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Abstract

Aortic stenosis, hypertension, and left ventricular hypertrophy often coexist

in the elderly, causing a detrimental mismatch in coupling between the heart and vas-
culature known as ventricular—vascular (VA) coupling. Impaired left VA coupling,

a critical aspect of cardiovascular dysfunction in aging and disease, poses significant
challenges for optimal cardiovascular performance. This systematic review aims

to assess the impact of simulating and studying this coupling through computational
models. By conducting a comprehensive analysis of 34 relevant articles obtained

from esteemed databases such as Web of Science, Scopus, and PubMed until July 14,
2022, we explore various modeling techniques and simulation approaches employed
to unravel the complex mechanisms underlying this impairment. Our review highlights
the essential role of computational models in providing detailed insights beyond clini-
cal observations, enabling a deeper understanding of the cardiovascular system. By
elucidating the existing models of the heart (3D, 2D, and 0D), cardiac valves, and blood
vessels (3D, 1D, and 0D), as well as discussing mechanical boundary conditions, model
parameterization and validation, coupling approaches, computer resources and diverse
applications, we establish a comprehensive overview of the field. The descriptions

as well as the pros and cons on the choices of different dimensionality in heart, valve,
and circulation are provided. Crucially, we emphasize the significance of evaluating
heart—vessel interaction in pathological conditions and propose future research direc-
tions, such as the development of fully coupled personalized multidimensional models,
integration of deep learning techniques, and comprehensive assessment of confound-
ing effects on biomarkers.

Keywords: Ventricular—arterial coupling, Left ventricle, Heart valve, Blood circulation,
Computational modeling

Introduction

Age is well-documented as an independent and nonmodifiable risk factor for the pro-
gression of hypertension (HTN) and cardiovascular diseases [1]. The prevalence of HTN
has increased significantly with population aging [2]. With advancing age, the vascular
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system undergoes structural, mechanical, and functional modifications characterized by
endothelial dysfunction, vascular remodeling (i.e. aortic dilatation, elongation, tortuos-
ity, and wall thickening) and fibrosis, and increased arterial stiffness, eventually resulting
in blood pressure (BP) elevation [3, 4]. The most common form of age-related HTN is
isolated systolic HTN described by increasing pulse pressure (PP) due to a significant
rise in systolic BP with no change or uniform decline in diastolic BP [5]. Under chroni-
cally elevated pulsatile loading caused by arterial stiffening, the left ventricle (LV) under-
goes progressive changes in the structure and function (termed myocardial remodeling)
at the expense of increased oxygen demand and reduced cardiac reserve, eventually giv-
ing rise to heart failure (HF) [6]. Pressure overload in hypertensive patients often leads
to an increase in cardiac chamber stiffness, LV wall thickening (termed LV hypertrophy
(LVH)), myocardial fibrosis, and impairment in cardiac diastolic function (termed dias-
tolic dysfunction), as manifested by abnormal filling pattern and elevated filling pres-
sure. Diastolic HF, also known as HF with preserved ejection fraction (EF), is the most
prominent hemodynamic dysfunction in aging [7]. Moreover, aortic and mitral valve
pathologies with aortic valve stenosis (AS), as one of the most common and serious valve
diseases, is often associated with aging and HTN [8]. The pathogenesis of AS incorpo-
rates cumulative calcification and fibrosis together with gradual reductions in valve area
[9]. The underlying mechanisms will ultimately contribute to structural alterations and
functional deterioration of the cardiovascular system which causes a mismatch in the
coupling between the heart and vasculature. Thus, understanding their inter-relation-
ship can offer critical mechanistic insights into how the complex cardiovascular system
adapts with aging in association with or without other pathological conditions.

The interaction among LV function and systemic arterial (SA) properties, termed
ventricular—arterial (VA) coupling, is well established as a major determining factor
of global cardiovascular performance and efficiency [10]. This notion arises due to
the heart and arterial tree being interconnected structures in terms of anatomy and
physiology, and should be evaluated as a whole system [11]. VA coupling is usually
estimated as the ratio of effective arterial elastance (Ea; arterial load index) to ven-
tricular end-systolic (ES) elastance (Ees; LV contractility index) via echocardiography
[12]. Age-related structural and functional changes in arterial properties will lead to
a gradual rise in Ea while there is a compensatory surge in Ees due to LV remod-
eling (LVR), marking the progression toward a less effective system with preserved
coupling (i.e. limited exercise capacity) [13, 14]. If there is a decline in Ees due to
decreased in pump performance (e.g. LV systolic dysfunction), an increase in Ea will
drastically cause VA decoupling. However, Ea does not provide a complete represen-
tation of pulsatile arterial load, which is a key determinant of cardiovascular func-
tion, that extensive analyses of pressure flow relations are required for substitution
[15]. Besides, this interaction can also be characterized and quantified based on the
novel measurement of arterial and myocardial function markers [16]. Cardiac struc-
ture and function, global and regional strain, LV mass index, relative wall thickness,
systolic and diastolic function, and presence of myocardial fibrosis can all be assessed
using echocardiography and cardiovascular magnetic resonance to determine car-
diac remodeling and HF. In terms of vascular function, pulse wave velocity (PWYV)
can be measured using arterial tonometry, Doppler or flow magnetic resonance
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imaging (MRI) to indicate arterial stiffness. Biomarkers such as augmentation index
(Alx), central aortic BP, systematic arterial compliance, aortic distensibility, and val-
vulo-arterial impedance (Zva) can also be employed to assess arterial function. For
instance, the ratio of carotid—femoral PWV (as a gold standard for quantifying aortic
stiffness) to global longitudinal strain (as a gold standard for evaluating LV perfor-
mance) has been proposed to describe VA interaction in HTN [17]. Another novel
method of assessing VA coupling is myocardial work index which can derived from
the LV pressure—strain loop using speckle tracking echocardiography [18].

Despite the potential use of the proposed indicators as independent prognostic bio-
markers in arterial HTN, they have not found wide acceptance in clinical use due to the
difficulty in defining normal ranges for different patient cohorts and contradictory out-
comes in the presence of uncontrolled confounding variables [19, 20]. These markers,
measured at specific locations, are affected by other factors as a result of hemodynamic
coupling [21] which impede their actual translation into clinical practice. For exam-
ple, PWYV, which is the current gold standard method for assessing arterial stiffness,
is affected by LV ejection time [22], heart rate (HR) [23-25] and peripheral resistance
when arterial stiffness remains unchanged [26]. LV ejection time denotes the dura-
tion from aortic valve (AV) opening to closure and represents the systolic phase during
which the LV expels blood into the aorta. The inherent properties of the arterial tree are
difficult to characterize in the presence of AS due to complications in the VA uncoupling
relationship [8]. In order to utilize the proposed prognostic indicators in routine clinical
practice, there is a need for in-depth understanding of how these are affected by intrinsic
properties of the various cardiovascular components.

