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Abstract
Background  The eastern edge of the Qinghai‒Tibet Plateau (QTP) and subtropical China have various regions where 
plant species originate and thrive, but these regions have been the focus of very few integrative studies. Here, we 
elucidated the phylogeographic structure of a continuous and widespread Akebia trifoliata population across these 
two regions.

Results  Sixty-one populations consisting of 391 genotypes were examined to assess population diversity and 
structure via network distribution analysis, maximum likelihood phylogenetic tree reconstruction, divergence time 
estimation, demographic history inference, and ancestral area reconstruction of both conserved internal transcribed 
spacer (ITS) and chloroplast (rps16) DNA sequences. The results showed that the ITS region was more variable than the 
rps16 region and could be suitable for studying intraspecific phylogeography. The A. trifoliata population displayed 
high genetic diversity, genetic differentiation and obvious phylogeographical structure, possibly originating on 
the eastern QTP, expanding during the last glacial-interglacial cycle, diverging in the early Pleistocene and middle 
Pleistocene, and extensively migrating thereafter. The migration route from west to east along rivers could be largely 
responsible for the long-distance dispersal of this species, while three main refuges (Qinba Mountains, Nanling 
Mountains and Yunnan-Guizhou Plateau) with multiple ice shelters facilitated its wide distribution.

Conclusions  Our results suggested that the from west to east long migration accompanying with the minor 
short reciprocal migration in the south-north direction, and the three main refuges (the Qinba Mountains, Nanling 
Mountains and Yunnan-Guizhou Plateau) contributed to the extant geographical distribution of A. trifoliata. In 
addition, this finding also strongly reduced the discrepancy between glacial contraction and postglacial expansion 
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Background
China’s present-day topography is well known for being 
elevated in the west and low in the east, which could 
have resulted from the rapid uplift of the Tibetan Plateau 
(TP) during the Quaternary Period [1]. As a main driving 
force of eco-environmental evolution, rapid changes have 
led to corresponding alternations in both geomorphic 
and climate types and consequently generated various 
sources and reservoirs of biological diversity in the region 
surrounding the TP [2]. Further analysis supported 
that the climate oscillations accompanying this process 
resulted in alternation between contraction and expan-
sion due to cyclical variations in glacial intervals, which 
had an important influence on the current distributions 
of extant species [3]. Recently, many glacial refugia found 
in mainland China during the species conservation pro-
cess also well supported this view [4]. For sedentary and/
or special species, populations close to glacier refugia 
generally have greater genetic diversity than those far 
from them [5]. Therefore, scientists can infer the evolu-
tionary history of a given species according to the distri-
bution of its genetic information.

In the region of the eastern edge of the TP, the alter-
nating distribution of a series of spectacular north‒south 
trending mountains and rapidly rushing rivers results in 
various deep valleys, in which numerous species occur 
due to the large variation in altitudes. Regions harbour-
ing both ancient and newly originated species are the 
most famous biodiversity cradles in the world [6]. Stud-
ies have suggested that many species retreated here for 
shelter during the ice ages but migrated to other places 
after the ice ages since the beginning of the Quaternary 
[7–9], which indicated that the area was a major shel-
ter and possibly an important centre of species origin. 
In addition, the migration of species, especially vascular 
plants, directly across the TP would have been impeded 
by various high mountains with perennial frozen earth 
[10], indicating that subtropical China, both south of the 
Qinling Mountains and Huaihe River Line and east of the 
TP [11], is also an ideal geographical area for investigat-
ing species’ refuge locations and migration routes.

Species in these areas are useful for biologists study-
ing evolutionary events [12], and there have been vari-
ous reports on the evolution of species in the region. 
Based on the evidence from both ancient vegetation and 
systematic geography, two main models have been pro-
posed to describe the refugia and postglacial popula-
tion dynamics of plant species in subtropical China [13]. 
One is the glacial contraction and postglacial expansion 

model (CE model) [14], which asserts that species experi-
enced sharp contraction during glacial periods and quick 
expansion after glacial periods. For example, reconstruc-
tion of the palaeontological community showed that 
the subtropical evergreen broad-leaved forest in China 
retreated c. 1000 km to the south during the last glacial 
maximum (LGM, c. 0.021 − 0.018  Ma), while large-scale 
expansion occurred in the northern high-latitude area 
after that period [14, 15], which provided direct evi-
dence supporting the CE model. In addition, comparative 
analysis revealed that southern populations usually had 
greater genetic diversity than northern populations, pos-
sibly resulting from the greater accumulation of ancient 
and private alleles during the longer evolutionary history 
compared with that of the northern population [16, 17]. 
The other is the in situ survival model (ISS model), which 
considers that there are many shelters during glacial peri-
ods and relatively few local expansion events after glacial 
periods [18–20]. Most of the evidence supporting this 
model mainly comes from research on deciduous broad-
leaved forest plants [6, 13, 21–23]. In fact, the CE model 
ignores the possibility of many ecological niches with 
similar climate conditions, while the ISS model poorly 
accounts for migration effects.

