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Introduction
Congenital heart disease (CHD) is the most prevalent birth defects, accounting for 
approximately 28% of all congenital abnormalities [1–3]. Research has reported that the 
incidence of CHD is around 1% in the global birth population [1–3]. CHD encompasses 
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a spectrum of anatomical anomalies that result from disruptions or developmental 
irregularities in the formation of the fetal heart and major blood vessels during embry-
onic development [4]. Notably, it is the leading cause of neonatal mortality [4, 5]. Dis-
turbances in fetal heart and major blood vessels can occur during the early stages of 
pregnancy, typically within the first 2–3 months, and have the potential to impair the 
normal growth and function of the infant’s heart. Therefore, the early diagnosis of CHD 
is imperative and holds paramount significance in providing essential medical interven-
tion and mitigating health risks for infants affected by this condition.

Ultrasound has emerged as the primary imaging modality for fetal heart examination 
thanks to its cost-effectiveness, lack of radiation exposure, and minimal side effects [6, 
7]. During an ultrasound examination of the fetal heart, multiple cardiac planes should 
be carefully examined to thoroughly assess the cardiac four-chamber and vessels [8, 9]. 
The three-vessel view (3VV) is a critical cardiac plane that reveals the structure and 
function of the three major vessels of the fetal heart—the pulmonary artery, aorta, and 
superior vena cava [10]. Some typical cardiac anomalies that may appear normal in the 
four-chamber view are frequently identified in the 3VV, such as complete transposition 
of the great arteries, Tetralogy of Fallot, and pulmonary atresia with ventricular septal 
defect [11]. Therefore, a precise evaluation of the 3VV can improve the detection rate 
of significant cardiac malformations. However, the effectiveness of ultrasound diagno-
ses heavily relies on the experience and expertise of physicians, often leading to subjec-
tive ultrasound interpretations [6]. In cases where physicians lack sufficient experience, 
there is a risk of underdiagnosis or misdiagnosis. Experienced sonographers may also 
face challenges in making accurate diagnoses when dealing with complex examination 
procedures and a large volume of patients. Therefore, the development of an automated 
and reliable diagnostic tool capable of assessing cardiac vascular structures during fetal 
heart examinations is highly desired. Such a tool could significantly alleviate the work-
load of physicians and assist clinical physicians in performing more precise and efficient 
early CHD screening.

In recent years, deep learning has made remarkable progress in the field of medical 
image segmentation because of its powerful ability to autonomously learn image fea-
tures and perform pixel-level classification [12–14]. One notable architecture is the Fully 
Convolutional Network (FCN), which consists of multiple convolutional layers and fully 
connected layers [15]. FCN leverages the deconvolution technique to restore the final 
feature map to the dimension of the input image, enabling pixel-level predictions and 
effectively addressing the challenge of semantic image segmentation. U-Net is another 
network that has been widely adopted for various segmentation tasks [16]. It is named 
from its U-shaped architecture characterized by an end-to-end encoder–decoder struc-
ture. The encoder gradually reduces the spatial dimension of the input image while 
extracting features. The decoder is responsible for upsampling the feature maps and 
progressively increasing the spatial dimension with the help of transposed convolutional 
layers. Recently, researchers have introduced several innovative techniques to enhance 
feature extraction and decoding capabilities, including the integration of multiple model 
architectures, the incorporation of residual pathways, and the utilization of attention 
mechanisms, etc. [17–19]. For example, Zhou et  al. [20] proposed U-Net++, which 
integrates features of varying scales through a cascade of densely interconnected skip 
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connections. This method minimizes semantic loss between feature maps and labels, 
enhancing the network’s ability to capture salient information effectively. Additionally, 
Oktay et al. [21] proposed Attention U-Net, which introduces attention gates to suppress 
irrelevant regions and enhance valuable salient features crucial to the target. To address 
the challenge of multi-scale image segmentation Chen et al. [22] proposed Deeplabv3, 
which introduces dilated convolutions and ASPP (Atrous Spatial Pyramid Pooling) tech-
niques to maintain the feature map size while effectively controlling the receptive field.