Computational models, established on the basis of sound physical and mathematical
principles, are widely applied to study the ventricular, valvular, and vascular system due
to the fact that simulations can be conducted in a more reproducible manner by tuning
required parameters as compared to clinical settings. The development of computational
models allows for a greater understanding of cardiac function by reproducing cardio-
vascular features observed experimentally that can provide meaningful insights into the
interactions between different components of the cardiovascular system [27]. The mod-
eling approach of integrating multiple diagnostic data obtained from different clinical
modalities (e.g. echocardiography, MRI, BP measurements) not only allows for better
understanding of disease extent in individual patients, but also facilitates the computa-
tion of hemodynamic variables that are hard to measure experimentally, such as myocar-
dial stroke work (SW). However, most models tend to emphasize either the vasculature
[26, 28-31] or the heart [32] without taking into account the effect of VA interaction.
Hence, the aim of this systematic review is to evaluate the current state-of-the-art of
computational modeling and simulation of the cardiovascular system in investigating
the effect of impaired VA coupling in aging and disease on cardiovascular structure and
function parameters. This paper is organized as follows: (i) model structures, includ-
ing heart chambers, valve models and circulatory models in different dimensionalities;
(if) boundary conditions (BCs) for mechanical problem; (iii) model parameterization
and validation; (iv) model coupling approach and the use of computational resources;
(v) model applications in investigating ventricular, valvular and arterial diseases and (vi)

future perspectives.
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Model structures

To study VA coupling in aging and cardiovascular disease, numerous computational
models have been developed, ranging from the simplest lumped parameter zero-dimen-
sional (0D) models to more complex multidimensional models. Multidimensional mod-
eling incorporates the benefits of different dimensional models, allowing both local and
global hemodynamic information to be obtained with reasonable computational cost
and higher accuracy. Open-loop (OL) models [33—46], which prescribe a constant filling
pressure to the LV, as well as closed-loop (CL) models [47-66], which take into account
the effect of venous return (filling pressure) on the heart chambers, have been proposed.
Figure 1 illustrates the difference between OL and CL configurations of cardiovascular
models. Meanwhile, the models can also be categorized into 0D, 1D, 2D or 3D (Fig. 2).
0D models are composed of a set of lumped parameter ordinary differential equations
(ODE) used typically to represent hydraulic circuits [67]. 1D models incorporate a single
spatial independent variable in addition to time, written as a set of partial differential
equations (PDE) [45, 68], whilst 2D models incorporate 2 spatial variables plus time, and
can be used to represent 3D axisymmetric geometries of the heart or blood vessels using
cylindrical coordinates [65]. Finally, 3D models incorporate 3 spatial independent vari-
ables (in addition to time) and are usually employed to depict anatomically detailed fea-
tures of the heart and blood vessels [64, 69]. Figure 3 illustrates the general layout of the
cardiovascular system to be modeled. Regardless of their complexities, all VA coupling
models comprise three components: the heart chambers (Fig. 4), the valves, and the cir-
culatory system (Fig. 5). In the following section, a more detailed description of each of

these components is provided.

(a) Closed loop (b) Open loop
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Fig. 2 Different dimensions of cardiovascular modeling that include 3D LV and aorta adopted from [71], 2D
axisymmetric LV and vessel, 1D SA, and 0D LV coupled to systemic circulation adapted from [72]
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Fig.4 Simulation outcomes of cardiac models that can be visualized in different dimensions: (1) 3D FSI
model shows vortex formation in LV outflow tract view with the 3D vortex is visualized by the magenta
isosurface and the color map represents velocity magnitude of the velocity streamline (m/s) adopted from
[71]; 3D electromechanical finite element model displays end-systolic fiber strain and stress distributions at
the LV subendocardium adopted from [73]; (2) 2D axisymmetric LV model demonstrates strain distributions
through the heart wall; (3) 0D time-varying LV elastance model illustrates a ventricular pressure-volume
relationship [72]

Heart chambers

2D or 3D LV models

While LV mechanical [50, 51, 64—66] and electromechanical (EM) models [33, 48] have
been commonly applied to assess myocardial wall stress and strain, computational fluid
dynamics (CFD) [52] and fluid structure interaction (FSI) models [40] have been used
to investigate fluid dynamics, such as vortices and energy losses. 3D LV models either
use an idealized geometry (e.g. half prolate ellipsoid) [64] or patient-specific geometries
reconstructed from medical images such as MRI [33, 40] or computed tomography (CT)
[50]. Apart from the active LV region, several 3D geometries [33, 40, 50] also extend
to the valvular and inflow/outflow tracts. To reduce computational cost associated with
3D simulation of the heart, Syomin et al. [65] modeled the LV as a 2D axisymmetric
geometry.

Active and passive mechanical models LV finite-element (FE) mechanical models [66]
consist of equations describing active and passive mechanics whilst EM models have addi-
tional equations describing cardiac electrophysiology and action-contraction coupling



Ding et al. BioMedical Engineering OnLine (2024) 23:24

Instantaneous Velocity Field
m/s
1
0.9
0.8
0.7
0.6
05

CIRCULATORY
MODEL

Arterial Pressure
Ascending Aorta 85 )
120 Aortic Arch
N\ Thoracic Aorta L
:Ei 115 J \ Abdominal Aorta S 80
/ I
€ 110 [
E f E 75¢
[ -
g 105 _ o
8 100 X § 70+
= o
95 \
8 N\ & 65|
o g0 AN
™
N\ N 60
BN N 8 85 9 95 10
80 i : Time (s)
4.6 48 5 52 54
Time (s)
Aortic Flow
500 500
Ascending Aorta
Aortic Arch
400 Thoracic Aorta 400
Abdominal Aorta
Z 300 ‘ D300
E £
S 2
S 200 3 200
o w
8
3 100 100
of — 0
8 85 9 9.5 10
100 Time (s)
46 48 5 5.2 5.4

Time (s)
Fig. 5 Simulation outcomes of circulatory models that can be visualized in different dimensions: (1) 3D
CFD and FSl aortic model of a patient with type B aortic dissection shows the instantaneous blood velocity
field at peak systole adopted from [74]; (2) 1D 55-segment SA model demonstrates blood pressure and flow
waveforms at different locations from the ascending to the abdominal aorta produced using PWPSim [75];
(3) OD lumped parameter model of the systemic circulation provides central aortic pressure and flow profiles
produced based on [72]

[33, 48]. The most common method of modeling cardiac electrophysiology in humans
utilizes the Ten—Tusscher—Panfilov ionic model [76, 77], which describes the dynam-
ics of ionic fluxes across the cardiomyocyte membrane, coupled with a reaction—diffu-
sion monodomain PDE to generate myocardial electrical propagation, which serves as
the trigger for active stress generation [48, 78]. Active cardiac stress is normally modeled
as a function of activation time, length (sarcomere)-dependent calcium sensitivity as well
as maximal isometric tension, which depends on the intrinsic contractility [33, 79]. For
simplicity, some models [50, 51, 64, 66] do not incorporate cardiac electrophysiology, but
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instead adopt a time course of contraction (or time-varying elastance (TVE)) uniformly
across the entire ventricle and length-dependent calcium sensitivity to generate time-
varying active stress profiles [80, 81]. While most active stress models incorporate the
Frank—Starling mechanism through length-dependent force generation, the dependence
on fiber velocity is neglected [33, 48]. Notably, a recently published paper [82] has high-
lighted the critical role of fiber-stretch-rate feedback in regulating blood flow ejected by
the ventricles. In terms of passive cardiac mechanics, the most commonly-used constitu-
tive model [33, 48, 83] is the Guccione-type models [84, 85]. Several models [50, 51] have
also used the Holzapfel and Ogden anisotropic hyperelastic model [86] while Shavik et al.
[64] used the Fung-type strain energy function [85] to model passive cardiac mechanics.
As it is difficult to acquire patient-specific myofiber orientation due to long acquisition
and reconstruction times, and motion artifacts in diffusion tensor MRI, the majority of
3D LV models simply adopt a rule-based approach for cardiac fiber orientation [87, 88],
such that it varies linearly from around -60° at the epicardium to around +60° degrees at
the endocardium.