In addition, different plant types can have different 
evolutionary histories. Thus, further studies of popula-
tion evolutionary histories across the eastern edge of the 
TP and in subtropical China with new plant types would 
be valuable for understanding species history. However, 
few studies have simultaneously considered popula-
tions across the two regions [24, 25]. Broad-leaved forest 
trees have received little attention because there are very 
few with wide and continuous distributions in the two 
regions due to large variations in climate, elevation, and 
landforms [26], while other plant types, such as vines, 
have not received much attention in phylogeographic 
research due to their weakened role in forests compared 
with that of tall, large woody trees. Furthermore, the two 
regions together account for one-third of China’s land 
area [27], so it is difficult to simultaneously sample at this 
large scale due to a shortage of available ex situ conserva-
tion genetic resources. In addition, underdeveloped road 
networks on the eastern edge of the TP due to natural 
barriers are also an important reason for the few sam-
ples collected in the past. With the establishment of liv-
ing germplasm banks of various woody perennial plants 
and the improvement of transportation infrastructure, 
systemically studying evolutionary history by integrating 
samples from the two regions is becoming feasible.

and the in situ survival hypothesis by simultaneously considering the existence of many similar climate-related 
ecological niches and migration influences.
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Akebia trifoliata (three-leaf Akebia) is a woody peren-
nial climbing vine in the family Lardizabalaceae [28]. 
Various studies have suggested that A. trifoliata has 
many advantages for elucidating the phylogeography 
of mainland China. First, according to the records from 
the Plants for a Future database (www.pfaf.org), it origi-
nated in China (https://pfaf.org/user/Plant.aspx? Latin-
Name = Akebia + trifoliata), although South Korea and 
Japan also have populations of A. trifoliata [29], and it 
is continuously distributed from the eastern edge of the 
TP to the eastern coast of mainland China; therefore, A. 
trifoliata is a typical species of the region spanning the 
eastern edge of the TP and subtropical China [28]. In 
addition, characteristics such as a small genome [30], 
a relatively short juvenile stage, a large breeding coeffi-
cient, cross-pollination and numerous discernible phe-
notypic traits make A. trifoliata an ideal model plant, 
especially for perennial woody species [31, 32]. Third, the 
availability of sufficient wild germplasm from the whole 
mainland of China [33] is highly advantageous for sys-
temically studying the phylogeography of A. trifoliata. 
There have been few reports on the genetic diversity of 
A. trifoliata, but the employed samples were narrow in 
scope and usually small in size [34]. Therefore, further 
study of phylogenetic relationships will be valuable for 
understanding the evolutionary history of A. trifoliata. In 
the present study, conserved DNA sequences, including 
those of the maternally inherited chloroplast gene rps16 
and the biparentally inherited nuclear ribosomal internal 
transcribed spacer (ITS), were used to explore the genetic 
diversity and population structure of A. trifoliata in the 
region across the eastern edge of the TP and subtropical 
China. Our objectives were to determine the locations of 
the main shelters of A. trifoliata, to infer the migration 
route, and to identify the evolutionary model responsible 
for the distribution of extant A. trifoliata populations.

Methods
Plant genotypes
A total of 391 genotypes of 61 populations from the A. 
trifoliata ex situ conservation germplasm bank located at 
the Chongzhou Research Station of Sichuan Agricultural 
University [31] were chosen for the study. These geno-
types originated from a large geographical area spanning 
from 99°57′E to 120°11′E and from 24°49′N to 34°42′N in 
mainland China.

DNA extraction, amplification and sequencing
Total genomic DNA was extracted according to the pre-
viously published CTAB method. The rps16 chloroplast 
gene and ITS were selected as maternally and biparen-
tally inherited molecular markers, respectively [35, 36]. 
The corresponding primers were synthesized and then 
subjected to polymerase chain reaction (PCR) according 

to a previously described reaction system and program 
[31]. Sequencing reactions were conducted with cor-
responding forward and reverse primers commercially 
provided by Tsingke Biotechnology Co., Ltd. (Chengdu, 
China).