Deep learning has been applied in the field of fetal echocardiography for various tasks, 
including standard plane identification from a sequence of fetal heart images [23–25], 
detection of abnormal structures [26–29], and segmentation of cardiac structures [30–
33]. Most studies designed for fetal cardiac structure segmentation have focused on 
the four-chamber view of the fetal heart [30, 31, 33]. In this study, we aim to develop 
a deep-learning based framework for the accurate segmentation of the three vessels 
within the three-vessel plane of the fetal heart, namely, the aorta, the pulmonary artery 
and the superior vena cava. We began by carefully selecting the most promising base-
line model for the segmentation of three-vessel cross-sectional images. Subsequently, 
we validated the effectiveness of region-of-interest (ROI) detection before segmentation, 
as many studies have demonstrated that ROI detection followed by segmentation can 
significantly enhance the segmentation of small objects [34, 35]. Lastly, we devised an 
attention-based multi-scale feature extraction module to address the challenge posed 
by the large variation in vessel sizes. In comparison to several existing deep learning 
methods, our proposed framework demonstrates best performance in segmenting the 
three-vessel plane of the fetal heart. Our method holds the potential to assist sonogra-
phers in enhancing the effectiveness and accuracy of vessel assessment during fetal heart 
examinations.

Results
Comparison of baseline models for full‑size 3VV image segmentation

We first conducted a comparative experiment to assess the performance of several base-
line segmentation models on full-size fetal 3VV ultrasound images, including FCN [15], 
U-Net [16], U-Net++ [20], Attention U-Net [21] and Deeplabv3 [22]. Table 1 presents 
the results of these baseline segmentation models on our collected dataset of fetal heart 
3VV images. As shown in Table 1, Deeplabv3 surpasses the other models in segmenting 

Table 1  Comparative analysis of baseline models for three-vessel segmentation in full-size 3VV 
images

PA: pulmonary artery; Ao: aorta; SVC: superior vena cava; Mean: the average value of the three vessels

The optimal value is highlighted in bold, while the second-best value is underscored (in column)

Baseline Dice Mean

PA Ao SVC IoU HD Dice

FCN [15] 78.81 75.84 54.55 58.61 3.95 69.73

U-Net [16] 80.75 85.10 68.40 67.56 3.65 78.08

U-Net++ [20] 82.38 86.60 69.45 69.78 3.56 79.48

Attention U-Net [21] 81.73 84.91 72.80 69.29 3.63 79.82

Deeplabv3 [22] 83.49 86.61 73.36 70.74 3.50 81.15
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all three vessels, achieving the highest Dice and IoU scores and the lowest HD scores 
[36]. While Deeplabv3 has exhibited strong performance in PA and Ao segmentation, 
its performance in segmenting the SVC remains suboptimal, primarily due to the SVC’s 
small size.

Evaluation of the two‑stage framework: ROI detection followed by segmentation

In this section, we evaluated the effectiveness of ROI detection in relation to its subse-
quent segmentation. We compared three ROI localization strategies for our task, and 
the results are presented in Table  2. “Deeplabv3 + Deeplabv3” represents a two-stage 
framework comprising two Deeplabv3 models, with the first performing a binary seg-
mentation for ROI localization and the second performing a multi-class segmentation 
for a fine extraction of the three vessels. “Faster-RCNN + Deeplabv3” is a framework 
where ROI detection is carried out by Faster-RCNN, followed by subsequent segmen-
tation with Deeplabv3. “Yolov5 + Deeplabv3” is a framework in which ROI detection 
is performed using Yolov5, followed by subsequent segmentation with Deeplabv3. As 
shown in Table 2, the two-stage framework “Yolov5 + Deeplabv3” demonstrates superior 
performance compared to other frameworks for our task. In comparison to the baseline 
one-stage method, which involves using Deeplabv3 for full-size image segmentation, 
"Yolov5 + Deeplabv3" enhances the Dice scores of PA, Ao, and SVC by 1.95%, 0.74%, 
and 3.18%, respectively. Figure  1 provides exemplary results of various ROI detection 
strategies.