CFD and FSI models Due to the high computational cost, very few VA coupling mod-
els have adopted either CFD or FSI approaches. The CFD LV model developed by Zuo
et al. [52] used a 3D velocity function (i.e. axial, radial and circumferential) to specify
contraction, expansion, and twisting movements of the LV wall. Approximate solutions
for the pressure and velocity fields were obtained by solving the fluid continuity equation
coupled with the Navier—Stokes equations (NS) which are a set of PDEs that described
the fluid substances motion. To more accurately model LV flow dynamics, the k—w shear
stress transport turbulence model has been proposed to replace the simpler laminar flow
setting [52]. Although NS equations are more accurate in describing complex fluid flows,
they are computationally expensive. Reynolds-averaged NS equations which are the sim-
plified NS equations by time-averaging the flow variables provide a computationally effi-
cient alternative for simulating turbulent flow. Another turbulence modeling approach
utilizes the Large Eddy Simulation (LES) models within the NS equations [89], which
offer improved accuracy in capturing unsteady flow compared to the Reynolds-averaged
NS models at the expense of a higher computational demand. Only one selected study
[40] adopted the FSI approach, which takes into account the interaction between the
myocardium wall and the blood flow velocity. The solution for the model was obtained
through a combined immersed boundary FE method.

0D LV models

While 3D LV models provide detailed insights into cardiac dynamics, their complex-
ity makes model personalization (calibration) difficult. Reduced-order models, made
up of a set of lumped parameter ODEs, have therefore been developed to represent
the LV cavity, especially when global hemodynamics such as pressure and volume are
of interest. Several studies [37, 53, 60] modeled cardiac contraction based on a modi-
fied Hill model [90], which describes sarcomere mechanics using a contractile element
arranged in series with an elastic element, which in turn is connected in parallel to a pas-
sive elastic element. The contractile element describes stress generation due to muscle
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activation, with its magnitude dependent on its velocity, length and activation function,
while the passive elastic element describes passive stress due to muscle length change.
Another study [34] adopted a microscopic Huxley-like model of actin—myosin binding
[91] to generate myocardium active stress with a macroscopic LV cavity (i.e. chamber)
deformation formulation. Unlike Hill's model, the Huxley model considers dynamics
of the filaments within muscle along with the probability of establishing cross-bridges
between myosin heads and actin filaments. The resultant LV cavity volume is derived
from myofiber stretch, while the LV cavity pressure is derived from myofiber stress
and stretch, with an assumption that the myofiber stress is homogeneously distributed
within the myocardial wall. On the other hand, the majority of 0D LV models which for-
mulate VA coupling [35, 36, 38, 39, 41-47, 49, 5459, 61-63] have adopted the simplest
TVE model originally proposed by Suga et al. [92], which relates pressure and volume of
the ventricle using a time activation profile. The pressure—volume (PV) relationship of
the heart changes throughout a cardiac cycle following a TVE curve. The modified Hill’s
model allows for accurate prediction of force—velocity relationships in the LV, the Hux-
ley-like model provides insights into the actin—myosin binding kinetics, and the TVE
model accounts for changes in ventricular contractility over time.

Valve models

The majority of VA coupling models [38, 46, 48, 54, 63] use a simple diode-like formula-
tion to model cardiac valve dynamics, with instantaneous opening and closing deter-
mined by the pressure gradient across the valve. Several studies [50, 51, 61, 62] modeled
the valves as a simple resistance element in the fully open or fully closed state neglecting
opening and closing processes, while another study [34, 52, 64, 66] combined a diode
with a linear or nonlinear resistance to capture the ideal characteristic of unidirectional
flow in the heart valve, with Syomin et al. [65] including additional inductances and
capacitors. Maksuti et al. [59] simulated the valves as small resistance and inertance.
However, under normal or pathological conditions, valves can exhibit complex leaflet
motions and flow dynamics that cannot be captured by such a simplified valve model.
Most studies [33, 36, 37, 39, 41-44, 49, 53, 55, 58, 60] have thus modeled the AV based on
the Bernoulli equation, where the instantaneous net pressure across the AV is expressed
as a function of instantaneous flow rate, fluid inertance and the energy loss coefficient,
which in turn depends on the effective orifice area (EOA) and aortic cross-sectional area
at the sinotubular junction [93]. Neglecting inertial and turbulence losses at the AV, a
key component of VA coupling, would compromise the precision of aortic pressure and
flow wave shapes in both physiological and pathological conditions. In order to model
the smooth opening and closing dynamics of the valves, Caforio et al. [33] considered
that the effective aortic cross-sectional area changes with time and is dependent on the
rate of valve opening and closure. Although valve motion is known to be influenced by
various factors, the opening and closure rate is assumed to be determined by only two
aspects: (i) the immediate pressure disparity across the valve and (ii) the present condi-
tion of the valve. A more advanced valve model was adopted by Laubscher et al. [47],
which took into account valve cusp thickness, cusp heights, valvular opening angle, and
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the instantaneous valve flow rate to represent their valve pressure loss and motion mod-
els in determining the time-dependent flow coefficients of the valve.

Circulatory models

3D models

3D models of the arteries are able to provide detailed descriptions of local blood flow
field or stress distribution in the wall. However, since they require complex anatomi-
cal and mechanical information and are computationally expensive, such models are
normally used to simulate local hemodynamics of specific arterial sites of interest
instead of the whole arterial tree.

Finite element models ~As pathological remodeling and aging are commonly associ-
ated with changes in aortic microstructure, Shavik et al. [64] developed a FE model of
the thoracic aorta to investigate the separate contributions of key load bearing con-
stituents, i.e. elastin, collagen fibers and smooth muscle cells on its mechanical behav-
ior (e.g. pressure—diameter relationship) and VA coupling. Stress in the aortic wall
was derived by summing the strain energy functions related to the main tissue con-
stituents, including the elastin-dominated matrix, collagen fiber families, and vascular
smooth muscle cells, each characterized by different constitutive parameters and mass
fractions.

CED and FSI models Two selected studies [37, 49] utilized CFD analysis to investigate
detailed blood flow dynamics, such as wall shear stress (WSS), oscillatory shear index
(OSI) and kinetic energy, in different disease scenarios (including ascending aorta tho-
racic aneurysm (ATAA), mitral valve (MV) disease and aortic coarctation (COA)). In
both models, 3D patient-specific anatomies of the thoracic aorta were reconstructed
based on computed tomography angiographs (CTA). While Cosentino et al. [37]
assumed laminar blood flow, Sadeghi et al. [49] adopted a 3-D Lattice—Boltzmann
CFD approach using LES to simulate blood flow through the aorta. LES is suitable for
modeling turbulent vascular flows and physiological low-Reynolds transitional flow,
which commonly occurs under pathophysiological conditions. To further explore the
impact of pressure on the aortic wall stress, Cosentino et al. [37] adopted an one-way
ESI approach, where pressure load forces at each node of the aorta wall were exported
from the CFD results in FLUENT (ANSYS Inc, Canonsburg, USA) into a FE model
developed in ABAQUS (SIMULIA Inc, Providence, USA). The mechanical behavior of
the aortic wall was characterized using the anisotropic hyperelastic Holzapfel-Gas-
ser—Ogden material model [94].

1D models

In order to avoid computational load associated with the 3D models, 1D models of
the large arteries are normally used when local vascular changes, such as tapering,
branching or stenoses, are being investigated, or when the influence of physiologi-
cal and disrupted wave transmission on the circulation is under study. 1D models
of blood flow typically comprise the one-dimensional continuity and momentum
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equations based on the NS equations, coupled with a constitutive law of the arterial
wall, which links the change in the pressure to the wall deformation and/or deforma-
tion rate. While several studies [40, 45, 57, 58] have modeled the arterial wall as linear
elasticity, majority of the VA coupling models [33-36, 39, 41, 54, 56] have adopted
nonlinear viscoelastic constitutive law for the arterial wall, which inhibits nonphysi-
ological high frequency oscillations in the simulated aortic pressure waves. Different
numbers of arterial segments have been used in the 1D models, including 1 (aorta)
[34], 24 [40], 55 (main SA) [45, 56—58] referring to Wang and Parker et al. [95], 103
(including 55 large arteries, coronary circulation and the circle of Willis) [35, 36, 39,
41] according to Reymond et al. [96], 116 [33] or 128 arterial segments (involving cen-
tral vessels and major peripheral arteries) [54] based on Avolio et al. [97].

