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Abstract 

Background  Breakthrough cancer pain (BTCP) is primarily managed at home and can stem from physical exer-
tion and emotional distress triggers. Beyond these triggers, the impact of ambient environment on pain occurrence 
and intensity has not been investigated. This study explores the impact of environmental factors on the frequency 
and severity of breakthrough cancer pain (BTCP) in the home context from the perspective of patients with advanced 
cancer and their primary family caregiver.

Methods  A health monitoring system was deployed in the homes of patient and family caregiver dyads to collect 
self-reported pain events and contextual environmental data (light, temperature, humidity, barometric pressure, 
ambient noise.) Correlation analysis examined the relationship between environmental factors with: 1) individually 
reported pain episodes and 2) overall pain trends in a 24-hour time window. Machine learning models were devel-
oped to explore how environmental factors may predict BTCP episodes.

Results  Variability in correlation strength between environmental variables and pain reports among dyads 
was found. Light and noise show moderate association (r = 0.50–0.70) in 66% of total deployments. The strongest 
correlation for individual pain events involved barometric pressure (r = 0.90); for pain trends over 24-hours the strong-
est correlations involved humidity (r = 0.84) and barometric pressure (r = 0.83). Machine learning achieved 70% BTCP 
prediction accuracy.

Conclusion  Our study provides insights into the role of ambient environmental factors in BTCP and offers novel 
opportunities to inform personalized pain management strategies, remotely support patients and their caregivers 
in self-symptom management. This research provides preliminary evidence of the impact of ambient environmental 
factors on BTCP in the home setting. We utilized real-world data and correlation analysis to provide an understanding 
of the relationship between environmental factors and cancer pain which may be helpful to others engaged in similar 
work.
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Background
Over 90% of advanced cancer patients experience pain, 
and about 50 to 75% of cancer patients with pain suffer 
from sudden, intense breakthrough cancer pain (BTCP), 
which can occur despite using pain medications [1–3]. 
BTCP significantly affects the quality of life for patients 
and their caregivers looking to manage their pain at 
home [3–5]. Thus, preventing and managing BTCP is 
crucial in cancer pain care [6–8].

While triggers like physical exertion and emotional 
distress are known, the impact of home environmental 
factors (such as light, temperature, humidity, noise) on 
BTCP remains understudied [9–12]. Multiple investiga-
tions indicate that environmental conditions in hospitals 
may affect patients’ health outcomes [11, 12]. A com-
prehensive review revealed that factors such as music, 
natural light levels, and artificial ambient lighting can 
influence the pain experienced by hospitalized patients 
with diverse diagnoses/illnesses [10]. However, there is 
limited research regarding how environmental factors 
within the home environment can affect cancer pain. 
We aim to fill this gap by investigating the influence of 
environmental factors on cancer pain in the home set-
ting, where cancer pain is most commonly addressed and 
managed [7].

Overview of the BESI‑C system
Our interdisciplinary team previously developed 
the BESI-C (Behavioral and Environmental Sensing 
and Intervention system for Cancer) remote health 

monitoring system, which utilizes smartwatches and 
ambient sensors to collect data on home environmen-
tal factors, as well as behavioral and physiological data 
from patients and their primary family caregiver. BESI-
C includes a custom smartwatch application that allows 
both patients and caregivers to self-report BTCP events, 
record medication intake and efficacy, as well as quality 
of life variables such as sleep quality and quantity, physi-
cal activity, and psychological distress. Our user-centered 
design process [13], overall study protocol [14], and 
results from initial feasibility and acceptability testing of 
BESI-C [15] have been previously reported [16].

This paper focuses on a unique aspect of the BESI-C 
system: environmental sensors collecting anonymized 
data on light, ambient noise, barometric pressure, tem-
perature, and humidity in the home and how these data 
correlate with self-reported pain and distress data from 
patients and family caregivers. The selection of these 
environmental variables is based on literature highlight-
ing their potential impact on the quality of life for pallia-
tive care patients [17]; validation by previous conducted 
dyad interviews [13]; and technological feasibility [16, 
18, 19]. Figure 1 shows an overview of the BESI-C system 
architecture used for the collection of the data presented 
in this paper.