Population genetic diversity and genetic differentiation
For the rps16 and ITS data, the sequence was first manu-
ally edited using BioEdit 7.0.1 [37] and then aligned with 
MAFFT 7.2.2 software [38]. Finally, the conserved region 
of the aligned sequence was extracted using Gblock v 
0.91b [39]. We used DnaSP 5.10 software to calculate 
genetic information statistics, including haplotype num-
ber, Hd and π, of the conserved sequence [40]. In addi-
tion, we used PERMUT 2.0 [41] to calculate the hT and hS 
between populations with 1,000 repeats and to assess the 
difference between the GST and NST of distinct popula-
tions, excluding populations with sample sizes less than 
3. Analysis of molecular variance (AMOVA) and corre-
lation analysis between genetic distance and geographi-
cal distance were performed by Arlequin 3.0 [42] and by 
GenAlEx 6.5 [43], respectively.

Phylogenetic analyses and molecular dating
The haplotype (ITS haplotypes and rps16 haplotypes) 
network diagram was constructed using PopART 1.7 
[44], and a sampling distribution map was constructed 
using ArcGIS 10.2 [45]. ML trees were reconstructed 
according to conserved haplotype sequences using Phylo-
Suite 1.2.2 [46] with the best-fit models (TPM3 + F + I and 
TIM3 + F + R2 for rps16 and ITS, respectively) produced 
from the AIC program of ModelFinder software [47], in 
which Archakebia apetala was used as the outgroup.

The divergence time of the haplotype lineages of A. 
trifoliata was determined with a secondary calibration 
method by BEAST 2 [48]. The first step was to deter-
mine the crown age of A. trifoliata. Four matK gene 
sequences of A. trifoliata and 15 matK gene sequences 
of 15 different species were employed by searching Gen-
Bank (Table S2), consisting of six from Lardizabalaceae, 
five from Menispermaceae, two from Berberidaceae, one 
from Eupteleaceae and one from Ranunculaceae. In addi-
tion, four calibrated time points, Ranzania-Mahonia-
Berberis (45.0  Ma) [49], Chasmanthera-Odontocarya 
(33.9  Ma) [50], Tinospora-Chasmanthera-Odontocarya 
(55.2  Ma) [51, 52], and Stephania-Menispermum-Chas-
manthera-Tinospora-Odontocarya (89.3  Ma) [53], were 
used. The chronogram of Ranunculales was produced 
using BEAST2 with the Yule model, an uncorrelated 
lognormal relaxed clock [54] and the TVM + F + G4 best-
fit model selected by the BIC approach in ModelFinder 
software [47]. For each BEAST2 analysis, Markov chain 
Monte Carlo (MCMC) was run for 1 × 108 generations, 
sampling once every 1000 generations, and the first 10% 
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of the samples were removed as burn-in. The sufficiency 
and convergence of the sampling results were checked by 
Tracer 1.7.2.

In the second step, chronograms of A. trifoliata haplo-
types were further derived using a method similar to that 
used to date intraspecific nodes, in which the root nodes 
were corrected by using the above estimated crown 
group age (median value) of A. trifoliata in the first step, 
and A. apetala was still an outgroup. GTR + F + G4 and 
F81 + F + G4 were the best-fit models for the ITS and 
rps16 haplotypes, respectively. A. apetala was still an 
outgroup.

Demographic history
The values of Tajima’s [55], Fu and Li’s [56] and Fu and 
Li’s [57] of all sequences were calculated by DnaSP 5.10 
software [40], and the observed paired difference pat-
tern (mismatch distribution) was also analysed using the 
same software with a constant population size model. 
Both the sum of squared deviations (SSD) and Harpend-
ing’s raggedness index (HRag) were analysed by Arlequin 
3.0, and we further analysed population expansion only 
when the corresponding p value was greater than the 
0.05 level. The expansion time was calculated using the 
formula T = τ/2µkg, where µ, k and g refer to the replace-
ment rate (s s− 1 yr− 1) of each site in the ITS every year, 
the length of the sequence and the age of the first repro-
duction, respectively. In this study, a mean value of µ for 
shrubs and herbal plants ranging from 3.46 to 8.69 × 10− 9 
(s s− 1 yr− 1) [58] was used as the µ value of the A. trifo-
liata ITS sequence. The g value of A. trifoliata is usually 
three years.