0D models

Reduced-order models, such as the 0D lumped parameter models of the circulation,
are frequently employed when global hemodynamic parameters such as flow and pres-
sure are of interest. The majority of VA coupling models [38, 42—44, 46-52, 54—66] have
modeled the systemic and/or pulmonary circulations based on Windkessel (WK) models
in a single- or multicompartment configuration. For single-compartment models, Gar-
cia et al. [44] used a 3-element WK model consisting of a capacitance (i.e. compliance),
characteristic impedance, and peripheral resistance, whilst other studies [59, 61-63] also
added an inductance to represent fluid inertance in the large arteries to form a 4-ele-
ment WK model [98]. In multicompartment models, a series of single-compartments
with a combination of either a resistance, inertance and/or compliance are implemented
to represent different elements of the circulation (i.e. artery, arteriole, capillary, venule,
and vein). In addition to representing the entire circulation, 3-element WK models have
also been employed to represent the portion of the circulation downstream of a higher-
order model and to identify the connection between pressure and flow at its bounda-
ries [33-37, 39, 41, 45]. In order to allow an explicit parameterization of the geometrical
and mechanical properties of the distal arteries/arterioles, as well as microvascular
effects, two studies [40, 56] coupled structured-tree (ST) models proposed by Olufsen
et al. [99, 100] to each terminal vessel in a 1D network of large arteries as outlet BCs. In
such ST models, each parent artery in the vascular bed bifurcates into daughter arteries
with smaller radii, and the bifurcation process persists until the daughter vessel radius
reaches a minimum threshold. Despite the advantages of the ST model that can provide
more accurate flow and pressure predictions, it is computationally more complex com-
pared to the WK model [101].

Boundary conditions

Prescribing appropriate BCs is a critical aspect in modeling complex mechanical and
hemodynamic behaviors, such as cardiac motion, accurately. In 2D/3D LV models,
the standard configuration for the structural domain includes three boundaries: the
endocardium, the epicardium, and the ventricular base, which delineates the artificial
boundary where the LV geometry is intersected. At the endocardial surface, the most
commonly applied BC is the normal stress, which accounts for the pressure exerted
by the blood within the cardiac cavity [33, 40, 48, 65]. For simplicity, the ventricular
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base is typically fully constrained from longitudinal movement (i.e. shortening or
lengthening along the apex-base direction), thus allowing only in-plane motion, while
leaving the remaining myocardial boundaries unrestricted [40, 64, 65]. In terms of in-
plane motion, Chen et al. [40] and Syomin et al. [65] only allowed radial wall motion
(i.e. contraction and expansion), while Shavik et al. [64] allowed additional circum-
ferential displacement (i.e. twisting and untwisting) with the epicardial—basal edge
fixed. Although segments of the inflow and outflow tracts were integrated into the LV
geometric model, they only served as BCs with assumed rigidity, alongside the fixed
inlet and outlet annuli [40, 50]. This setup may lead to an overestimation of apical
motion as there is a lack of constraint in this region [40].

On the other hand, several published cardiac models have taken into account the
influence of the pericardium in constraining and guiding heart dynamics. Veress et al.
[66] introduced a soft tether mesh around the LV model to represent tissues sur-
rounding the myocardium, with its edges completely constrained to eliminate rigid
body motion. Caforio et al. [33] utilized spatially varying, normal, spring-type BCs
at the epicardial wall using a Robin (i.e. mixed-type) BC to mimic the effect of the
pericardial constraint on the LV wall. The spring stiffness was gradually scaled, with
a maximum stiffness value, transitioning from zero at the base to one at the apex.
Meanwhile, Regazzoni et al. [48] introduced generalized spring-damper element in
both normal and tangential directions at the epicardial wall to constrain rigid ventri-
cle rotation around the apico-basal axis while preserving torsion. With regards to the
ventricular base, Caforio et al. [33] incorporated a portion of the aorta and employed
omni-directional springs at the clipped aortic rim to address basal movement. On the
other hand, Regazzoni et al. [48] imposed energy-consistent BCs at the ventricular
base to account for the effect of the neglected part over the basal plane [102, 103].
This formulation is crucial when the 3D mechanical heart model is coupled with the
lumped parameter circulation models as it enables accurate replication of the down-
ward movement of the atrioventricular plane during the ejection phase [104, 105].
Furthermore, Caforio et al. [33] included additional springs on the septum in the LV
model to prevent nonphysiological rotation. In a healthy individual, the LV generally
undergoes a twisting motion between apical and basal regions of around 15 degrees,
shortens from the base towards the apex by approximately -15% to -20%, and experi-
ences wall thickening of about 30-40% during systole [106].

In terms of the 3D aortic model, the geometry typically encompasses the aortic root
or ascending aorta and extends down to the descending aorta. Most studies have also
included the supra-aortic branching vessels (i.e. brachiocephalic trunk, left common
carotid artery, and left subclavian artery). The simplest method of constraining the
aorta geometry involves immobilizing the distal ends of the supra-aortic vessels, the
AV, and the descending aorta, in all directions [37]. To address constraints from the
surrounding tissues and organs on the aorta, additional BCs were implemented on
the outer arterial wall [107]. For example, mechanical tethering of the aorta to the
spine was simulated by modeling the intercostal arteries as vessel stumps with struc-
tural Dirichlet conditions along the aorta [107]. In another study, a viscoelastic mate-
rial representing external tissue surrounding the aorta was applied on the aortic wall
using a generalized Robin BC [108]. Aortic root motion was accommodated using stiff
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springs at the proximal end, while the movement of the distal ends of the branching
vessels and the descending aorta were constrained using spring-damper mechanisms
[108, 109].

Model parameterization and validation

Most model parameters in the selected studies were either obtained from the published
literature [34-36, 38, 41, 4345, 48, 51-55, 57-60, 64—66] or derived based on popu-
lation-averaged hemodynamic data in a healthy or diseased cohort [39, 42, 46, 47, 56,
61-63]. Only a few VA models [33, 37, 40, 49, 50] parameterized their models based
on subject-specific data, in which a subset of the model parameters was fitted to sub-
ject-specific measurements, by applying various parameter optimization methods and
robust inverse problem strategies. Common optimization techniques include nonlinear
least-squares algorithms such as Levenberg—Marquardt [33, 66, 110, 111] and trust-
region-reflective approaches [40, 49, 112] to iteratively adjust parameters by minimizing
the least-squares differences between the observed data and the model output. Prior to
this, it is necessary to establish initial parameter values, often sourced from published
literature, to initiate forward simulations to reach steady state, while the final parameter
values are obtained through successive approximations and comparisons. Arguably, a
properly personalized model could more accurately predict physiological or pathological
status [113]. To validate the model, comparison with single- or multimodality measure-
ments were performed [37].

Due to the limited availability of clinical and experimental measurements, a local sen-
sitivity analysis is required to determine the subset of model parameters to be optimized
for subject-specific simulations. Such a sensitivity analysis assesses the impact of indi-
vidual model parameters on the output hemodynamics quantities of interest, one at a
time (keeping all other model parameters constant). Gul et al. [38] has further proposed
Sobol’s method, a variance—decomposition method used for global sensitivity analysis,
to quantify the impact of model parameters and their interactions on the output quan-
tities of interest. The analysis was performed over the entire feasible region of model
parameters, with parameter distributions estimated using published medical data and
expert opinions.

