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Abstract

Background Antimicrobial resistance (AMR) is a major threat to children’s health, particularly in respiratory infections.
Accurate identification of pathogens and AMR is crucial for targeted antibiotic treatment. Metagenomic next-
generation sequencing (MNGS) shows promise in directly detecting microorganisms and resistance genes in clinical
samples. However, the accuracy of AMR prediction through mNGS testing needs further investigation for practical
clinical decision-making.

Methods \We aimed to evaluate the performance of mMNGS in predicting AMR for severe pneumonia in pediatric
patients. We conducted a retrospective analysis at a tertiary hospital from May 2022 to May 2023. Simultaneous mNGS
and culture were performed on bronchoalveolar lavage fluid samples obtained from pediatric patients with severe
pneumonia. By comparing the results of mNGS detection of microorganisms and antibiotic resistance genes with
those of culture, sensitivity, specificity, positive predictive value, and negative predictive value were calculated.

Results mNGS detected bacterial in 71.7% cases (86/120), significantly higher than culture (58/120, 48.3%).
Compared to culture, MNGS demonstrated a sensitivity of 96.6% and a specificity of 51.6% in detecting pathogenic
microorganisms. Phenotypic susceptibility testing (PST) of 19 antibiotics revealed significant variations in antibiotics
resistance rates among different bacteria. Sensitivity prediction of mMNGS for carbapenem resistance was higher than
penicillins and cephalosporin (67.74% vs. 28.57%, 46.15%), while specificity showed no significant difference (85.71%,
75.00%, 75.009%). mNGS also showed a high sensitivity of 94.74% in predicting carbapenem resistance in Acinetobacter
baumannii.

Conclusions mNGS exhibits variable predictive performance among different pathogens and antibiotics, indicating
its potential as a supplementary tool to conventional PST. However, mNGS currently cannot replace conventional PST.
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Introduction

Antimicrobial resistance (AMR) poses a significant threat
to the life and health of children [1]. The increasing rates
of AMR associated with respiratory infections, resulting
from the excessive or inappropriate use of antibiotics,
have become a growing clinical concern [2]. The ratio-
nal use of targeted antibiotic treatment plays a crucial
role in reducing AMR and improving patient recovery
rates [2]. However, this relies on the accurate identifica-
tion of pathogenic microorganisms and AMR. Different
methods are available for AMR detection or prediction,
ranging from traditional (gold standard) culture-based
techniques to PCR-based molecular detection and, more
recently, sequencing-based methods [3, 4]. The gold
standard phenotypic susceptibility testing (PST), which
requires positive culture growth before conducting drug
susceptibility testing, is typically time-consuming [5].
Sequencing-based drug susceptibility prediction has
showed good performance in pathogens such as Staphy-
lococcus aureus, providing a theoretical basis for utilizing
sequencing to detect AMR [3, 6, 7]. However, whole-
genome sequencing typically requires pure bacterial cul-
tures, which are challenging to obtain in clinical practice.

In recent years, metagenomic next-generation sequenc-
ing (mNGS) has been developed to directly detect micro-
organism nucleic acids in clinical samples, possessing
the ability to simultaneously detect microorganisms and
resistance genes or mutations [8—10]. mNGS has been
proven to exhibit much higher sensitivity than traditional
culture methods for the detection of pathogenic micro-
organisms in bloodstream infections, central nervous
system infections, respiratory tract infections, and other
conditions [8, 10, 11]. Additionally, mNGS has been
widely applied in clinical settings to detect pathogenic
microorganisms in patients with various syndromes
[12-14]. Some proof-of-concept studies have demon-
strated the ability of mNGS to detect resistance genes
in clinical samples [15-17]. However, there is a lack of
understanding regarding the accuracy of AMR prediction
through mNGS testing in a clinical setting, making it dif-
ficult to provide theoretical support for clinical antibiotic
decision-making.

This study retrospectively compared the detection of
resistant genes using mNGS and PST in children with
severe pneumonia. The accuracy of mNGS in predicting
drug resistance was evaluated.