Comparison of our method with state‑of‑the‑art segmentation models

Our experiments have demonstrated that the two-stage framework, where in Yolov5 
detection followed by Deeplabv3 segmentation, exhibits superior performance in our 
task. To further enhance the segmentation performance, we replace the Atrous Spatial 
Pyramid Pooling (ASPP) module in Deeplabv3 with a novel module called "Attentional 
Multi-scale Feature Fusion (AMFF)". As shown in Table 3, our proposed method signifi-
cantly outperforms existing CNN-based segmentation models in the segmentation of all 
three vessels in fetal heart ultrasound images across all evaluation metrics. Compared to 
the original Deeplabv3, our model increases the Dice score for Ao by 1.77% and for SVC 
by 1.02%. Figure 2 provides a visual comparison of the segmentation performance of dif-
ferent methods in our task.

Table 2  Comparative analysis of two-stage frameworks for vessel segmentation in fetal 3VV 
ultrasound images using varied ROI localization strategies

The optimal value is highlighted in bold (in column)

Method Dice Mean

PA Ao SVC IoU HD Dice

Deeplabv3 (full-size) 83.49 86.61 73.36 70.74 3.50 81.15

Deeplabv3 + Deeplabv3 82.71 83.79 66.15 67.92 3.58 77.55

Faster-RCNN + Deeplabv3 72.03 67.36 61.42 57.59 4.14 66.93

Yolov5 + Deeplabv3 85.44 87.35 76.52 73.25 3.30 83.11
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Discussion
In this study, we propose a deep-learning based framework for the automatic identifica-
tion and segmentation of the PA, Ao, and SVC in fetal heart 3VV ultrasound images. We 
conducted a performance comparison of several baseline segmentation models in our 
specific task and our method has the potential to assist physicians in diagnosing con-
genital heart defects more effectively and objectively in clinical practice. Specifically, the 
automatic segmentation of vessels in the 3VV of the fetal heart could assist in-experi-
enced physicians to efficiently localize the three vessels. In addition, it was a prerequisite 
for developing a technique for the automatic measurement of the size ratio between the 
pulmonary artery and the aorta, a biometric essential for screening CHD.

One challenge in our task is the large variation in the size of vessels. Compared with 
the other two vessels, the SVC is much smaller, thus often being overlooked by a multi-
object segmentation model. We conducted a performance comparison of several base-
line segmentation models, including FCN, U-Net, U-Net++, Attention U-Net, and 

Fig. 1  Visual comparison of different ROI localization strategies

Table 3  Comparison of different segmentation models for vessel segmentation in YOLOv5-
generated ROIs

The optimal value is highlighted in bold, while the suboptimal value is underlined (in column)

Comparing with the underlined values, this further illustrates the superiority of our proposed method

Method Dice Mean

PA Ao SVC IoU HD Dice

FCN [15] 82.90 81.64 69.03 67.40 3.54 77.86

U-Net [16] 83.80 83.28 72.94 70.18 3.48 80.01

U-Net++ [20] 83.31 84.25 72.41 69.92 3.47 79.99

Attention U-Net [21] 82.93 81.41 66.72 67.13 3.61 77.02

Deeplabv3 [22] 85.44 87.35 76.52 73.25 3.30 83.11

T-S-deeplab [32] 81.36 86.89 74.24 71.38 3.46 81.35

Ours 85.55 89.12 77.54 74.51 3.25 84.07
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Deeplabv3, using our collection of full-sized ultrasound images. As shown in Table 1, 
Deeplabv3 outperforms the other models thanks to its multiscale-feature extraction 
mechanism that incorporates varying receptive field sizes, rendering it advantageous for 
capturing features of vessels with diverse scales.