In terms of the LV model, the main model parameters are those relating to active con-
tractility, passive stiffness and TVE profile. These parameters are optimized by minimiz-
ing the differences between computed and measured LV pressure and volume changes
during the systolic and diastolic phases, respectively. As the gold standard measurement
of LV pressure involves invasive catheterization, it is not commonly performed [50] and
the data is usually taken from previous studies [46, 61]. Instead, systolic LV pressure is
estimated from the summation of brachial cuff pressure and transvalvular pressure gra-
dient, which is in turn estimated from Doppler-ultrasound flow measurements based
on Bernoulli’s principle [49]. On the other hand, changes in LV volume over a cardiac
cycle, intracardiac chamber flow, blood flow velocity at the valves as well as myocar-
dial velocity, are all obtained using Doppler echocardiography or MRI techniques (cine
MRI and 4D flow MRI) [33, 40]. The typical fitting targets for 3D cardiac modeling are
motion fields or PV relationships. Chen et al. [40] inversely estimated the passive mate-
rial parameters of the Holzapfel-Ogden law from the in vivo LV end-diastolic (ED)
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volume and myocardial strain data using the multistep optimization method (i.e. the
Isqnonlin function in MATLAB, The MathWorks, Inc.) [112]. Caforio et al. [33] used the
model function-based fitting method [110] to match the passive biomechanical material
properties of the Guccione law to an empirical Klotz ED PV relationship estimated from
a single measurement [114] and determine the undeformed reference configuration
simultaneously. In most studies [33, 48, 51, 110], the stress-free reference configuration
of the heart, which is crucial for accurate modeling of biomechanical diastolic function,
was established based on loaded in vivo images by applying the unloading and reinfla-
tion method through fixed-point iterative techniques [48, 115, 116].

With regards to the valve model, geometrical parameters such as the orifice area
have been obtained using either CTA or transthoracic Doppler echocardiography tech-
niques [37]. On the other hand, the EOA of the AV, calculated as the ratio between the
stroke volume (SV) and velocity—time-integral of the peak aortic flow velocity, has been
derived based on transthoracic Doppler echocardiography or from cardiovascular mag-
netic resonance images [42].

Systemic vascular resistance (SVR) and arterial compliance parameters in a simplified
3-element WK model are usually adjusted to reproduce the measured systolic, diastolic,
and mean arterial pressure at a measured average flow rate. Sadeghi et al. [49] utilized
the Simulink Design Optimization toolbox in MATLAB (The MathWorks, Inc) to tai-
lor the lumped parameter systemic circulatory model response through two sequential
automatic steps with tolerances of 107°. On the other hand, Veress et al. [66] employed
the SENSOP optimizer [111] to adapt the circulatory model (i.e. the systemic resistance
and capacitance parameters) to the pressure/volumes generated by the LV FE model. On
the other hand, parameterization of a 1D arterial model is more cumbersome due to
the topological complexity of the arterial tree. Reymond et al. [117] has proposed a sys-
tematic approach to personalize a 1D arterial model based on subject-specific measure-
ments that has been utilized in several studies [35, 36, 39, 41]. Firstly, the geometrical
measurements, including diameter, area and length of the individual arterial segments
are obtained using MR angiography. Temporal waveforms of the volume flow rate at
several SA locations are then derived from time—velocity waveform and cross-sectional
area information acquired using 2D-gated phase-contrast MRI as well as B-mode and
color-coded duplex flow imaging. Pressure waveforms are measured at superficial arter-
ies using applanation tonometry, calibrated using brachial sphygmomanometer meas-
urements [117]. Lastly, arterial stiffness is optimized by minimizing the difference
between the simulated and measured PWYV, which is derived from the pressure wave-
forms at the carotid and femoral arteries. Local arterial distensibility is taken to be a

function of the transmural pressure and lumen diameter.

Model coupling and computational resources

Numerous coupling approaches have been implemented to integrate different cardiovas-
cular components in a VA model, which vary from single- to multidimensional compart-
ments. In the simplest models, such as those which modeled all compartments using the
lumped parameter representation, coupling is achieved by ensuring that conservation of
mass (flow rate) is satisfied [38]. In a 1D arterial tree model, coupling between different
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arterial segments at the bifurcations is accomplished using a ‘ghost-point’ method solved
iteratively with the Newton—Raphson technique [57, 58].

The most common coupling method in a VA model works by imposing continuity of
hemodynamic variables (i.e. flow rate and pressure) at the coupling interfaces. Normally,
a time-stepping iterative algorithm involving three steps, i.e. (i) initialization, (ii) itera-
tion setup, and (iii) convergence assessment, is applied. During the initialization phase,
a hemodynamic variable (e.g. pressure) is prescribed at the coupling interface based on
empirical data. During the iteration phase, the state variable (e.g. flow rate) is computed
by running the model (e.g. the LV) using the prescribed BC. The computed state variable
(e.g. flow rate) is subsequently used as BC for the adjacent model (e.g. the arterial net-
work). Upon solving the adjacent model, the hemodynamic variable (e.g. pressure) at the
coupling interface will be updated to be used for the next time step. During the conver-
gence assessment phase, a synthesized iterative error for the hemodynamic variable (i.e.
flow rate or pressure) at the coupling interface is calculated. Liang et al. [56] applied the
above technique to integrate the structured-tree models of the distal arteries/arterioles
with the upstream 1D model of the large arteries and downstream 0D model of the cap-
illaries. Similar technique is applied by Chen et al. [40] to couple a 3D FSI LV model with
a 1D SA model during the systolic ejection phase when the AV is open.

On the other hand, a few studies have coupled a 1D arterial network to a lumped
parameter (0D) description of the remaining circulatory system and integrated the solu-
tions at the 1D—0D interface using the time—marching iterative method [45, 56-58].
The 1D blood flow equation is transformed into the characteristic variables of a hyper-
bolic system (also known as Riemann invariants), as represented by W, and W,. W, and
W, denote the forward and backward traveling wave leaving the domain through the
distal and proximal nodes, respectively. The resting conditions (i.e. initial vessel area
and zero flow rate) are typically chosen as the reference state to derive the characteristic
invariants expression in relation to the flow velocity, cross-sectional area, and flow rate.
At each time step, the process begins with extrapolating the Riemann invariants (e.g.
W,) in the 1D model to estimate flow rate at the 0D—1D interface (e.g. peripheral arte-
rial distal interface), which acts as a BC for computing pressure in the 0D model. Based
on the calculated pressure, the cross-sectional area of the vessel is derived and then fed
back to the 1D model to calculate the new flow rate based on the derived Riemann invar-
iants (e.g. W,) and the current flow velocity. The residual error is computed based on the
difference between the estimated and the new flow rates.

To couple a four-chamber heart model with a reduced-order vascular model, Cafo-
rio et al. [33] impose a coupling condition which requires that the volume change in
each heart cavity is balanced with that in the attached vascular system. By reinterpreting
the LV cavity pressure as a Lagrange multiplier, a volumetric constraint was enforced to
couple the 0D circulation model with the 3D EM model. This resulted in a saddle-point
problem involving the displacement and LV cavity pressure variables to be solved via the
Schur complement reduction approach [33, 48]. Caforio et al. [33] stated that the volume
of each cardiac cavity equals an initial volume and does not change during the isovolu-
metric phase. Similarly, Regazzoni et al. [48] adopted the volume—consistency coupling
condition for their coupled 3D (LV EM)-0D (circulation) model, but solved their model
in both a segregated and staggered manner instead of the more common monolithic
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approach, discretising the 0D and 3D models simultaneously as a coupled system. The
fully segregated approach enables the use of different discretization in space and time
to approximate variables associated with the different component models. Although the
majority of VA models utilize direct coupling, it is computationally expensive to couple
between two distinct dimensions in a multidimensional model, for example, linking a
3D FE method LV mechanical model to a 0D circulatory system based on two different
software platforms. Veress et al. [66] have instead used a weak coupling method, where
the transfer of information between the 3D FE method LV and the 0D circulatory model
is unidirectional instead of bidirectional.