Materials and methods

Patients’ enrollment and sample collection

We retrospectively enrolled pediatric patients with severe
pneumonia in the Pediatric Intensive Care Unit (PICU)
of Children’s Hospital of Fudan University between May
2022 and May 2023.
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The inclusion criteria were as follows: (1) patients
were diagnosed as severe pneumonia based on the clini-
cal guidelines [18, 19]; (2) bronchoalveolar lavage fluid
(BALF) tested for mNGS targeting DNA/RNA and (3)
culture.

The exclusion criteria were as follows: (1) Nonbacte-
rial infections; (2) age <=28 days; (3) contraindications to
fiberoptic bronchoscopy; (4) BALF without phenotypic
susceptibility test; (5) BALF without mNGS drug resis-
tance gene/mutation test.

Culture and phenotypic susceptibility test

Culture and strain identification were performed using
a VITEK2 COMPACT automated ID/AST instrument
(bioMérieux, France), as per the manufacturer’s instruc-
tions. The Kirby—Bauer method was used to test drug
susceptibility, following the Clinical and Laboratory
Standards Institute (CLSI) guidelines [20].

Metagenomics next generation sequencing
The mNGS method for diagnosing pneumonia was
implemented following a standardized operating pro-
cedure. In brief, 1 mL of BALF sample was centrifuged
at 12,000 x g for 5 min to collect the microorganism
and human cells. Subsequently, 50 pL of the precipitate
underwent host nucleic acid depletion using 1 U of Ben-
zonase (Sigma) and 0.5% Tween 20 (Sigma), followed by
a 5-minute incubation at 37 °C. The reaction was halted
by adding 400 uL of terminal buffer. A total of 600 uL of
the mixture was then transferred to new tubes contain-
ing 500 pL of ceramic beads for bead beating using a
Minilys Personal TGrinder H24 Homogenizer (Tiangen,
China). Next, nucleic acid was extracted from 400 pL of
pretreated samples and eluted in 60 pL of elution buf-
fer using a QIAamp UCP Pathogen Mini Kit (Qiagen,
Hilden, Germany). The extracted DNA was quantified
using a Qubit dsDNA HS Assay Kit (Invitrogen, USA).

For total RNA extraction, a QIAamp Viral RNA
Kit (Qiagen, Hilden, Germany) was used, followed by
removal of ribosomal RNA using a Ribo-Zero rRNA
Removal Kit (Illumina). cDNA was synthesized using
reverse transcriptase and dNTPs (Thermo Fisher Sci-
entific, San Francisco, USA). DNA/cDNA libraries were
constructed using the KAPA low throughput library con-
struction kit (KAPA Biosystems, USA) according to the
manufacturer’s instructions. A 750-ng aliquot of library
from each sample was subjected to hybrid capture-based
enrichment of microbial probes through one round of
hybridization (SeqCap EZ Library, Roche, USA). Probes
were designed using the CATCH pipeline with default
parameters based on pathogen genomes and drug resis-
tance genes listed in additional table S1.

The quality of the libraries was assessed using the
Qubit dsDNA HS Assay kit (Invitrogen, USA) followed
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by the High Sensitivity DNA kit (Agilent) on an Agilent
2100 Bioanalyzer. Library pools were then loaded onto an
Ilumina Nextseq CN500 sequencer for 75 cycles of sin-
gle-end sequencing, generating approximately 20 million
reads for each library.

To ensure internal controls, DNA and RNA controls
were added to the samples at a concentration of 10* cop-
ies/mL. These controls included a DNA phage (Esch-
erichia coli bacteriophage T1, ATCC 11,303-B1) and an
RNA phage (Escherichia coli bacteriophage MS2, ATCC
15,597-B1). The concentrations of the controls were
selected to yield 10 RPM (reads per million sequencing
reads) or higher in clinical samples, where the host cell
ranged from 10 copies/mL to 107 copies/mL. Negative
controls consisted of Hela cells with 10° cells/mL and
sterile deionized water, which were processed alongside
each batch using the same protocol. Sterile deionized
water was also included as a non-template control during
extraction alongside the specimens.