Another challenge in segmenting the 3VV images is the interference caused by the 
surrounding background [37]. This is particularly problematic for small-sized SVC 
vessels, which often occupy a limited region in the image. To mitigate the adverse 
effects of the irrelevant background information and allow the segmentation model 
to concentrate on vessel details, we employed a two-stage framework, with the first 
stage for detecting the ROI, and the second stage for a fine segmentation of the three 
vessels in the cropped ROI images. We experimented with different ROI extraction 
strategies in combination with the Deeplabv3 segmentation model. Our findings, 
shown in Table 2, indicate that the combination of Yolov5 and Deeplabv3 produced 
the most optimal segmentation performance, while the combination of Faster R-CNN 
and Deeplabv3 yielded the poorest results. A visual analysis of Fig. 1 revealed that the 
discrepancy can be attributed to Faster R-CNN’s higher tendency for false positives 
during the detection phase, particularly in the inaccurate recognition of the small-
est SVC. This inaccuracy led to a significant error in ROI extraction, subsequently 

Fig. 2  Visual comparison of the performance of different segmentation models in our task
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hindering satisfactory segmentation results in the second stage. Notably, the perfor-
mance of Deeplabv3 combined with Deeplabv3 was even worse than directly per-
forming a multi-class segmentation task on full-sized images. Similarly, based on 
visual analysis of the results in Fig.  1, Deeplabv3 exhibited a higher degree of diffi-
culty in identifying the SVC during initial ROI extraction for foreground–background 
separation. The loss of SVC in the ROI extraction stage makes it challenging for Dee-
plabv3 to achieve effective segmentation in the second stage.

To further improve the segmentation performance, we replaced the ASPP module 
in the Deeplabv3 it with our designed AMFF (Attentional Multi-scale Feature Fusion) 
module. Specifically, we devised multi-scale feature extraction branches with varied 
dilation rates, and flow small-scale features through different branches using hierar-
chical connections. We also introduced a spatial attention mechanism at the end of 
each branch to further enhance feature representations. These modifications allowed 
the model to effectively capture multi-scale features of all blood vessels in our task. 
As demonstrated in Table 3, within the two-stage framework, the integration of our 
AMFF module into Deeplabv3 resulted in significant improvements in the segmenta-
tion of both the Ao and SVC.

While our framework has exhibited promising outcomes, this study has two limita-
tions. First, the data size is restricted, and all data are obtained from a single hospital, 
lacking external validation data from other medical facilities. As a result, one of our 
future objectives involves validating our model on a larger and more diverse dataset. 
Second, our 3VV segmentation framework is not trained end-to-end. It consists of 
an ROI extraction model and a segmentation model, each trained independently. In 
the future, we aim to improve our method by transitioning to a unified framework, 
thereby enhancing efficiency in both training and application.

Conclusions
In this study, we propose a two-stage deep learning framework for vessel segmenta-
tion in fetal 3VV ultrasound images, involving a Yolov5 for ROI localization and a 
Deeplabv3 model equipped with our novel AMFF module for segmentation within 
the ROI regions. Our proposed framework has exhibited remarkable performance in 
segmenting all three vessels with average HD value of 3.25 and Dice value of 84.07% 
and IoU value of 74.51%, surpassing other state-of-the-art segmentation models. Our 
future work includes validating our method on a larger and more diverse dataset col-
lected from multiple hospitals to enhance the generalizability of our approach.

Methods
In this paper, we developed a two-stage deep-learning framework for the identifica-
tion and segmentation of the vessels in fetal heart 3VV images to assist radiologists in 
diagnosing vascular structural abnormalities. The overall workflow of our method is 
illustrated in Fig. 3.

The code and detailed instructions for users have been made available to the public at 
the following link: https://​github.​com/​ylfas/​3VV_​demo/​blob/​master/​README.​md.

https://github.com/ylfas/3VV_demo/blob/master/README.md
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Clinical dataset

The dataset used in this study was obtained from Hangzhou Normal University Affili-
ated Xiaoshan Hospital, China, with ethical approval granted by the hospital’s Eth-
ics Committee. The dataset comprises images acquired from 607 pregnant women in 
mid-term pregnancy, with gestational ages ranging from 20 to 40 weeks. The images 
were captured using a GE Voluson E8 ultrasound machine equipped with a 2–5 MHz 
linear ultrasound transducer. During the examination process, physicians conducted 
a comprehensive assessment of the fetal cardiac structure and function. Standard car-
diac planes, including the 3VV, were captured and stored. All patient information in 
the images was de-identified. After excluding non-standard or challenging-to-inter-
pret sectional images, a refined set of 511 images was obtained, including 413 nor-
mal cases and 98 abnormal cases. Table 4 presents the distribution of various types of 
CHD data reported within our final dataset. Subsequently, these images were labeled 
by two experienced physicians with 15 and 20  years of expertise, respectively. The 
two physicians independently annotated the boundaries of the vessels within the 3VV 
images. If there were notable disparities between their annotations, a consensus was 