Ancestral area reconstructions
Based on the chronograms of the ITS and rps16 haplo-
types, the geographical diversification of A. trifoliata was 
further reconstructed via Bayesian binary MCMC (BBM) 
analysis in RASP 4.x [59]. During this process, the dis-
tribution of A. trifoliata was divided into four regions 
according to natural geographical boundaries: A (the 
eastern Tibetan Plateau), B (central northern China), C 
(central China) and D (eastern China). MCMC trees were 
constructed with 5000 randomly chosen trees from all 
post-burn-in trees from BEAST2 analysis. The param-
eters of the BBM analyses were set as follows: null for 
the root distribution, 10 chains for optimization with the 
fixed JC model for 5 × 105 cycles, the posterior distribu-
tion sampled every 100 generations, and four regions for 
the permitted maximum value.

Results
Sequence variation, genetic diversity, and genetic 
structure
The lengths of the rps16 and ITS sequences obtained 
from 391 samples of A. trifoliata were 744  bp with a 
33.9% G + C content and 695  bp with a 63% G + C con-
tent, respectively. We first identified a total of 22 rps16 
haplotypes (C1 ∼ C22) and 75 ITS haplotypes (R1 ∼ R75) 
according to 59 and 88 polymorphic sites in the rps16 and 
ITS sequences, respectively. ITS sequences had greater 
haplotype diversity (Hd) (0.86), nucleotide diversity (π) 
(3.07 × 10− 3), total genetic diversity (hT) (0.88), aver-
age genetic diversity (hS) (0.31) and fixation index (FST) 
(0.64) values among the 61 small populations than did 
rps16 sequences (Table S1). In addition, we also found 
that for the ITS dataset, the GST (0.44) was lower than the 
NST (0.68), while for the rps16 dataset, the GST (0.44) was 
larger than the NST (0.31), which indicated that the ITS 
dataset had an obvious phylogeographic structure, while 
the rps16 dataset did not.

In fact, the results of the Mantel test suggested that 
for the rps16 dataset, there was no obvious correlation 
between genetic distance and geographical distance 
among populations (R2 = 0.0005, p = 0.17) (Fig. 1a), while 
for the ITS dataset, the relationship was significant at the 
p = 0.05 level, although R2 was only 0.21 (Fig.  1b). Fur-
thermore, the AMOVA results showed that the variation 
in the ITS region mainly occurred among populations, 
while that in the rps16 region mainly occurred within 
populations (Table 1).

Network and distribution of haplotypes
The TCS network diagrams of the ITS haplotypes exhib-
ited a multiple star-shaped radial pattern, and the hap-
lotypes clearly corresponded to distinct geographical 
regions (Fig.  2a). In contrast, the distribution of rps16 
haplotypes showed a single star-shaped radial pattern 
(Fig.  2b), which indicated that there was no geographi-
cal structure. According to the geographical distribu-
tion of the ITS haplotypes (Fig.  2a), no haplotype was 
common to all regions, while 63 (84%) of the haplotypes 
were region specific. Among the 63 region-specific hap-
lotypes, 12 (R3 ∼ R10, R33, R73 ∼ R75), 13 (R27 ∼ R32, 
R36, R38, R39, R41, R67 ∼ R69), 28 (R14 ∼ R16, R21 ∼ R26, 
R42 ∼ R56, R63 ∼ R66) and 10 (R18 ∼ R20, R57 ∼ R60, 
R70 ∼ R72) haplotypes were specific to the A, B, C and D 
regions, respectively (Fig.  2c and Table S1). We further 
found that 26 haplotypes, including 12 of the A region-
specific haplotypes, 13 of the B region-specific haplo-
types and one (R11) haplotype common to the A, B and 
C regions, were derived from R2 by one to ten steps of 
mutation; 28 of the C region-specific haplotypes were 
derived from R12 by one to four steps of mutation; and 
10 of the D region-specific haplotypes were derived from 
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R61 by one to three steps of mutation. Obviously, R2 is 
the ancestral haplotype because of its large proportion 
and wide distribution.

Moreover, we detected 22 rps16 haplotypes, 16 (72.7%) 
of which were region specific, while three (13.6%) rps16 
haplotypes (C1, C4 and C6) were common to all four 
lineages. We also found that C1 produced four B region-
specific rps16 haplotypes (C10-C12 and C21), two C 
region-specific rps16 haplotypes (C8 and C9) and one D 
region-specific rps16 haplotype (C19) via one mutation 
step and directly produced two A region-specific rps16 
haplotypes (C2 and C22) via multiple steps of mutation. 
Moreover, all rps16 haplotypes of the D region were 
simply derived from C1 by only one mutation step. The 
results suggested that C1 was the ancestral rps16 haplo-
type. Overall, the distributions of both the ITS and rps16 
haplotypes revealed obvious ITS sequence divergence, 
while the rps16 sequence lacked such divergence across 
geographical regions.