Sequencing data analysis

Data analysis procedure was followed our previous pipe-
line [14]. The raw sequencing reads underwent initial
steps of deduplication, trimming, and quality filtering.
Trimmed reads were subsequently aligned to the human
reference genome to eliminate human reads. Taxonomic
classification of microorganisms was conducted on the
remaining reads using Centrifuge (v1.0.3). To exclude
potential contaminants, the number of reads for each
microorganism was compared to the number observed in
the negative control.

Statistics

Data analysis was employed using R (4.1.0) software. Cul-
ture and phenotypic susceptibility test were served as
the gold standard to evaluate the performance of mNGS
pathogen detection and drug resistance prediction
respectively. True positive (TP), false negative (FN), true
negative (TN), false positive (FP), sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV) of mNGS were calculated.

Results

Patient characteristics

We retrospectively enrolled 120 patients who met the
criteria during a one-year period (Fig. 1). Of the 120
patients, 74 (62%) patients were male. The median
age was 5.5 years, half of the patients aged 6-18 years
(60/120). Mechanical ventilation was administered to 97
(81%) patients. (Table 1). Most of the patients (103, 86%)
have underlying diseases, such as immunodeficiency and
seizures. Among the 43 immune suppressed patients,
immunodeficiency (15, 13%) and hematological malig-
nancy (10, 8.3%) were most prevalent (Table 1).
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Potential pathogenic bacteria detected by culture and
mNGS

Among the 120 BALF samples, potential pathogenic bac-
teria were detected positively by mNGS in 86 samples
(71.7%), which was significantly higher compared to cul-
ture (48.3%, 58/120) (p-value<0.001). Both mNGS and
culture yielded positive results in 56 samples (46.7%)
(Fig. 2A). Out of the 56 samples, the bacteria detected by
both methods matched completely in 20 samples (36%),
partially matched in 35 samples (62%), and didn’t match
in only 1 sample. Bacteria were detected by mNGS alone
in 30 samples (25%). Additionally, there were 2 samples
in which bacteria were exclusively detected by culture.

Using culture as the standards, the sensitivity of mNGS
is 96.6%, specificity is 51.6% (Fig. 2B).

In terms of bacterial types, a total of 31 bacterial spe-
cies were detected by mNGS, whereas only 13 species
were detected by culture. Pseudomonas aeruginosa, Aci-
netobacter baumannii, Klebsiella pneumoniae, Steno-
trophomonas maltophilia, and S. aureus accounted for
the majority (66.5%) of the total bacterial count. Among
them, 21 species were exclusively detected by mNGS.
While 3 species were detected by culture only, including
Ralstonia mannitolilytica, Flavobacterium meningosepti-
cum and Coagulase-negative staphylococci (Fig. 2C).

Antibiotics resistance detected by PST and mNGS
The antibiotic resistance rates of the pathogenic micro-
organisms are presented in Fig. 3A. Among the antibiot-
ics with a sample count above 50 in the PST, ceftazidime,
meropenem, gentamicin, cefepime, amikacin, and imipe-
nem had resistance rates of 54.1%, 57.1%, 45.3%, 35.3%,
44%, and 60%, respectively. There were significant differ-
ences in the antibiotic resistance profiles among the top
three detected pathogens. A. baumannii exhibited almost
complete resistance to carbapenems (resistance rate
of 95%), aminoglycosides (resistance rate of 89%), and
third-generation cephalosporins (resistance rate of 95%).
In contrast, P aeruginosa showed lower resistance rates
to these three classes of antibiotics, with rates of 38.2%,
0, and 17.6%, respectively. K. pneumoniae also demon-
strated significant variation in antibiotic resistance rates,
with an average resistance rate of 10% to aminoglycosides
and 80% to third-generation cephalosporins. The antibi-
otic resistance profiles exhibited significant clustering.
For example, resistance to carbapenems was mainly con-
centrated in A. baumannii, while resistance to aminogly-
cosides was mainly concentrated in A. baumannii and P
aeruginosa. Tetracyclines showed high sensitivity against
A. baumannii, K. pneumoniae, Burkholderia cepacia, and
S. maltophilia.