Fig. 3  Workflow of our proposed strategy

Table 4  Types of CHD reported in our dataset

Data type Number

Normal images 413

Abnormal images 98

 Abnormal vessel diameter ratio 67

 Cardiac chamber abnormality 6

 Arterial vascular abnormality 15

 Outflow tract abnormality 3

 Tetralogy of Fallot 7
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reached through a comprehensive discussion. The final mask label for each image was 
derived by averaging the annotations of the two physicians.

Data preprocessing

The dataset was divided into training, validation, and test sets in a ratio of 7:1:2. Before 
being fed into a network, all images were resized to 256 × 256 and subjected standard 
normalization. Data augmentation techniques such as random horizontal flipping, ran-
dom angle rotations, and random scale adjustments are applied to mitigate over-fitting 
[38].

ROI localization

Many studies have demonstrated that a two-stage deep learning framework that involves 
ROI detection followed by segmentation, can significantly enhance the final segmenta-
tion performance, particularly for small objects [34, 35]. Specifically, the first stage of 
this framework aims to localize the target objects in the original images. This localiza-
tion can be accomplished using an object detection model, such as Faster-RCNN [39], 
and YoLo-series models [40–42]. It can also be achieved through a segmentation model 
applied to full-size images to obtain coarse object masks [43, 44]. The areas containing 
the coarse masks are treated as ROIs. In the second stage, the ROI regions are cropped 
from the original images and fed into a second model to achieve fine object segmenta-
tion. This two-stage approach can mitigate the adverse effects of irrelevant background 
and enable the model to concentrate on object details, thus improving the segmentation 
performance.

We compared three different ROI localization strategies on our dataset. The first strat-
egy involves using Deeplabv3 to roughly segment the full-size image. The ROI region 
was then defined by expanding the segmented vessel masks. The ground truth labels in 
this method were binary vessel masks, where all three vessels were labeled with 1 and 
the background was labeled with 0. The second strategy utilized YOLOv5 to identify 
the three vessels within the full-size image. From the predicted candidate boxes for each 
class, the one with the highest confidence was selected as the final output. This process 
yielded three candidate boxes, each containing one of the three vessels. The minimum 
bounding rectangle that enclosed all three predicted boxes was extended by 5 pixels to 
obtain the final ROI of the image (as shown in Fig. 3). The third strategy was similar to 
the second strategy, but instead employed Faster RCNN [39] as the detection model. In 
the latter two strategies, ground truth labels were bounding boxes of the three vessels.

Attention‑based multiscale feature fusion framework for vessel segmentation

The second stage of our framework is a modified Deeplabv3 equipped with our 
novel AMFF module for instance segmentation of the three vessels. The ROI regions 
are cropped from the original images and fed into the second model to achieve fine 
object segmentation. For the second model training, the label format comprises 
boundary masks for each blood vessel within the cropped region of each ultrasound 
image from the initial stage, with individual differentiation of each blood vessel as 
a distinct category. The AMMF’s architecture is illustrated in Fig.  4. A cascade of 
ResNet34 [17] blocks are used to encode image features. To be concrete, the initial 
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phase involves an initialization block, which consists of a 7 × 7 convolution with 
a stride of 2, a padding of 3, and a Batch Normalization (BN) layer. Following the 
initialization block, multiple copies of the last ResNet34 block that referred to as 
blocks 1 to 4 in Fig.  4 are employed and organized in a cascading manner. These 
blocks contain four 3 × 3 convolutions, with the first convolution having a stride of 
2, except for block 3 and block 4. The resulting deep features are subsequently input 
into our specially designed AMFF module to enhance feature representations across 
various scales.