Analyzing data from BESI-C using statistical methods 
and machine learning helps uncover trends in BTCP-
related data and potential environmental influences. 
For instance, statistical analysis can reveal correla-
tions between light/temperature and BTCP frequency/

Fig. 1  Overview of the BESI-C remote health monitoring system. Ambient environmental data are collected via environmental sensing stations. 
Smartwatches are used to collect physiological data from the patient and the caregiver, record pain events and complete Ecological Momentary 
Assessments (EMAs), and locate users in the home
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intensity. Machine learning, including decision trees and 
neural networks, is effective in identifying complex pat-
terns and relationships in data related to symptoms and 
environmental factors [20]. These algorithms are espe-
cially valuable for uncovering intricate connections not 
easily discernible through traditional statistical analysis 
[21].

The primary objective of this analysis and paper is to 
investigate the hypothesis that ambient environmental 
factors impact the frequency and severity of BTCP in 
home settings, offering insights for enhanced pain man-
agement in cancer patients. Our contributions include: 1) 
Analyzing real-world data for correlations between envi-
ronmental factors and BTCP; 2) Exploring how the ambi-
ent environment influences individual BTCP instances 
and overall frequency/severity within a 24 hour period; 3) 
Extracting features from real-time environmental data to 
develop machine learning models to predict episodes of 
BTCP experienced in the home setting and 4) Comparing 
patient-reported pain episodes with caregiver-reported 
observations and their connection to the ambient envi-
ronment. Importantly, this study provides insights into 
the development of personalized cancer pain interven-
tions at home, potentially informing real-time environ-
mental modifications to alleviate pain and distress for 
patients and caregivers.

Methods
Data acquisition
This paper reports findings from five BESI-C deploy-
ments (n = 5) in patient and caregiver homes in Central 
Virginia from April 2019 to December 2019. The BESI-C 
system collected self-reported pain events and contex-
tual environmental data for approximately 2 weeks (9 to 
15 days per deployment). The analysis integrates environ-
mental data from BESI-C sensors in participant homes 
with pain events reported via smartwatches by both 
patients and caregivers. The focus is on the frequency 
and severity of breakthrough cancer pain (BTCP) events, 
assessed through user-initiated Ecological Momentary 
Assessments (EMAs) (brief surveys) on smartwatches. 
BTCP events are defined when a pain event is marked 
and an EMA is completed on the smartwatch, as detailed 
in previous reports [15]; of note, patients are asked to 
complete an EMA when they believe they are experienc-
ing cancer-related pain; caregivers are asked to complete 
an EMA when they believe the patient is experiencing 
pain. Severity of pain events was assessed by the Numeric 
Rating Scale (0 = no pain to 10 = worst pain) [22, 23]; fre-
quency of pain events was assessed by the time stamps 
of a completed pain report EMA. Consistent with the 
guidelines of our healthcare institution, a reported pain 

level of 5 or higher was considered a high-severity pain 
event.

In addition to enabling participants to record pain 
events, smartwatches tracked participants’ locations 
using Bluetooth beacons strategically placed in selected 
rooms of their homes (note: placement of sensors within 
the home was always determined in partnership with the 
dyad and excluded sensitive areas, such as bathrooms).. 
This location information was used to correlate reported 
pain events with the most relevant room-level ambient 
environmental sensor data based on Bluetooth signal 
strength. For example, if the Bluetooth beacon revealed 
that a patient recorded a pain event closest to the kitchen, 
the data from the kitchen environmental sensor were 
used for correlation analysis. Figure 2 illustrates the col-
lected data from environmental sensors, patient location, 
and self-reported BTCP events.