A total of 9 drug resistance gene were detected by
mNGS (Fig. 3B). The most frequently detected gene was
blaOXA-23 gene, which is associated with carbapenem
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Fig. 1 Workflow of this study

resistance of A. baumannii (23/100). This was followed
by blaCTX-M, blaSHV, and blaTEM genes related to
penicillin and cephalosporin resistance among Entero-
bacteriaceae and non-enterobacterial species, like A.
baumannii, P. aeruginosa. The blaNDM gene associated
with a broad spectrum of antibiotic resistance (including
imipenem, meropenem, ertapenem, gentamicin, ami-
kacin, tobramycin, and ciprofloxacin) was detected in 4
species [21]. Genes like ermB and ermC, linked to mac-
rolide and lincosamide antibiotic resistance in S. aureus
and Streptococcus pneumoniae, were detected at lower
frequencies. blaKPC and blaIMP which were associated
with carbapenem resistance were only detected in K.
pneumoniae and P. aeruginosa, respectively.
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Performance of mNGS in antibiotics resistance prediction

Using PST as the gold standard, we assessed the per-
formance of mNGS in predicting antibiotic resistance.
We specifically evaluated its predictive ability for three
classes of antibiotics: carbapenems, penicillins, and
cephalosporins (Table 2). The sensitivity for predict-
ing carbapenem resistance was higher compared to the
other two categories (67.74% vs. 28.57%, 46.15%), while
there was no significant difference in specificity (85.71%,
75.00%, 75.00%). Furthermore, the accuracy of carbape-
nem resistance prediction was also higher compared to
the other two categories (75.00% vs. 57.89%, 57.14%).
When examining specific pathogenic microorganisms,
we first calculated the genome coverage and average
depth of A. baumannii and P. aeruginosa. The genome
coverage of P aeruginosa was determined to be 40.38%,
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Table 1 Characteristics of patients

Characteristics N=120
Age

Mean (SD) 5.99(4.41)
Median (IQR) 5.50(2.00, 10.00)
Range 0.13,15.00
Sex

Male 74(62%)
Female 46(38%)
Mechanical ventilation

Yes 97(81%)
No 23(19%)
Immune condition

Immunosuppressed 43(36%)
Immunodeficiency 15(13%)
Transplant 2(1.7%)
Long-term steroids 8(6.7%)
Chemotherapy 8(6.7%)
Hematological malignancy 10(8.3%)
Nonimmunosuppressed 77(64%)
Underlying disease

Yes 103(86%)
No 17(14%)
Outcome

Death 10(8.3%)
Cure 110(91.7%)

with an average depth of 33.65 (Table S2). For A. bau-
mannii, the average genome coverage was 41.25%, with
an average depth of 49.63 (Table S2). Then, we found that
mNGS achieved a sensitivity of 94.74% and an accuracy
of 90.00% in predicting carbapenem resistance in A. bau-
mannii. However, mNGS displayed poor predictive per-
formance for carbapenem resistance in P aeruginosa,
with a sensitivity of 12.5% (1/8) and a specificity of 88.9%
(8/9).