Figure  5 displays the structure of our AMFF module. It consists of multiple fea-
ture extraction branches with convolutions of different dilation rates to obtain fea-
tures with diverse receptive fields. To ensure that each branch preserves small object 
features, we encourage interaction among branches by integrating features through 
hierarchical connections. Furthermore, we introduce spatial attention operations 
to selectively enhance the most effective features of each branch, thereby improv-
ing feature representations at multiple scales. Subsequently, the features from all 
branches are concatenated to create fused features that retain information related to 
multi-scale targets. The fused feature (2048 × 32 × 32) is then dimensionally reduced 
to three channels through two convolutional layers, with each channel predicting 
one type of vessel. Finally, the prediction is upsampled eight times through bilinear 
interpolation to restore it to the original image resolution.

The loss function for training the model is a combination of cross-entropy loss and 
dice loss, which is defined as:

In above equations, the symbol k represents the index of the k-th channel, and the 
symbol i denotes the position of the i-th pixel within each channel. Therefore, the 
symbol p(k, i) is used to denote the prediction of the i-th pixel in the k-th channel of 
the matrix, while the symbol g(k, i) is employed to represent the i-th pixel in the k-th 
channel of the actual segmentation mask.

(1)L = 0.5 ∗ Ldice + 0.5 ∗ Lce

(2)Lce = −
1

MN

M
∑

k

N
∑

i

Wk · g(k , i) · log(p(k , i)),Wk =
Ntotal

Nk

(3)Ldice =
1

MN

M
∑

k

(

1− 2

∑N
i g(k , i) · p(k , i)

∑N
i g(k , i)+

∑N
i p(k , i)

)

Fig. 4  The framework of modified network based on deeplabv3. AMFF: Attentional Multi-scale Feature 
Fusion module
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Model comparison and evaluation metrics

To select the best-performing baseline model as the foundation for this study, we first 
conducted a comparative experiment to assess the performance of several baseline seg-
mentation models on full-size fetal 3VV ultrasound images, including FCN [15], U-Net 
[16], U-Net++ [20], Attention U-Net [21] and Deeplabv3 [22]. All models underwent 
training and evaluation using the identical data-splitting strategy (70% training, 10% val-
idation, 20% test) and hyperparameter settings. To be specific, all models were trained 
for a total of 35 epochs using the Adam optimizer [45]. The learning rate was decreased 
from the initial value of 0.001to 0.0001 in the final 10 epochs, with a decay rate of 1e−8. 

Fig. 5  Structure of AMFF (Attentional Multi-scale Feature Fusion) module
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The loss function is a combination of cross-entropy loss and Dice loss, with both losses 
weighted equally at 0.5 [46].

In this study, we employed several metrics to evaluate the segmentation performance 
of different methods, including IoU, HD, and Dice coefficient. IoU is defined as the ratio 
of the overlap area between the predicted and ground truth masks to the area of their 
union. It quantifies the spatial overlap between the two masks, providing insight into 
segmentation accuracy. HD represents the maximum distance between the predicted 
and ground truth boundaries. It offers a measure of the maximum segmentation error, 
helping us understand the extent of boundary discrepancies. The Dice coefficient is cal-
culated as twice the intersection of the predicted and true masks divided by the sum of 
their areas. It serves as a metric for assessing the agreement between the predicted and 
true masks and is commonly used in medical segmentation tasks. These metrics collec-
tively offer a comprehensive evaluation of the segmentation performance, aiding in the 
assessment of the accuracy and effectiveness of our method across different vessels [36]. 
The three metrics are defined as follows:

In the Eqs. (4) and (5), TP (True Positives) represents the number of observations cor-
rectly predicted as the positive class. TN (True Negatives) represents the number of 
observations correctly predicted as the negative class. FP (False Positives) indicates the 
number of observations that were incorrectly predicted as the positive class. FN (False 
Negatives) represents the number of observations that were incorrectly predicted as the 
negative class.

In the Eq.  (8), A represents the set of points in our predicted matrix, while B repre-
sents the set of points in the actual mask label matrix. HDA calculates the maximum 
value of the shortest distances between all points in set A to the points in set B, whereas 
HDB computes the maximum value of the shortest distances between all points in set B 
to the points in set A. The final Hausdorff distance value, denoted as HD, is determined 
by selecting the larger of the two calculated values.
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