectangle, and i is the overlay result of f and h, which is the 
final algorithm result. The dashed rectangle box on the right represents the implementation details of the 
distance measurement algorithm. j Is the body contour mask extracted from d, k is the result after canny 
detection of the body contour mask in j, where blue points indicate the center points of the body contour, 
and green points represent the center of a circle with a radius of 50 pixels
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threshold are set to white, representing the foreground (body). For the region meas-
urement algorithm, the threshold value is set to 5 and can be formulated as:

where I(x,  y) represents a grayscale image, and (x,  y) represents the pixel coordinates 
in the image. If the grayscale value of a pixel is less than the threshold value of 5, the 
pixel is classified as black. If the grayscale value of a pixel is greater than or equal to 
the threshold value of 5, the pixel is classified as white. Br(x, y) represents the result-
ing binary image after thresholding, where its values are either 0 or 1, corresponding to 
black and white, respectively. By applying grayscale conversion followed by binarization, 
we can obtain a binary image where the body contour appears as a distinct white region 
against a black background. This binary image can then be used for further processing 
and analysis, such as extracting the body contour and performing measurements.

To determine if a blue point falls within a circle with the green point as its center, 
the following formulas can be used:

where ( xblue , yblue ) represents the coordinates of the blue point, ( xgreen , ygreen ) represents 
the coordinates of the green point center of the circle), and the radius represents the 
desired radius of the circle, which is set of 50 in the experiment through empirical study. 
The distance between the blue and green points is calculated using the Euclidean dis-
tance formula. If the distance is less than or equal to the radius, the blue point is consid-
ered to be inside the circle.

The distance measurement algorithm aims to further assess the alignment accuracy 
of the start and end scan baselines by utilizing both the lung contour segmentation 
results from the semantic segmentation model (U-Net) and the overlayer from the 
DICOM file. Specifically, after obtaining the lung contour segmentation image, it is 
tightly enclosed within a rectangular box, which is then overlaid with the overlayer 
image. The dashed box at the bottom of Fig.  7 displays the results of lung contour 
segmentation before and after undergoing the distance measurement algorithm. The 
details of the algorithm are elaborated below.

In order to obtain better lung contours, the aforementioned process was applied to 
the lung contour segmentation image as well. This involves converting the original 
image to grayscale and then obtaining the binary image. It is worth noting that the 
threshold for binarization is also set to 5, but in this case, the resulting binary image 
is represented as Bd(x, y).

To assess the alignment accuracy of the start and end scan baselines, it is neces-
sary to measure the distance between the upper edge of the rectangular box and 
the starting scanning baseline, as well as the distance between the lower edge of the 

(4)Br

�

x, y
�

=







1, I(x, y) � 5,

0, I(x, y) < 5,

(5)Distance =

√

(xblue − xgreen)2 + (yblue − ygreen)2

(6)Decisionregion =

{

Inside, distance < radius,

Outside, distance � radius,



Page 20 of 25Su et al. BioMedical Engineering OnLine          (2023) 22:117 

rectangular box and the ending scanning baseline, then the followings formula can be 
used:

where yboxtop and yboxbottom represent the y-coordinates of the top and bottom edges 
of the rectangular box, respectively. ystartline and yendline represent the y-coordinates of 
the starting and ending scanning baselines, respectively. The decision process can be 
expressed by the following formulas:

where D can be either distancestart or distanceend , depending on the baseline being eval-
uated. T represents the threshold for decision-making, which is set to 15 in this experi-
ment through empirical study.

Radiation protection evaluation

Radiation protection evaluation aims to determine whether patients have undergone 
proper radiation protection based on the wearing of radiation-protective products on 
their neck and abdomen. Since different parts of the body have varying levels of sensitiv-
ity to radiation, it is common practice to have patients wear lead-based radiation-pro-
tective products on radiation-sensitive areas such as the thyroid gland and reproductive 
organs before undergoing a CT scan. Figure 1a shows an example of a patient wearing 
radiation-protective products on both the neck and abdomen. In this assessment, the 
object detection model (YOLOv8) is utilized to detect the presence of radiation-protec-
tive products. The implementation process for the evaluation in this section is illustrated 
in the rounded rectangle at the left of Fig. 8.