Discussion

mNGS detection of pathogenic microorganisms exhibits
rapidity and high sensitivity. If it can also predict drug
resistance, it would hold great significance for timely and
effective antibiotic treatment. However, there is currently
limited research evaluating the performance of mNGS in
AMR prediction. Serpa et al. assessed the performance
of mNGS in predicting AMR among critically ill adults
with lower respiratory tract infections. They observed
significant variations in the performance of mNGS across
different bacteria and antibiotics [22]. The sensitivity
and specificity of mNGS in predicting AMR for Gram-
positive bacteria were 70% and 95%, respectively, while
for Gram-negative bacteria, the sensitivity and specificity
were 100% and 64%, respectively. However, the pathogen
spectrum in their study differed significantly from ours,
with S. aureus, S. pneumoniae, and K. pneumoniae being
the predominant pathogens. Two other studies utilized
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machine learning to establish predictive models for A.
baumannii and P. aeruginosa, respectively, and explored
the effectiveness of mNGS in predicting AMR in clinical
samples [23, 24]. The mNGS achieved a 100% concor-
dance rate in predicting imipenem resistance in 16 cases
of A. baumannii [23]. The predictive sensitivity for imi-
penem and meropenem resistance in P. aeruginosa was
65% and 63.2%, respectively [24].

In comparison to culture, mNGS demonstrated rela-
tively low specificity in pathogen detection. However,
this does not imply that the pathogens identified solely
by mNGS were false positives. It is plausible that the low
sensitivity of culture contributed to this discrepancy. The
pathogens identified through mNGS may provide valu-
able clinical insights, as we have previously demonstrated
in our work [14].

We observed significant variations in the predictive
performance of mNGS for different bacteria and drugs.
It showed good predictive performance for carbapenems
against A. baumannii but poor predictive performance
for carbapenems and cephalosporins against P aerugi-
nosa. The resistance mechanisms of P aeruginosa are
complex [25]. Besides resistance genes, mutations can
also contribute to its resistance. For example, mutations
in the OprD gene can lead to carbapenem resistance in
P, aeruginosa [26]. In our study, we did not detect resis-
tance mutations, which could be one of the reasons for
the lower accuracy of mNGS in predicting resistance in P
aeruginosa. Additionally, some resistant phenotypes may
not be solely attributed to resistance genes or mutations
but could also result from the overexpression of certain
intrinsic genes (such as the efflux pump genes MexAB-
OprM, MexCD-Opr]J, and MexXY-OprM) in Paeruginosa
[27]. Addressing this situation, Khaledi et al. improved
the accuracy of resistance prediction by employing
machine learning and transcriptome sequencing to inte-
grate resistance genes, resistance mutations, and gene
expression data [28].

The accuracy of mNGS resistance prediction largely
depends on the bacterial genome coverage or the amount
of effective sequencing data for the bacteria. The genetic
mechanisms of bacterial resistance can be classified into
horizontal transfer of resistance genes and vertical inher-
itance associated with mutations. Prediction of resistance
is determined by detecting the presence of resistance
genes, which is primarily achieved through alignment-
based mapping of reads or contigs to known resistance
gene databases [4]. Detection of resistance mutations
requires reads to be aligned to specific loci and reach a
certain depth threshold for detection, which places rela-
tively higher demands on sequencing data volume. Pre-
diction of sensitivity (i.e., absence of resistance genes)
requires complete sequencing coverage of the bacte-
rial genome, necessitating even higher sequencing data
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Fig. 2 Microorganisms detected by mNGS and culture. (A) Accordance of detection by mNGS or culture. (B) The microorganism detection performance

of mNGS. (C) Spectrum of microorganisms detected by mNGS and culture

requirements. However, there is currently no unified
threshold for genome coverage or sequencing data vol-
ume that can make resistance gene detection more reli-
able [29].

Due to the high proportion of host nucleic acids in clin-
ical samples, the bacterial content in the raw sequenc-
ing data of mNGS is relatively low, which can impact
the detection of resistance genes/mutations by mNGS
[30, 31]. In this study, a probe hybridization capture
method was employed to enrich resistance genes, aim-
ing to improve the sensitivity of detection. In addition to

hybridization capture, Crispr-Cas technology have also
been utilized for specific enrichment of drug resistance
genes in pathogenic microorganisms [32].