Data pre‑processing and environmental features
We utilized Python programming to apply data pre-
processing techniques, including the removal of sensor 
interference signals (unwanted electrical signals from 
sensor hardware) and extraction of relevant features [24]. 
In our exploratory analysis, lacking a published standard, 
we chose a 5-second filter size with the rationale that a 
5-second window size is a balance between interference 
reduction and preserving relevant signal. Subsequently, 
we employed data segmentation to divide environmen-
tal data into chunks, aiming to reduce complexity and 
facilitate feature extraction capturing temporal patterns. 
Using a sliding window technique, we created overlap-
ping segments of fixed length from continuous data 
streams [25]. For analyzing environmental impacts on 
pain events, we segmented environmental data preced-
ing each pain report into variable window sizes (5-min-
ute to 60-minutes). Next, we employed feature extraction 
to convert raw sensor data in each segment into more 
informative representations, reducing redundancy and 
irrelevance. Table  1 summarizes the statistical features 
used to study the relationships between environmental 
factors and BTCP reports.

Data analysis
Correlation analysis between ambient environmental factors 
and BTCP
Two correlation analysis approaches were utilized with 
different unit of analysis to investigate the relationship 
between ambient environment and BTCP frequency and 
severity. In the first correlation analysis, the individual 
BTCP correlation analysis, we looked at each individual 
BTCP event and environmental features prior to the 
BTCP event. For example, with a 15-minute window, 
if a patient reported BTCP at 2:00 PM, environmental 
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Fig. 2  Example of environmental data with BTCP reports from a BESI-C deployment. The two red-highlighted areas represent two self-reported 
pain events, one in the bedroom, another in the living room. The yellow-shaded areas represent the patient’s location estimated by Bluetooth 
beacons. NOTE: The collected environmental data and their units are light level (Lux), temperature (°C), humidity (%RH), barometric pressure (kPa), and noise 
level (dB) 

Table 1  Summary of extracted features and their relevance to ambient environmental data segments

Extracted Feature Category Extracted Feature Name Description/Rationale

Measures of central tendency Mean Measures of central tendency describe the center or typical value of a dataset. The 
mean is the average value of the data which helps us capture the general level 
of the data and provide information about the baseline behavior.

Measures of dispersion Standard deviation (SD) Measures of dispersion describe how spread out the data are. The SD measures 
how much the data varies from the average value.

Minimum (Min) & Maximum (Max) Min and Max values give the lower and upper range of the data which can be 
beneficial when certain ranges of values are indicative of specific conditions (e.g., 
pain severity/intensity)

Median deviation (MD) The median deviation is a measure of how much the data varies from the middle 
value [26].
We extract median deviation (MD) related features which consist of mean-MD, 
max-MD, and min-MD so we can capture variability while being less influenced 
by extreme values (e.g., high light levels at night show high MD feature, but low 
Mean compared to daytime).

Measures of shape Slope Slope measures the shape (or pattern) of the data distribution by measuring 
how steeply a line fits to the data. This feature is important for capturing trends, 
identifying periods of growth or decline.

Mean-crossing-rate (MCR) The MCR measures how often the data goes above and below its average value 
[27]. This feature is useful for characterizing oscillatory behavior and cyclical pat-
terns in the data.
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features between 1:45 PM and 2:00 PM were considered 
for the point-biserial correlation. The unit of analysis 
was the individual BTCP event. In the second correla-
tion analysis, daily (24 hr) breakthrough pain events cor-
relation, we looked at the frequency/intensity of BTCP 
in a 24-hour period and environmental features in the 
same 24-hour period. For example, if a patient reported 
five BTCP episodes on a day with an average light level 
of 1000 lx, compared to another day with an average 
light level of 400 lx and 2 BTCP reports, the correlation 
between average environmental values and the number 
of BTCP episodes would be analyzed using Pearson cor-
relation. The unit of analysis is each day (24-hour period) 
of the deployment.