Furthermore, several studies [34, 40, 45] had been conducted to analyze the outcome
difference between isolated SC or cardiac model and fully coupled heart-circulation
model. The results showed that the isolated SC model overrates peak pressure [34] and
flow rate [40] and underestimates the reflections [45] in pathological situations when
compared to the VA coupled model. This might be due to the imposed inflow not adapt-
ing to the arterial conditions. The sensitivity to the variation of arterial stiffness of the
model using an uncoupled arterial model (prescribed inlet BC) is significantly lower
than in the coupled model (coupled 0D heart model) in middle-aged individuals [45].
Compared to the uncoupled cardiac model (0D circulation instead of 1D), only the aor-
tic pressure curve obtained with the fully coupled model shows a dicrotic notch, which
is characterized by a small downward deflection in the pressure contour on the down-
stroke of the aortic pressure waveform following the systolic peak, that marks the clo-
sure of the AV [34]. These findings highlighted the importance of VA coupling and hence
modeling and coupling both cardiac and circulatory system should be considered.

The required computational resources to run a VA model can vary significantly,
depending on the complexity of the simulation, the scale of the problem, and the preci-
sion required. Numerical simulations were run by employing life* [118, 119] in paral-
lel on either the High Performance Computing (HPC) resource (48 Intel Xeon ES-2640
CPUs) or the GALILEO supercomputer (252 cores distributed across 7 nodes with 36
Intel Xeon E5-2697 v4 2.30 GHz CPUs). Apart from adopting more efficient computa-
tional methods, another approach to save computational resources is to reduce model
complexity. Syomin et al. [65] modeled their LV as 2D-axisymmetric geometry, as
opposed to of 3D, and reported that their 2D(LV)-0D(circulation) model took only 5 min
to compute a 1 s evolution of the cardiovascular variables using a workstation with two
12-core processors. In comparison, the 3D(LV-FSI)-1D(arterial) model developed by
Chen et al. [40] took approximately 168 h to complete one cardiac cycle on a local Linux
workstation with eight Intel® Xeon® CPU cores (2.65 GHz) and 32 GB RAM. With the
availability of cutting-edge computational resources, computing constraints associated
with complex multidimensional models could be mitigated.

Model applications

Computational models of VA coupling have been used to investigate aging [34, 36, 57,
59], HTN, ventricular diseases (e.g. LVH, LVR, and LV stiffening) [36, 52], valvular dis-
eases (e.g. AS, AV regurgitation (AR), MV stenosis (MS) and MV regurgitation (MR))
[42, 47,50, 51, 61, 65] as well as vascular diseases (e.g. arterial stiffening, atherosclerosis,
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arteriosclerosis, COA, aneurysm and rarefaction) [33, 38, 41, 45, 46, 56, 66], as indicated
in Table 2. In some cases, a combination of several complications, such as systemic HTN,
AS and LVH were considered in the same study to assess their interactions [44, 60].

Aging and hypertension

Computational models have been used to investigate mechanisms leading to systemic
HTN in aging and its hemodynamic consequences. In most studies [39, 41, 45, 56, 58],
1D model has been used to simulate arterial system due to its accuracy in reproducing
pulse wave propagation and reflection phenomena which is an important determinant
in HTN. Aging-induced aortic stiffening and remodeling exhibit a compensatory effect
on aortic systolic BP and PP as well as PP amplification [41]. Aortic dilatation can partly
counteract the increased aortic systolic BP and PP induced by arterial stiffening due to
premature wave reflection, which leads to systemic HTN [57]. On the other hand, aor-
tic stiffening tends to reduce reflection coefficients at vessel bifurcations, thus enhanc-
ing the protective wave-trapping mechanism on the reflected pressure waves [41]. This
can reduce PP amplification associated with dilatation of the aorta, which subsequently
reduces the detrimental risk impacts on organs such as the kidneys.

Computational models of VA coupling have also been used to investigate mechanisms
leading to alterations in aortic pressure waveforms in diseased states, which is an impor-
tant trigger for systemic HTN and LVR [34, 39]. While reduced aortic compliance asso-
ciated with aging has been reported to change the aortic pressure waveform phenotype
from Type C (i.e. peak systolic pressure precedes the inflection point) to Type A (i.e.
peak systolic pressure occurs after the shoulder) due to early wave reflection, recent
studies have found Type C pressure phenotype in old age HTN [120]. Using simulation
studies, Pagoulatou et al. [36] showed that an increase in LV contractile strength caused
by LVR (adaptation mechanism to an increase in the systemic afterload) alters the shape
of the forward pressure wave, making it steeper and reaching its peak early. This alters
the central hemodynamics, restoring the Type C pressure phenotypes and increasing
systolic pressure augmentation. As a result, indices based on the aortic pressure wave-
form, such as the widely applied surrogate of wave reflection, Alx (defined as the ratio of
the augmentation of systolic BP to PP), cannot be assumed to reflect only arterial prop-
erties, but are instead dependent on both vascular and cardiac properties such as LV
contractile properties [35, 36, 53]. Besides, both heart and arterial system play a major
role in contributing to BP changes in HTN and aging [59, 63].

VA coupling models have also been applied to study the associations between cardio-
vascular properties and hemodynamic parameters and elucidate the differential effect of
various antihypertensive drugs on hemodynamics. Using a computational model with
single-factor sensitivity analysis, Liang et al. [56] found that central arterial wall stiffness,
heart period, and arteriolar radius are significant determinants of arterial BPs. Vasodila-
tors have comparable efficacy in reducing central aortic stiffness that resulted in more
significant decrease in aortic PP and a significant rise in aortic-to-brachial PP amplifica-
tion ratio. This could be explained by the positive effect of vasodilators on the relaxation
and dilatation of distal resistance vessels. On the contrary, beta-blockers yield a reduc-
tion in HR with opposite effect of that provided by a reduction in central aortic stiffness.
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Ventricular function

With an increase in systemic afterload, the LV undergoes adaptation in the form of con-
centric hypertrophy, in which LV wall thickness increases to normalize peak systolic wall
stress, whereas SV is preserved via a surge in preload (Frank—Starling mechanism) and
a rise in LV contractile strength. This cardiac remodeling process further contributes to
increased LV and aortic peak systolic pressure. The coupled LV systolic and arterial stift-
ening helps to preserve LV mechanical performance at the expense of further elevation
of LV and aortic pressures. In addition, detailed CFD analysis has shown a much larger
energy loss in patients with LVH (compared to control and non-LVH groups), which is
caused by a disturbed (turbulent) flow field with disordered/irregular vortices in the LV
[52].