Artifact evaluation

Artifact evaluation aims to evaluate whether patients have removed metal jewelry or 
other objects that could interfere with the quality of the CT scan images prior to the 
examination. Figure 1f demonstrates a metal artifact caused by a metallic object. In this 
assessment, the object detection model (YOLOv8) is employed to detect metal artifacts 

(7)Distancestart = yboxtop − ystartline

(8)Distanceend = yendline − yboxbottom,

(9)Decisiondistance =

{

Accurate, D � T ,

Inaccurate, D > T ,

Fig. 8  The architectures of radiation protection and artifact evaluations. In the radiation protection 
evaluation, a is the original CT image, and b shows the result of a after YOLOv8 detection, with protective 
products on the neck and abdomen surrounded by red and pink boxes, respectively. For artifact evaluation, c 
is the original CT image sequence, either d or e displays the result of c after YOLOv8 detection, with detected 
foreign matter surrounded by red boxes in d, and radial artifacts surrounded by pink boxes in e 
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and other foreign objects. The implementation process for the evaluation in this section 
is illustrated in the rounded rectangle at the right of Fig. 8.

Multi‑view fusion

In this section, the multi-view fusion strategy will be elaborated in detail. This study 
employs a multi-view fusion analysis and evaluation approach utilizing information 
from three scan planes (coronal, axial, and sagittal). Different evaluation tasks utilize 
different scan planes. For instance, the axial and sagittal planes are predominantly used 
for inspiration evaluation, the axial and coronal planes for position evaluation, the coro-
nal plane for radiation protection evaluation, and the axial plane for artifact evaluation. 
Therefore, the multi-view fusion strategy is primarily built upon a multi-task evaluation 
foundation.

Anatomically speaking, the coronal plane divides the human body into front and back 
portions along its long axis, while the sagittal plane divides the body into left and right 
portions. The axial plane, on the other hand, divides the body into upper and lower sec-
tions from a front-to-back perspective. As organs exhibit distinct features across these 
three scan planes, a deep learning model extracts task-specific medical image features 
from these planes to enhance task specificity and robustness.

By leveraging the characteristics of the specific medical images from the three scan 
planes, the deep learning model can better tailor its performance to each evaluation 
task, thus enhancing its capability to achieve accurate and robust evaluations.

Experimental settings

Classification rules and scoring criteria For a better qualitative and quantitative analy-
sis of the experimental results, the classification rules and scoring criteria presented 
in Table 8 were utilized to categorize and score the outcomes of each evaluation sub-
part. Subsequently, for the inspiration evaluation task, a score not exceeding 20 points 
(including 20 points) was defined as “inacceptable” image quality, while a score greater 
than 20 points was considered “acceptable” image quality. Additionally, a similar binary 
classification was applied to the overall evaluation task: a score not exceeding 40 points 
(including 40 points) was designated as “inacceptable” image quality, while a score 
greater than 40 points was labeled as “acceptable” image quality.

The rationale behind these definitions is as follows: the maximum achievable score 
for the inhalation assessment task is 40 points, and for the overall evaluation task, it is 
80 points. In this study, four experienced CT image quality diagnostic physicians were 
invited to perform blind reading, evaluating the resolution of lesions and major struc-
tures in CT images. The image clarity required for clinical diagnosis, where diagnos-
tic reports could be issued, was set as the “acceptable” standard. Hence, image quality 
scores needed to exceed at least 50% of the total available score for an image to be con-
sidered “acceptable”.