ML phylogenetic tree of A. trifoliata haplotypes
The maximum likelihood (ML) phylogenetic tree of all 
75 A. trifoliata ITS haplotypes with A. apetala as an out-
group had three major branches: I, II and III (Fig.  3a). 
Branch I mainly consisted of all (12) specific haplotypes 
from the A region, most (nine out of 13) specific haplo-
types from the B region, four specific haplotypes (R21, 
R22, R46 and R56) from the C region and five other 

common haplotypes (R1, R2, R11, R35 and R40) in two 
or three regions; branch II mainly consisted of all (10) 
specific haplotypes from the D region, two specific hap-
lotypes (R32 and R67) from the B region, four specific 
haplotypes (R45, R65, R50 and R51) from the C region 
and one common haplotype (R61) in the B and D regions; 
and branch III mainly consisted of almost all (24 out of 
28) specific haplotypes from the C region, two B region-
specific haplotypes (R27 and R31) and six other common 
haplotypes (R12, R13, R17, R34, R37 and R62) in two or 
three regions. In contrast, there was no obvious branch 
on the ML phylogenetic tree of all 22 A. trifoliata rps16 
haplotypes (Fig. 3b), in which the haplotypes were evenly 
distributed among the four regions.

Divergence time of A. trifoliata haplotypes
The BEAST2-derived matK chronogram showed that the 
crown group age of A. trifoliata was 2.06 Ma (Fig. 4), and 
when it was used as a root prior, the coalescence times of 
75 haplotypes (node f in Fig. 5a) and 22 haplotypes (node 
g in Fig. 5b) were 2.82 Ma and 2.12 Ma, respectively.

In the ITS chronogram, four nodes (f1-f4) covered 37 
haplotypes: 12 specific to the A region, 10 specific to the 
B region, seven specific to the C region and eight non-
region specific; node f5 covered 38 haplotypes: three 
specific to the B region, 21 specific to the C region, 10 
specific to the D region, and four that were non-region 
specific.

Table 1  Molecular variance (AMOVA) of rps16 haplotypes and ITS haplotypes for Akebia trifoliata populations
Source of variation rps16 ITS

df Ss Vc Pv (%) Ss Vc Pv (%)
Among populations 67 30.19 0.03 7.74 593.61 1.41 64.07
Within populations 324 99.83 0.31 92.26 256.97 0.79 35.93
Total 391 130.01 0.335 850.58 2.21
Fixation index FST = 0.09 (p < 0.05) FST = 0.64 (p < 0.05)
df, degrees of freedom; Ss, sum of squares; Vc, variance components; Pv (%), percentage of variation (%)

Fig. 1  Mantel test results for the geographic distance matrix (GGD) and genetic distance matrix (GD) based on (a) the rps16 dataset and (b) ITS dataset
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The coalescence time of the five nodes varied from 
2.27  Ma to 1.25  Ma, which falls within the early Pleis-
tocene (2.58–0.78 Ma) (Fig. 5a), during which the diver-
gence of all 22 ITS haplotypes and five rps16 haplotypes 
occurred. However, the remaining 53 (70.67%) ITS haplo-
types and 17 (77.27%) rps16 haplotypes originated during 
the middle Pleistocene (0.78 − 0.12 Ma).

Demographic history
All neutrality test values, including Tajima’s D, Fu and 
Li’s D and Fu and Li’s F, of all ITS and rps16 datasets in 
the whole population and all four regions were negative, 
although those of the rps16 haplotypes were not signifi-
cant in the D region (Table  2). The mismatch distribu-
tion of the ITS haplotypes was unimodal in the A and 
D regions (Fig.  6), while that of the rps16 dataset was 
peak free in the whole population and each region (Fig. 

Fig. 2  (a) TCS-derived network of genealogical relationships between the 75 ITS haplotypes. (b) TCS-derived network of genealogical relationships be-
tween the 22 haplotypes (rps16). The circle size of the two network diagrams is proportional to the sample size of each haplotype. Black filled dots indicate 
missing haplotypes. The haplotypes from the four regions are represented by four different colours. The dashes on the straight line represent the number 
of abrupt steps. (c) Sampling distribution map of 61 populations of Akebia trifoliata. Red, yellow, green and blue represent the different geographical loca-
tions of A (the eastern Tibetan Plateau), B (central northern China), C (central China) and D (eastern China), respectively
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S1). The results of the fit test using the sudden expansion 
model showed that the SSD (0.0267) and HRag (0.322) 
values of the ITS haplotypes in the whole population 
were not significant at the p = 0.05 level, which suggested 
the occurrence of one expansion event (possibly 150 Ka). 
However, the rps16 haplotypes of A. trifoliata mainly 
experienced balancing selection throughout their evolu-
tionary history because there were no detectable SSD or 
HRag values in the whole population or any of the four 
geographical regions.