Individual comparison of environmental features 
and breakthrough Cancer pain episodes
The first approach examined the impact of the ambient 
environment on individual BTCP events by calculating 
Point-biserial correlation coefficients between environ-
mental features (i.e., light level, temperature fluctuation, 
and noise level) and the occurrence of BTCP episodes 
reported by patients and caregivers [28]. These coef-
ficients measured the relationship between continuous 
environmental variables and the binary occurrence of 
individual BTCP events. Environmental features were 
segmented at variable window sizes (5 to 60 minutes) 
preceding each pain report. To compare environmental 
conditions during periods with and without pain events, 
‘control’ periods without pain reports were randomly 
selected using a Python program, excluding those within 
1 hour of pain report timestamps. Then, Pearson corre-
lation coefficients [29] were computed to evaluate the 
relationship between ambient environment and reported 
pain severity (patient’s self-report or caregiver’s observed 
level). For instance, with a 15-minute window, if a patient 
reported BTCP at 2:00 PM, environmental features 
matching the patient’s location between 1:45 PM and 
2:00 PM were considered, and Pearson correlation coef-
ficients were calculated with the reported pain intensity 
using the Numeric Rating Scale (NRS).

Daily comparison of environmental factors 
and breakthrough Cancer pain episodes
The second correlation approach examined the daily 
impact of ambient environmental factors on the fre-
quency and intensity of BTCP. This involved analyzing 
the correlation between the number and average sever-
ity of BTCP episodes reported in a 24-hour period by 
patients and caregivers and the 24-hour average values of 
environmental factors (light level, temperature, humid-
ity, barometric pressure, and noise level). Daily average 
values for environmental factors were calculated over 

the data collection period (9–15 days, depending on 
deployment duration). For instance, if a patient reported 
five BTCP episodes on a day with an average light level 
of 1000 lx, compared to another day with an average 
light level of 400 lx and 2 BTCP reports, the correlation 
between average environmental values and the num-
ber of BTCP episodes would be analyzed using Pearson 
correlation.

Breakthrough Cancer pain prediction
In addition to correlation analysis, machine learning 
techniques predicted breakthrough cancer pain (BTCP) 
based on environmental factors (5-minute to 60-minute 
feature window sizes before pain events). Time-of-day 
was also considered as an input feature, with cyclical 
feature encoding used to address numerical representa-
tion challenges (e.g., 23:58 and 00:02). This method con-
verts time-of-day into corresponding sine and cosine 
values [30, 31]. Before building BTCP prediction mod-
els, data normalization scaled sensor data to a common 
range, aiding to mitigate the influence of different units 
and scales of measurement on data analysis [32]. Min-
max normalization was employed, rescaling the data to a 
range between 0 and 1.

Machine learning models, including naive Bayes, deci-
sion tree, random forest, support vector machine (SVM), 
and neural network, were trained to predict BTCP based 
on the environmental features [33, 34]. The models 
underwent training on 80% of the data using the 5-folds 
cross-validation approach [35], ensuring generalizability 
and minimizing overfitting. To address potential indi-
vidual differences in environmental sensitivity, a per-
sonalized machine learning model was created for each 
unique dyad, allowing for personalized predictions. The 
remaining 20% of the data served as an independent test-
ing dataset to evaluate model performance, ensuring that 
the model generalized well to new data [36].

Model performance was assessed using accuracy, 
sensitivity, specificity, area under the receiver operat-
ing characteristic curve (AUC), and Matthew’s correla-
tion coefficient (MCC). Given dataset imbalance, MCC 
was particularly valuable, as is common in medical data 
[37]. The performance of the pain prediction models was 
compared, and the best-performing model and feature 
window sizes were selected for further analysis and dis-
cussion. Hyperparameters were tuned using a grid search 
approach, defining a search space as a grid to find opti-
mal values for the prediction model [38, 39].

Results
This section presents the results of BTCP correlations 
with environmental features, and the results of machine 
learning model performance for predicting BTCP. Below, 
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Table 2 summarizes the result of the correlation analysis 
and the associated environmental features. The overall 
sample size for the correlation analysis was 566 events, 
including 283 self- reported BTCP events from patients 
and caregivers over the total five deployments and 283 
‘control’ periods without pain events. Here, we consid-
ered the correlation coefficient as low correlation when 
the value is below ±0.30, moderate correlation when the 
value lies between ±0.30 and ± 0.50, and high correlation 
when the value is above ±0.50 [40].