Some resistance genes are inherent to specific patho-
genic microorganisms, such as the mecA gene in S.
aureus. However, many genes are located on plasmids,
which can be exchanged between different species,
such as the blaCTX-M gene in Enterobacteriaceae. In
this study, to improve the accuracy of resistance gene
detection, the detected resistance genes needed to be
simultaneously associated with the positive pathogenic
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Table 2 The performance of mNGS in the prediction of carbapenems, penicillins and cephalosporins resistance

Antibiotictype TN TP FN FP Sensitivity (Cl) Specificity PPV NPV Accuracy
Carbapenems 18 21 10 3 67.74%(4854-82.68%) 85.71% (62.64-96.24%)  87.50% (66.54-96.71%) 64.29% 75.00%
(44.11-80.69%) (60.77-85.52%)
Penicillins 9 2 5 3 28.57% (5.11-69.74%)  75.00% (42.84-93.31%) 40.00% (7.26-82.96%) 64.29% 57.89%
(35.63-86.02%) (33.97-78.88%)
Cephalosporins 18 18 21 6  46.15% (30.43-62.62%) 75.00% (52.95-89.40%) 75.00% (52.95-89.40%) 46.15% 57.14%

(30.43-62.62%) (44.09-69.32%)

TN: True negative, TP: True positive, FN: False negative, FP: False positive

microorganisms in the sample. Long sequence reads have The technical limitations of second-generation
advantages in linking resistance genes to host microor-  sequencing pose challenges for rapid detection of patho-
ganisms [17, 33]. Other methods, such as Hi-C ligation, genic microorganisms and drug-resistant genes. How-
can also be used to associate resistance genes on plas-  ever, nanopore sequencing overcomes these limitations
mids with host chromatin [34]. by offering real-time sequencing, eliminating the need

to wait for completion and enabling concurrent data
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analysis. This significantly shortens the time required
for pathogen detection, with nanopore applications in
respiratory and fluid samples achieving detection times
as short as 6 h [8, 35]. The median time for detecting
microorganisms after sequencing initiation is 50 min
[35]. Enrichment of microbial nucleic acids can further
enhance microbial detection by increasing their propor-
tion during real-time sequencing [8, 36]. Additionally, the
combination of nanopore’s adaptive sequencing and host
depletion further improves the proportion of microbial
reads and detection sensitivity [31, 37]. The promising
clinical applications of nanopore’s real-time sequencing
highlight its importance in guiding rapid and informed
antibiotic use in clinical settings.

The predictive performance of mNGS for drug resis-
tance is highly correlated with the detection of patho-
genic microorganisms. In this study, critically ill
children with pneumonia in the PICU were included, and
a specific spectrum of pathogenic microorganisms was
detected. The top ranked pathogens were P. aeruginosa,
A. baumannii, and K. pneumoniae. Therefore, the inter-
pretation of the study’s conclusions needs to be consid-
ered in the context of specific populations and pathogens.

Our study has several limitations that should be
acknowledged. Firstly, it is a retrospective, small-scale
investigation, and therefore, the conclusions drawn
from this study would benefit from further confirmation
through larger sample size studies. Secondly, the absence
of drug-resistant mutation detection or gene expression
profiling in our analysis may have restricted the accurate
assessment of drug prediction for mechanisms involving
these specific forms of drug resistance. Thirdly, for cer-
tain drugs, the detection panel employed in this study
only included a limited number of genes associated with
drug resistance. For instance, only aac6 and tetA genes
were included for aminoglycoside and tetracycline resis-
tance, respectively. Consequently, the predictive per-
formance of mNGS for these two classes of drugs was
not evaluated. These limitations highlight the necessity
for future research with larger sample sizes and more
advanced sequencing technologies to address the chal-
lenges encountered in this study more comprehensively
and rigorously.

Conclusions

This study explored the performance of mNGS in pre-
dicting drug resistance in children with severe pneu-
monia. We found significant variations in the predictive
performance of mNGS among different pathogens and
drugs, indicating its potential as a supplementary tool
to conventional PST. However, mNGS currently cannot
replace conventional PST.
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Abbreviations

mNGS ~ metagenomic next-generation sequencing
AMR antimicrobial resistance

PST phenotypic susceptibility testing

BALF bronchoalveolar lavage fluid
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