Ancestral area reconstructions
According to the topology of the reconstructed ancestral 
area of the ITS region, the marginal probabilities of the A 
region at h1, h2, h4 and h8 were 0.64, 0.45, 0.52 and 0.77, 
respectively (Fig.  7a). The populations of other regions, 
especially the C region, colonized from the A region. 
The marginal probability of B at h3 was the largest (0.25), 
which suggested that region C was also partly colonized 
by the population from region B. The marginal probabili-
ties of C at h5, h6 and h7 were 0.97, 0.97 and 0.95, respec-
tively, indicating that the population of the D region was 
largely derived from the C region.

Similarly, the marginal probability of the A region at 
i1 was 0.97 in the rps16 topology (Fig. 7b), also suggest-
ing that the A region was the ancient distribution area 
of A. trifoliata. The value (0.40) at i2 indicated that the 
populations of both the B and C regions could have colo-
nized from the A region. The marginal probability of the 

C region at i4 was 0.39, suggesting that the population 
of the D region mainly colonized the C region. We also 
noticed that the information at both i3 and i5 was con-
fusing, which could result from the unclear pedigree of 
rps16.

BBM analyses showed the potential for many seed dis-
persal events (see the blue arrow in Fig. 7), with only the 
absence of directional dispersal events from the popula-
tion in the D region to the A region. Generally, the spe-
cies migration route was from the ancestral distribution 
A region simultaneously to the B and C regions, then 
from the B region to the C region, and finally from the C 
region to the D region (Fig. 7c and d).

Discussion
The characteristics of the population and conserved DNA 
sequences help elucidate the phylogeographic structure of 
A. trifoliata
Genetic diversity parameters such as the hT, Hd and π of 
conserved DNA sequences provide the best evidence for 
elucidating the phylogeographic structure of a given spe-
cies or a larger classification unit, such as genus, family 
and even order [40]; however, population characteristics, 
including geographical distribution, breeding system and 
effective size, also have an important influence on genetic 
diversity [60]. Whether we can accurately detect phylo-
geographic structure is largely dependent on two key 
factors: population characteristics and DNA sequence 
conservation.

Fig. 3  Maximum likelihood tree for A. trifoliata based on (a) ITS haplotypes and (b)rps16 haplotypes; Archakebia apetala was the outgroup. Bootstrap 
probabilities are indicated on the branches. Red, yellow, green and blue in colour represent A (the eastern Tibetan Plateau), B (central northern China), C 
(central China) and D (eastern China) region-specific haplotypes, while others in grey represent haplotypes from two to four different regions. I, II and III 
are the three major branches of the ITS haplotype ML tree (a)
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Previous studies demonstrated that A. trifoliata origi-
nated in China and exhibited a constrained continuous 
distribution from the eastern edge of the TP to the east-
ern coast of mainland China and even to South Korea 
and Japan [28, 29]. In addition, the biological character-
istics [30] and availability of sufficient germplasms via 
the ex situ living conservation method [31] have been 
reported. The 391 genotypes employed in this study orig-
inated from various places in mainland China, and there 
was a small geographic interval between adjacent sam-
ples (Fig. 2c), providing an ideal population for deducing 
the evolutionary history of species, especially climbing 
vine plants, in mainland China.

Molecular markers based on conserved DNA elements, 
including maternal chloroplast and biparental nuclear 
genomic markers, have been widely employed to inves-
tigate population genetic diversity. In this study, a pre-
viously reported chloroplast gene (rps16) and a nuclear 
DNA marker (ITS) were used to determine the genetic 
diversity of the A. trifoliata population [35, 36]. We first 
checked 22 and 75 haplotypes from 59 to 88 polymor-
phic sites in the rps16 and ITS sequences, respectively 
(Table S1). Based on the haplotypes, the genetic diversity 
(hT=0.881, π × 10− 3=3.07) of A. trifoliata at the nuclear 
DNA level (Table S1) was greater than that of Zingiber 
officinale [61], Pinus attenuata [62] and Antirrhinum 

Fig. 4  BEAST2-derived chronogram of Ranunculales based on matK sequences with calibration points denoted by nodes a-d. The blue bars indicate the 
95% HPD credibility intervals for node ages (in Myr ago, Ma). The age estimate (Ma) (mean 95% highest posterior density: HPD) for each node is shown 
beside the nodes. The posterior probability values are labelled on each branch in turn
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charidemi [63]. We found that the genetic diversity 
(hT=0.313, π × 10− 3=0.90) of the A. trifoliata population at 
the chloroplast sequence level was lower than that at the 
nuclear DNA level (Table S1), which could result from 
the low variation rate of the chloroplast compared with 
the nuclear DNA sequence [64]. This also provides a rea-
sonable explanation for why the ITS and rps16 sequences 
are used to determine the genetic structure of intraspe-
cific and interspecific populations, respectively [63, 65]. 
To obtain more information on different DNA sequences, 
we simultaneously used rps16 and ITS markers to deter-
mine genetic diversity in the present study, which would 
be beneficial for elucidating phylogeographic structure.