VA coupling models have been used to assess the sensitivity of myocardial function
indices to cardiovascular system variations. For example, with the use of complete 0D
CL cardiovascular model, Inuzuka et al. [55] analyzed the effect of HR, LV contractility,
diastolic stiffness or relaxation time, arterial compliance and SVR on myocardial perfor-
mance index (MPI), derived from Doppler measurements, serves as an index for overall
ventricular function by estimating the combined systolic and diastolic LV performance.
Their simulation studies showed that MPI acts contrarily to diastolic dysfunction result-
ing from impaired LV relaxation and LV diastolic stiffening, as well as responding differ-
ently to static (SVR) and pulsatile (arterial compliance) afterload. On the other hand, the
Ea/Ees ratio has commonly been used to assess the balance between the load imposed
by the arteries and the contractile properties of the LV. Although the Ea/Ees ratio is a
widely accepted index for charactering left VA coupling, it has been shown to depend
on aortic leak severity, and therefore could not reliably reflect LV—arterial coupling in
patients with AR [61].

Valvular and arterial diseases
Computational models of VA coupling have also been developed to investigate the effect
of valvular diseases on both the heart and arterial system. Liang et al. [58] observed from
their simulation studies that AS induces early wave reflection and leads to prolonged
LV ejection, delayed peak transvalvular flow, as well as increased LV systolic pressure,
which may in turn trigger hypertrophic remodeling and hamper myocardium relaxation.
In order to accurately capture the large transvalvular pressure gradient associated with
severe AS, the flow coefficient parameter used in the valve models should be allowed to
vary depending on the opening diameter of the vena contracta (rather than setting it as
a constant), as blood flow Reynolds number can change significantly over the ejection
period and over the various degrees of stenosis [47, 65]. In another study [49], mixed val-
vular diseases, such as aortic regurgitation and mitral regurgitation, have been shown to
alter velocity magnitude downstream of the COA, creating turbulent flow and increas-
ing the pressure gradient across the coarctation. Consequently, it has been suggested
that the severity of valvular diseases should be considered in the evaluation of risks and
selection of treatment approaches in patients with COA.

VA coupling models have also been applied to assess the sensitivity of biomechani-
cal markers to variations in the cardiovascular system, and to identify new biomechani-
cal markers which could better diagnose and assess disease progression in patients with
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valvular diseases. To date, transvalvular pressure gradient, EOA and ejection blood jet
velocity have been used in routine clinical practice to identify the presence of AS [121].
However, these diagnosis criteria are unreliable in the presence of LV dysfunction cou-
pled with impaired SA compliance. For example, in a low flow, low gradient AS scenario,
an elevated transvalvular pressure gradient is lacking due to ventricular dysfunction
[122]. These patients have reduced LV function coupled with eccentric hypertrophy
(spherical-shaped LV) from pathological remodeling. Using a biomechanical model,
Wineski et al. [50] observed a reduction in systolic myocardial stress with more uniform
stress distribution throughout the LV in these patients. On the other hand, echocardiog-
raphy measures of aortic regurgitation severity, such as regurgitant volume, regurgitant
fraction and pressure half time, as well as its hemodynamic consequences such as mean
left atrial pressure, are influenced by LV diastolic stiffness and aortic wall stiffness [60].
These findings highlight the importance of taking into account both cardiac and arterial
tissue properties while assessing the severity of valvular diseases using existing clinical
assessment methods.

In order to more reliably assess hemodynamic load imposed on the LV, the Zva index
has been proposed, quantifying both valvular and arterial loads on the LV [123]. Zva is
closely associated with peak systolic WSS and aortic wall stress in patients with ATAA,
proving to be a robust predictor of LV dysfunctions and clinical outcomes in asympto-
matic AS patients [37]. Another study [42] has proposed the normalized LV SW to eval-
uate overall hemodynamic load imposed on the LV. While Zva is flow-dependent and
offers an estimate of LV load, the normalized LV SW is not flow-dependent and deter-
mines the actual mechanical load imposed on the LV which is more suitable to be used
on low flow, low gradient AS patients.

Future perspectives

Promising future research directions in cardiovascular modeling are the develop-
ment of patient-specific fully coupled cardiovascular modeling frameworks (Fig. 6)
(i.e. four-chambered heart, valves, pulmonary and systemic circulatory systems that
include arterial and venous systems) in concomitant pathological conditions which can
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provide clinically-relevant insights for management of diseases for individual patients
and improve clinical decision making and patient outcomes. CL model structure is pref-
erable due to it can account for LV preload—afterload interaction. To date, fully inte-
grated multiscale 3D whole heart EM models coupled with 0D CL circulatory models
have emerged, which highlighted the significance of considering atrial contraction and
assessing the impact of local cardiac tissue changes on the entire system [82, 124]. Addi-
tionally, Bucelli et al. [89] has introduced a 3D model of the human heart which included
detailed descriptions of the electrophysiology, active and passive mechanics as well as
fluid dynamics, coupled with reduced models for valves and circulation. Despite their
detailed and accurate representation of the fully coupled cardiovascular system, these
models are computationally complex and expensive, posing challenges in optimizing
patient-specific hemodynamic parameters due to the limited availability of noninvasive
measurements, especially within a CL circulation framework. To overcome the challenge
for model parameterization, uncertainty quantification and sensitivity analyses [125—
127] should be performed to determine and prioritize the most influential parameters
through clinical measurements, with remaining parameters fixed or derived from the
literature. Personalized parameters can be estimated using data assimilation and opti-
mization algorithms with robust inverse problem strategies (e.g. unscented Kalman filter
[128, 129], adjoint-based optimization for cardiac mechanics [130]) to better fit available
measurements to improve model accuracy [131]. Reduced-order modeling should be
considered by simplifying the system or geometry to reduce computational complexity.
Like 1D arterial models, the parameter set can be reduced by decreasing the number of
arterial segments involved via lumping peripheral branches into WK-type models which
can still reproduce the desired features of BP and flow waveforms [132]. Clinical meas-
urements (i.e. body mass index, PWV) can be utilized to adjust distal properties and ves-
sel geometry using allometric scales and global descriptors associated with the network’s
overall geometry and properties [117].

Furthermore, future studies should centre on the development of more detailed and
realistic modeling of valves, right heart, and the pulmonary and venous circulation to
consider their interactions in the cardiovascular system. The effect of these components
in the study of VA coupling are uncertain, in which models typically focus on the left
heart and systemic circulation whilst the pulmonary circulation and right ventricle (RV)
are not emphasized [103, 133], even though the latter are important in determining
overall performance of the cardiovascular system, including LV and aortic mechanics
[134]. This lack of emphasis may be due to the challenges in personalizing these models,
namely that right side of the heart is hard to segment and variables of the right heart
and pulmonary circulation (i.e. pulmonary arterial pressure) require invasive catheter
measurements [69, 135] which are not easily accessible. Alternatively, the use of non-
invasive echocardiography in assessing pulmonary arterial pressure [136] can be con-
sidered for patient-specific modeling. Besides, the effect of cardiac valves is ignored or
not emphasized in most coupled cardiovascular models. Venous return, which affects
cardiac preload, should also be studied more precisely to understand the effect of the
circulation on cardiac function.

Besides, another issue is the computational limitation that each model requires an
extensive development time to formulate appropriate mathematical descriptions of the
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underlying physiology. The use of patient-specific and high resolution in silico models in
clinical practice is still not currently feasible due to long computation time and compre-
hensive guidelines required. This has led to a growing interest in machine learning and
deep learning methods [137] to reduce computational cost with improved outcomes,
rather than applying a complex mathematical model of the many physiological systems
present. Instead of complete modeling, machine learning can also be applied for auto-
mated segmentation of medical images to reconstruct the 3D geometry [138]. Although
machine learning techniques have been recently deployed to learn the relationships
among different cardiovascular parameters, it is recognized that its “black box” nature
poses additional challenges in the context of verification and validation [139]. To deploy
deep learning for cardiovascular care, challenges in obtaining substantial labeled data,
enhancing interpretability and robustness, and creating standardized methodologies for
validation and testing need be solved. To accurately quantify the effects of patient vari-
ability on physiology, pathophysiology, and treatments, as well as to make predictions
using deep learning algorithms, it will be crucial to develop and utilize virtual patient
cohorts [140, 141].