Correlation analysis between environmental features 
and individual pain episodes
For the correlation analysis of individual pain events, 
environmental features preceding each pain report were 
compared with the frequency and severity of the pain 
reports. The 15-minute feature window is used for this 
analysis (see Appendix A for more details.) Pearson cor-
relation coefficients between the environmental features 
and pain frequency and severity (per patient, caregiver, 
and deployment) are summarized in Fig. 3. In Fig. 3, the 
size of the circles represents the magnitude of the corre-
lation coefficient, with larger circles indicating a higher 
correlation. The color of the circles indicates the direc-
tion of the correlation, with red representing a direct cor-
relation (e.g., high light, high pain) and blue representing 
an inverse correlation (e.g., low light, high pain). Environ-
mental factors analyzed include light level, temperature, 
humidity, barometric pressure, and noise level. Features 
extracted from each environmental factor include mean, 
max, min, standard deviation, median deviation features, 
slope, and mean-crossing-rate. The investigation into 
BTCP events using the biserial correlation coefficient 
showed associations with various environmental fea-
tures, particularly light levels and ambient noise levels, 
across different deployments.

Light levels and ambient noise
In Fig. 3, analysis of deployments 1 and 5 suggest that 
individual BTCP events were positively associated with 
high light levels, elevated noise levels, and noise fluc-
tuations (as shown by high standard deviations). Simi-
larly, the correlation analysis in deployment 3 showed 
associations between individual pain events and ambi-
ent noise related features. The result of pain severity 
correlations, conducted using Pearson’s correlation, 
showed similar trends in deployments 1 and 5. Both 
deployments exhibited moderate correlations between 
pain severity and environmental features, specifically 
light levels and ambient noise levels. For instance, in 
deployment 5, pain severity reports exhibited a correla-
tion coefficient of 0.41 with mean light level, standard 
deviation, and median deviation of light. In deployment 
3, assessments of pain severity from both patients and 
caregivers revealed moderate inverse correlations with 
all light level features, ranging from approximately 
0.35 to − 0.47. The feature with the highest correlation 
was the maximum median deviation of the light level 
during deployment 4 and the caregiver’s pain severity 
observation, with a correlation coefficient of 0.71.

Temperature and barometric pressure
Deployments 3 and 4 showed associations between 
temperature, barometric pressure, and pain events. 
The highest correlation coefficient observed during 
the individual pain events correlation analysis was in 
deployment 3 for the patient with high-severity pain 
reports (pain level ≥ 5/10), where the barometric pres-
sure (MCR) showed a correlation coefficient of 0.90.

Table 2  Summary of environmental features that show the strongest association with patient BTCP of each deployment when 
compared with individual BTCP episodes and BTCP frequency/severity over 24 hours

r correlation coefficient: n number of patient BTCP and ‘control’ events.

Deployment 
Number (D.#)

Environmental feature associated with individual episodes of 
patient BTCP

Environmental feature associated with episodes of 
patient BTCP over a 24-hour time window

individual BTCP individual BTCP severity BTCP frequency average BTCP severity

D.1 (n = 98) Light MCR (r = −0.33) Light Max (r = 0.26) Humidity MD (r = 0.84) Light MD (r = 0.57)

D.2 (n = 84) Light Median Deviation 
(r = − 0.24)

Noise Median Deviation (r = 0.36) Noise Max (r = 0.78) Noise Mean & SD (r = 0.74)

D.3 (n = 48) Light Minimum (r = 0.38) Noise Mean (− 0.73) Noise SD (r = 0.60) Barometric pressure MCR 
(r = 0.83)

D.4 (n = 60) Barometric pressure MD (r = 0.45) Light MCR (r = −0.31) Barometric pressure MD (r = 0.84) Temperature MD (r = −0.82)

D.5 (n = 106) Barometric pressure SD (r = 0.19) Noise Median Deviation (r = 0.33) Barometric pressure Max 
(r = 0.66)