A. trifoliata populations exhibited clear phylogeographic 
structure
Usually, molecular variation [66], the relationship 
between GGD and GD [67], the number of regional pri-
vate haplotypes [19] and the relative sizes of GST and NST 
[20] are important information for describing population 
structure. First, we found that there was large molecular 
variation in the ITS sequence among different regional 
populations, while the variation in the rps16 sequence 
was small (Table 1). Second, we also found a significant 
positive relationship between GGD and GD based on the 
ITS sequence, while there was no obvious relationship 
between them based on the rps16 sequence (Fig.  1); in 

Table 2  The results of neutrality tests for various populations
Region rps16 ITS

Tajima’s D Fu and Li’s D Fu and Li’s F Tajima’s D Fu and Li’s D Fu and Li’s F
Whole -2.68* -10.36* -8.08* -2.00* -7.04* -5.479*
A -2.58* -7.289* -6.53* -2.52* -7.33* -6.44*
B -2.61* -5.27* -5.13* -1.87* -2.44* -2.66*
C -1.94* -3.63* -3.59* -2.01* -4.01* -3.81*
D -1.27 -0.44 -0.44 -2.091* -3.75* -3.760*
*, p < 0.05

Fig. 5  BEAST2-derived chronograms of ITS haplotypes (a) and rps16 haplotypes (b) calibrated by the crown time of Akebia trifoliata. The age estimate 
(Ma) (HPD) for each node is shown beside the node. The regions with a greater than 95% posterior probability are indicated by thick branches. The red, 
yellow, green and blue branches represent haplotypes from the A (the eastern Tibetan Plateau), B (central Northern China), C (central China) and D 
(eastern China) regions, respectively, and the other black branches except those of the outgroup represent haplotypes from two to four different regions
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this study, the weak relationship could partly result from 
uneven samples from various regions (Table S1). Third, 
some regional private haplotypes of both ITS and rps16 
existed in each region (Fig. 2a and b; Table S1) and even 
on each branch of the ML tree (Fig. 3), possibly related 
to the high differentiation of different regions (Table 1). 
Finally, for the ITS sequence, the GST (0.437) was obvi-
ously lower than the NST (0.677). Taken together, these 
findings suggest that there was no obvious geographical 
structure at the chloroplast DNA level, possibly resulting 
from different inheritance modes [64], dispersal strate-
gies [68] and slow variation rates because of their high 
conservation [65]; however, the clear phylogeographic 
structure of the A. trifoliata population at the nuclear 
DNA level is beyond all reasonable doubt.

Multiple historical ice shelters could have affected the 
current distribution status of A. trifoliata
Studies have shown that plant populations around gla-
cial habitats usually have high genetic diversity and many 
private alleles or haplotypes [17, 69]. Here, we found that 
many haplotypes of both ITS and rps16 were region-
specific (Figs. 2a and b and 3), which indicated that there 
were multiple refuge regions. According to the number of 
haplotypes, Hd and π, three putative main refuge regions 
(the Qinba Mountains, Nanling Mountains and Yunnan-
Guizhou Plateau) can be suggested.

First, the Qinba Mountains could be the main refugia 
region of A. trifoliata because the populations, including 
Bazhong from the A region and both Ankang and Xian 
from the B region, had many ITS haplotypes, high Hd 
and large π, and they commonly showed the ancestral 

Fig. 6  Mismatch distribution analyses of the five ITS clades consisting of both four regional populations and the whole population, in which the observed 
mismatch frequencies and best-fit curves of the sudden expansion model are shown
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haplotype R2 (Fig. 2a), which was also well supported by 
the high polymorphism of A. trifoliata resources previ-
ously reported in the region [34]. Second, the Nanling 
Mountains, as representative mountains in the subtropi-
cal region and one of the major biodiversity hotspots 
in China [70], could also be a refuge region because the 
Hezhou, Yongzhou, Guilin, and Ganzhou populations 
from the C or D region had similarly many haplotypes 
and high Hd and π values (Fig.  2b), and R12 was their 

common haplotype. Various studies have suggested that 
the Nanling Mountains provide shelter for many plants 
[71], such as Castanopsis eyrie [72] and Loropetalum 
chinense [73], which supports the Nanling Mountains as 
a historically important refuge region for A. trifoliata. 
Third, the Yunnan-Guizhou Plateau is still a refuge region 
because of the very high π values for the rps16 sequence 
in addition to the ITS sequence in both the Bijie and 
Zunyi populations from the C region [74, 75].