Implementation details The experiments in this study include ablation, compari-
son, and observer study. For the proposed M 2IQA method, YOLOv8 is used as the 
object detection model, and U-Net is used as the semantic segmentation model. All 
model training adopts transfer learning strategies to better extract image features. 
YOLOv8 utilizes pre-trained weights on the COCO (Common Objects in Context) 
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[37] dataset, while U-Net utilizes pre-trained weights on the ImageNet [38] dataset. 
The images are standardized by subtracting the mean and dividing by the standard 
deviation of the image. The parameter settings for the models are shown in Table 9.

Data augmentation techniques were employed to address the issue of limited 
data. Different augmentation methods were applied specifically to different evalua-
tion parts, aiming to obtain more informative training data and improve the model’s 
robustness. Detailed descriptions of the data augmentation methods are provided 
in Table 10. The early stopping strategy was also utilized during model training. The 
model’s performance was evaluated on the validation dataset every 10 epochs, and 
training would be stopped and the best-performing model would be saved when 
optimal performance was achieved. Subsequently, the saved model was tested on the 
test dataset. All experiments were conducted on a workstation equipped with two 
NVIDIA RTX 2080Ti GPUs. Python was used as the programming language, and 
deep learning frameworks such as PyTorch and TensorFlow were employed.

Table 8  The classification rule and scoring criteria

Artifact Scan baseline

Classification Score Classification Score

No exist 10 Beginning and end baselines are correct position 10

Foreign matter 5 Beginning or end baseline is correct position 5

Radial artifact 0 Beginning and end baselines are incorrect position 0

Tracheal carina Radiation protection

Classification Score Classification Score

Convex 10 Head and abdomen all radioprotected 10

Flat 5 Only head or abdomen radioprotected 5

Concave 0 No exit 0

Rib Bronchial beam

Classification Score Classification Score

Visible 15 Visible 15

Corrugation 10 Fuzzy 10

Double shadow 5 Double shadow 5

Multiple shadows 0 Curly 0

Arms position Body position

Classification Score Classification Score

Arms are raised over head 5 The body is entered in the scan FOV 5

Arms are not raised over head 0 The body is not entered in the scan FOV 0

Table 9  The parameter and hyperparameter settings of the model

Model Image size Optimizer Initial learning rate Loss function

YOLOv8 640 x 640 Stochastic gradient 
descent (SGD)

0.01 Binary cross entropy

U-Net 512 x 512 Adaptive moment 
estimation (ADAM)

0.0001 Cross entropy
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Evaluation metrics In our experiments, sensitivity, precision, specificity, and 
F1-score are used as evaluation metrics to assess the performance of the model. The 
definitions of these metrics are as follows:

where TP, TN, FP, and FN represent the counts of true positive, true negative, false posi-
tive, and false negative samples, respectively. These metrics are calculated for each indi-
vidual subclass within the overall classification. The average values across all subclasses 
are then taken as the final results. Specifically, for each evaluation category (e.g., tracheal 
carina in the inspiration evaluation task), the metric values are recorded for each sub-
class (convex, flat, concave) in the test dataset. At the end of the testing process, the 
average values across the three classes are computed. In our experiments, precision, sen-
sitivity, and F1-score are considered the most important evaluation criteria for validating 
the correctness and effectiveness of the proposed learning framework.
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(10)

Sensitivity =
TP

TP+ FN
,

Precision =
TP

TP+ FP
,

Specificity =
TN

FP+ TN
,

F1-score =
2 ∗ precision ∗ sensitivity

precision+ sensitivity
,

Table 10  Data augmentation methods

Inspiration Position Radiation 
protection

Artifact

Vertical flipping � � � �

Horizontal flipping � � � �

Random scaling � � �

Random cropping and padding � � �

Gaussian noise �

Gaussian blur �

Contrast limited adaptive histogram 
equalization

� � �

Edge-enhancing � �

Brightness randomization � � �

Perspective transformation � �

Motion blur �

Additional images 2680 1234 690 2090
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