Light MD (r = −0.59)
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Fig. 3  Correlation coefficient analysis results between environmental features and BTCP frequency and severities, per patient, caregiver, and dyad, 
reported by the patients and caregivers. Correlation methods used are Point-biserial and Pearson’s correlation for pain occurrence and severity, 
respectively. *In deployment 3, CG did not report any observed pain event with severity level more than or equal to 5. Note: n = number of pain reports; 
PT = patient; CG = caregiver; D = deployment; SD = standard deviation; MD = Median Deviation; MCR = Mean-Crossing-Rate 
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Correlation analysis between daily environmental features 
and daily BTCP episodes
The second correlation analysis approach aimed to 
investigate the overall impact of the ambient environ-
ment on the occurrence of BTCP by analyzing the 
correlation between the daily average values of envi-
ronmental features and the daily average number and 
severity of BTCP episodes reported by patients and 
caregivers. This approach used Pearson’s correla-
tion method for both the number and average sever-
ity of BTCP episodes reported over a 24-hour period. 
Fig.  4 illustrates the correlation coefficient between 
daily ambient environmental values (the 24-hour aver-
age values of environmental features) and daily aver-
age number and average severity of BTCP reported by 
patients and caregivers in a 24-hour period. Similar to 
Fig.  3, the circle size represents correlation strength 
(bigger circles indicate higher correlation coefficient), 
while the color indicates direction: red for direct and 
blue for inverse.

Light and ambient noise
In Fig.  4, results from deployments 1, 2, and 4 sug-
gest the influence of light features on BTCP. In deploy-
ment 1, light features showed an inverse correlation with 
patient’s pain severity and pain events as reported by 
caregiver, both displaying a coefficient of − 0.55 with the 
light’s SD (representing high fluctuation of light level in 
a day). Similarly, deployment 4 showed that patient pain 
reports displayed high correlation coefficients with light 
features, specifically daily light level, max light level, light 
SD, and light median deviation. However, in this deploy-
ment, both light features and barometric pressure fea-
tures demonstrated an inverse correlation with caregiver 
pain reports. Deployment 4 also showed the correla-
tion between pain severity and light level features (daily 
Mean, Max, SD, and Mean-MD). These features exhib-
ited high direct correlations with the number of patient 
pain reports, while inversely correlating with the number 
of caregiver reports. Moreover, light level features dis-
played a significant correlation with the average patient-
reported pain severity, featuring correlation coefficients 
of 0.62. Finally, in deployment 5, daily light levels demon-
strated an inverse correlation with average pain severity.

Humidity
In deployment 1, lower-than-normal humidity (Humidity 
Min-MD feature) was notably correlated with both the 
number of patient pain reports (all pain levels) and the 
number of high pain reports (severity level ≥ 5), with cor-
relation coefficients of 0.84 and 0.87, respectively.

Barometric pressure
In deployment 3, the MCR of barometric pressure exhib-
ited a high correlation coefficient of 0.83 with the num-
ber of pain reports from patients experiencing pain levels 
≥5. Deployment 4 demonstrated high direct correlations 
between light level features and barometric pressure fea-
tures and the number of patient pain reports, while also 
revealing an inverse correlation with the number of car-
egiver reports. In deployment 5, barometric pressure fea-
tures displayed direct correlations with both patient and 
caregiver number of pain reports.

Machine learning for breakthrough Cancer pain prediction
This section demonstrates the use of machine learning to 
predict BTCP based on environmental features and time-
of-day. A total of 594 data points were analyzed. The 
predictive models use a dataset that includes environ-
mental data from 15 minutes (see Appendix A) prior to 
pain reports. The hyperparameters computed by the grid 
search method for machine learning models are reported 
in Appendix B [41].