Future studies should also focus on assessing the efficiency of existing prognostic indi-
cators of cardiovascular function. To ensure efficiency of the prognostic indicators, the
sensitivity of cardiac and vascular function markers to variations in cardiovascular prop-
erties should be evaluated to enable clinicians and researchers to more clearly interpret
clinical/experimental results related to these markers in aging, HTN, and concomitant
disease. Further investigation is necessary to develop indices that accurately reflect spe-
cific conditions and enhance the evaluation of disease severity and its hemodynamic
implications. New indices that can perform a comprehensive and precise assessment of a
patient’s true hemodynamic and clinical condition should be introduced.

However, most studies [56, 64] only focused on isolated changes of parameters which
might not be the actual case. To account for variations in hemodynamic conditions
among patients and the interrelation of cardiovascular factors in vivo, encompassing
diverse short-term regulatory and long-term adaptive mechanisms, it is important to
investigate the collective impact of parameters.

The limitation of this review is that only left VA coupled models, the influence between
cardiovascular components, and disease progression are discussed. Future studies can
investigate literature pertaining to right VA coupled models and the effect of interven-
tions. The limitations of evidence are the lack of explanation of fundamental informa-
tion due to the same previous model being applied. The limitations of review processes
are that too many specific search terms were applied. However, it should be noted that
the use of more generic search terms might result in too much nonspecific literature.
Another limitation is that only three databases were used to obtain relevant papers. Fur-
thermore, additional searches via other methods employed may potentially lead to bias
in this review.

Conclusion

The application of computational models for examining impaired left VA coupling in
aging and disease have been reviewed and discussed. The notion of VA coupling pro-
vides important insights in cardiovascular system analysis. It is crucial to evaluate the
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heart and vessels as an interconnected system instead of isolated structures. The choices
of dimensionality in multicomponent models might be insufficient to replicate signifi-
cant features of pathological change during aging, HTN, and complex ventricular—val-
vular—vascular disease. Future research directions should involve the development of
patient-specific fully coupled models of the cardiovascular system by incorporating
models with appropriate dimensionality that the choice should depend on the level of
detail required in the simulation and the available computational resources. The imple-
mentation of machine learning techniques can be considered for model prediction or
data acquisition and processing. The sensitivity of cardiac and vascular function markers
to changes in cardiovascular system properties should be analyzed to determine the effi-

cacy of these indicators and allow clear interpretation of clinical results.

Systematic review methods

A systematic review procedure was implemented according to the Preferred Reporting
Items for Systematic Review and Meta-Analyses (PRISMA) [142] guidelines. A compre-
hensive literature search was undertaken for relevant articles dated up until 14th of July
2022 using electronic databases such as Web of Science, Scopus, and PubMed, as well as
other search methods including websites and citation searching. Keywords comprised
“ventricular—arterial’, “computational model’; and their respective synonyms and related
terms with the use of truncations and the Boolean operators AND and OR were applied
within all fields in the databases. Details of the search term combinations are provided in
Table 1. To limit the number of articles in the preliminary stage, available database filters
were employed with several conditions (Additional file 1: Table S1). Journal articles pub-
lished in English were included, and focus areas were specified to be engineering, car-
diovascular system and cardiology, mathematics, physiology, and computer science. A
publication timeframe from 2000 to 2022 was adopted to ensure that recent significant
and advanced modeling methods were retrieved.

Database search results were subsequently imported into EndNote 20 (Clarivate, USA)
where duplicates were found and removed. Eligibility criteria for this review were (1)
usage of a computational model of the cardiovascular system, (2) use of human cardio-
vascular data, particularly in adults, (3) coupling between the LV and the aorta, (4) it
must involve the systemic circulation, (5) it must involve age-induced complications
or other left ventricular—valvular—vascular related disease without interventions, and
(6) modeling approaches are well defined (Additional file 1: Table S2). The screening
of titles, keywords, and abstracts of the articles was initially undertaken to eliminate

Table 1 Details of search terms used in the databases

Key concept VA Coupling Computational model

Search Terms  “ventric*-valv*-vascula*" OR "ventric*- AND "3D-0D"OR "3D-1D"OR "0D-1D" OR "math-
valv*-arter*” OR "ventric*-vascula*" OR ematical model*" OR "computational fluid
"ventric*-arter*” OR "cardiovascular system" dynamics" OR "fluid—structure interaction”
OR "arter*-ventric*" OR “ventric*-aort*” OR OR "finite-element” OR "interact* model*" OR
“heart-vessel” OR "heart-arter*" OR "heart- "numerical model*" OR "lumped parameter
vascular®" OR “cardi*-arter*” OR "cardi*- model*" OR "comput* model*" OR "multi-
arterial” scale model*" OR "multi-physics model*" OR

"in silico"
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irrelevant studies. Full papers were then sought for retrieval, reviewed for relevance, and
screened for quality to ensure articles satisfied the above eligibility criteria.

Critical appraisal of the selected articles was conducted to ensure their usefulness
towards this review. To avoid bias, a grading system was prepared to assess the qual-
ity of the papers which included a set of questions relevant to a systematic review
of computational modeling [143-146], including questions pertaining to study
objective, data source, modeling technique, model parameterization, uncertainty
assessment, simulation, model validation, results, key findings, limitations, and con-
clusions (Additional file 1: Table S3). The assessments were completed separately by
two reviewers (CCAD, LE) (Additional file 1: Table S4), and selected articles were
organized in Microsoft Excel (Microsoft Inc, USA) spreadsheet. Information such as
authors, publication year, model application, modeling technique, and key findings
of the study were extracted from each study for further interpretation. Figure 7 illus-
trates the methodology and selection process. The general overview of review find-
ings is summarized, including authors, publication year, model development (model
structure, parameterization, and validation), and model application (applications and
key findings of each study) (Table 2). Detailed information about model development
(Additional file 1: Table S5) and model application (Additional file 1: Table S6) were

()

—
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Fig. 7 Systematic review approach: a Overview of methodology; b PRISMA flow diagram of study selection
process adapted from the PRISMA 2020 statement: an updated guideline for reporting systematic reviews
[142]
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provided in supplementary material. The studies were sorted based on year of publi-
cation to highlight the latest research and modeling techniques.
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Augmentation index
Aortic valve regurgitation
Aortic valve stenosis

Ascending thoracic aortic aneurysm

Aortic valve

Boundary condition

Blood pressure
Computational fluid dynamics
Closed loop

Aortic coarctation

Computed tomography

Computed tomography angiography

Effective arterial elastance
Echocardiography
End-diastole/diastolic
Ventricular end-systolic elastance
Ejection fraction
Electromechanical

Effective orifice area
End-systole/systolic

Finite element
Fluid—structure interaction
Heart failure

Heart rate
Hypertension/hypertensive
Left atrium

Left ventricle/ventricular
Left ventricular hypertrophy
Left ventricular remodeling
Myocardial performance index
Mitral valve regurgitation
Magnetic resonance imaging
Mitral valve stenosis

Mitral valve

Navier-Stokes

Ordinary differential equation
Open loop

Oscillatory shear index
Partial differential equation
Pulse pressure

Pulse wave velocity

Right atrium

Right ventricle

Systemic arteries/arterial
Structured tree

Stroke volume

Systemic vascular resistance
Stroke work

Transmission line
Time-varying elastance
Windkessel

Wall shear stress
Ventricular—arterial
Valvulo-arterial impedance
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