For all deployments, our results in Fig. 5 showed that 
the random forest (RF) model was the best performing 
machine learning model, followed by the neural network 
model. The average accuracy from all deployments for 
predicting BTCP was 70%. When looking at the MCC, 
deployment 1 demonstrated the best performance using 
the RF model with an accuracy of 75%, sensitivity of 76%, 
specificity of 63%, AUC of 69%, and MCC of 0.4. Deploy-
ment 4 showed the least favorable performance, with the 
RF accuracy of 65%, sensitivity of 65%, specificity of 51%, 
AUC of 58%, and MCC of 0.19. The results of the individ-
ual correlation and pain event prediction, using the same 
15-minute time window of environmental data prior to 
pain reports, are also consistent; showing the highest and 
lowest correlation coefficients between pain occurrences 
and environmental features in deployment 1 and deploy-
ment 4, respectively.

Discussion
The results of this study suggest that environmental fac-
tors may have an impact on the experience of BTCP in the 
home setting. Both the correlation analysis and the pain 
event prediction models revealed associations between 
certain environmental features and the frequency and 
severity of BTCP events. These findings represent a sig-
nificant contribution to cancer pain and remote sens-
ing literature, as there has been little research to date 
regarding how to assess the impact of environmental 
variables on the experience of cancer pain in the home 
context. A better understanding of the role of environ-
mental variables on cancer pain provides opportunities 
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Fig. 4  Correlation coefficients between ambient environment features and (a) average pain frequency (number of reported pain events) 
in 24 hours period, and (b) average pain severity in 24 hours period. *In deployment 3, CG did not report any observed pain event with severity level 
more than or equal to 5. Note: n = number of pain reports; PT = patient; CG = caregiver; D = deployment; SD = standard deviation; MD = Median Deviation; 
MCR = Mean-Crossing-Rate 
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to recommend personalized, low-burden environmental 
modifications that could mitigate pain and distress for 
both patients and their family caregivers.

Both individual and broader (daily 24-trends) correla-
tion analyses are important for understanding the rela-
tionship between environmental factors and BTCP. The 
individual analysis, focusing on the short-term (15-min-
ute) environmental impact before a pain event, revealed 
strong correlations (0.70 to 0.90) between pain frequency 
and environmental data, though correlations with pain 
severity were lower (up to − 0.73). In other words, we 
found environmental factors more strongly influenced 
how often people experience BTCP events, but not nec-
essarily the perceived severity of these events. Broader 
daily analyses, comparing average environmental val-
ues with pain frequency and severity within a 24-hour 
period, revealed even stronger associations (0.70 to 0.85 
for frequency, 0.74 to 0.83 for severity). This suggests that 
considering daily trends, rather than isolated, individual 
pain reports, is likely to be more helpful in evaluating the 
true impact of environmental factors on BTCP. Machine 
learning models, particularly RF, effectively predicted 
BTCP based on environmental features and time-of-day, 
achieving approximately 70% accuracy across five deploy-
ments. This indicates the potential for building predictive 
models for in-home pain events based on ambient envi-
ronmental factors.

Another interesting observation is the high correla-
tion between light and noise features, such as mean 
light/noise level and max light/noise level, and BTCP 
across most deployment dyads. While this suggests that 

ambient light and noise may influence BTCP at home 
(e.g., heightened pain with increased light levels), an 
alternative explanation could be that pain is more preva-
lent during the day when individuals are active, walking 
around, and exerting themselves. To account for this, our 
analysis incorporates Mean Deviation features, such as 
the light MD feature, which accommodates the typically 
low light levels during nighttime. Thus, if we find a high 
correlation between light levels and pain, but not with 
light MD, we can infer that daytime activities are likely 
causing increased pain. But, if both light level and light 
MD show high correlations with pain, it is likely that pain 
is influenced by ambient light. In deployment 2,3, and 4, 
light features including light MD shown high correlation 
with pain frequency, suggesting that ambient light, not 
daytime activities, has effect on BTCP.

Interestingly, but perhaps not surprisingly, the correla-
tion results showed wide variations across deployments. 
This suggests that patients and caregivers within a dyad 
react differently to their environmental surroundings. 
This highlights the importance of personalized cancer 
pain management strategies in the home setting, as what 
works for one patient may not work for another. By ana-
lyzing the environmental factors that are most strongly 
correlated with patient pain events, as reported by both 
patients and caregivers, healthcare providers can tailor 
interventions to the specific needs of each individual. For 
instance, if the broader correlation analyses indicate that 
a patient experiences more frequent pain episodes on 
days with greater exposure to high light levels, this infor-
mation may be used to modify the home environment 

Fig. 5  Comparison of performance of different machine learning models to predict BTCP events using 5-folds cross-validation on 80% 
of the dataset (475 out of the total 594 observations) is shown. Each deployment was trained and validated on their own data. Note: NB = Naïve 
Bayes; DT = Decision Tree; RF = Random Forest; SVM = Support Vector Machine; NN = Neural Network; AUC = Area Under Curve; MCC = Matthew’s 
correlation coefficient 
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and the patient’s daily activities to reduce the light 
exposure.

Future work
Future research should focus on further investigating 
the relationship between specific environmental features 
and BTCP in home settings. This may include utilizing 
additional advanced statistical methods such as in-depth 
feature selection techniques or deep learning models to 
uncover complex relationships and interactions between 
environmental factors and pain frequency/severity [42]. 
Advanced machine learning models and more data could 
be utilized to improve the, approximately, 70% pain event 
prediction accuracy. Other factors such as medication 
use, quality of life indicators, and psychological distress 
could also be examined for their impact on this relation-
ship. For example, patients and caregivers self-reporting a 
lower mood or poor sleep may be more sensitive to their 
ambient surroundings, and subsequently experience pain 
differently. Interactions between environmental factors 
and the use of pain medications are also worth exploring, 
such as identifying specific environmental variables (e.g., 
noise reduction, lighting adjustments) that may influence 
the effectiveness of pain relief medications. As the BESI-
C system evolves and deployments are scaled-up and 
more data are collected, our team plans to conduct these 
in-depth analyses.

Limitations
One limitation is deciding which environmental data 
are most appropriate to use when the patient and car-
egiver are in separate rooms of their home when they 
each record a patient pain event. In these cases, it may be 
difficult to determine the role of specific environmental 
factors, such as light or noise, in the occurrence of pain. 
To address this, we utilized the user’s location informa-
tion from the smartwatches and Bluetooth beacons to 
estimate patient and caregiver’s location. We have cor-
rected this issue in subsequent iterations of the BESI-C 
system by adding a Ground Truth location question to 
our EMA schema (question: “what is your current loca-
tion?” Responses: living room; bedroom; kitchen; out-
side the home; other) that participants answer when they 
record a pain event; this allows us to confirm location 
by both the EMA response and corresponding localiza-
tion data. Another potential limitation of this pilot work 
is our number of deployments (n  = 5) which may bias 
our correlation analysis results. However, it is important 
to note that from five deployments we collected a total 
of 283 user-initiated pain event EMAs (198 by patients; 
85 by caregivers) and over 4200 hours of environmental 
data streams, which we argue is appropriate for a pilot 
study collecting real-world sensing data from critically ill 

patients and an important first step to explore a largely 
unexamined question - the influence of environmental 
factors on BTCP experiences within the home setting.

Conclusions
Our research provides preliminary evidence of the poten-
tial impact of ambient environmental factors on BTCP in 
the home setting. We utilized real-world data to identify 
specific ambient environmental factors that may cor-
relate with the frequency or severity of cancer pain, and 
conducted both individual and daily trend correlation 
analysis to provide a comprehensive understanding of the 
relationship between environmental factors and cancer 
pain.

Furthermore, our machine learning models showed 
promising results in predicting in-home BTCP from real-
time environmental data streams. Our research suggests 
that personalized cancer pain management strategies 
in the home setting may benefit from a comprehensive 
understanding of the impact of individual and day-to-day 
ambient environmental factors on BTCP. By identifying 
specific environmental factors that correlate with can-
cer pain and utilizing machine learning models to pre-
dict in-home cancer pain from real-time environmental 
data streams, healthcare providers may be able to provide 
more effective and personalized pain management strate-
gies for cancer patients.
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