Fig. 7  Ancestral area reconstructions based on the Bayesian binary Markov chain Monte Carlo (BBM) method performed in the RASP using the BEAST2-
derived chronogram of Akebia trifoliata based on (a) ITS and (b)rps16 haplotypes (see Fig. 5a and b). The circle at each node represents the marginal 
probability of each alternative ancestral region derived from the BBM analysis. The results are based on a maximum area of four. Inferred dispersal events 
are indicated by blue arrows. (c) Distribution area map of Akebia trifoliata: A (the eastern Tibetan Plateau), B (central northern China), C (central China) and 
D (eastern China). (d) Speculative diagram of expansion or propagation events in Akebia trifoliata, with bold solid lines representing the main expansion 
or propagation events
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At present, the CE and ISS models represent two prev-
alent views about the contraction and expansion of plant 
species in the subtropical region of China during the ice 
age cycle [14, 20]. Unfortunately, the CE model largely 
ignores the existence of many similar ecological niches, 
while the ISS model overlooks the effects of migration on 
species distributions. In this study, among the 61 popu-
lations, 55 had a sample size larger than two, of which 
26 populations had an Hd value of ITS greater than 0.6 
(Table S1). Of these 26 populations, 12 were geographi-
cally close to the three main refuge regions, while 14 were 
far from the main refuge regions, which clearly showed 
that the three main refuge regions (the Qinba Moun-
tains, Nanling Mountains and Yunnan-Guizhou Plateau) 
harboured many independent, small ice shelters. In addi-
tion, many haplotypes, including 53 ITS haplotypes and 
17 rps16 haplotypes, originated during the middle Pleis-
tocene (0.78 − 0.12 Ma), while the other haplotypes were 
produced before this stage, which indicated that whole 
or partial population expansion occurred in the past. The 
results of the neutrality test and ITS mismatch distribu-
tion analysis clearly demonstrated that population expan-
sion events occurred in at least the A and D regions. The 
view of three main refuge regions with some indepen-
dent, small ice shelters provides a reasonable explanation 
for the continuous and wide distribution of A. trifoliata 
in many regions of mainland China.

Putative migration route and differentiation events of A. 
trifoliata
Molecular dating can provide information about the dif-
ferentiation time of conserved DNA sequences, which 
is helpful for inferring population differentiation pro-
cesses [76]. In this study, molecular dating revealed that 
the differentiation times of the common ITS and rps16 
haplotypes in A. trifoliata were 2.82  Ma and 2.12  Ma, 
respectively (Fig.  5a and b), and both occurred during 
the period spanning the late Pliocene to early Pleisto-
cene. During this period, the third uplift of the Qinghai‒
Tibet Plateau [77], the Asian monsoon [78] and the Asian 
drought [79] gradually intensified, causing habitat frag-
mentation and species differentiation [80]. For example, 
the Hainan Island population of Tetrastigma hemsleya-
num differentiated at 2.78 Ma [22]. Second, most (72.2%) 
of the haplotypes of A. trifoliata differentiated in the 
middle Pleistocene (0.78 − 0.12  Ma), which is similar to 
the haplotype differentiation time of Sargentodoxa cune-
ata in this region [76], but the remaining 27.8% of the 
A. trifoliata haplotypes differentiated before this period 
(Fig.  5a and b). Hence, the putative divergence times of 
the common ITS and rps16 haplotypes in A. trifoliata 
could be reasonable. In addition, both the frequency and 
distribution of haplotypes (Fig. 2a and b) suggested that 
region A was the ancestral region because of the high 

frequency and wide distribution of the ancestral haplo-
types R2 and C1 (Table S1).

The results of further BBM analysis revealed the puta-
tive migration route (Fig.  7c and d), and in this model, 
the route from the ancestral A region simultaneously 
from both the B and C regions, from the B region to the 
C region, and then from the C region to the D region was 
the main route of A. trifoliata migration, and the corre-
sponding reverse route could be a minor migration route. 
In fact, this hypothesis of species migration off the Qin-
ghai‒Tibet Plateau [81] also agreed well with the puta-
tive migration model. In addition, we also found minor 
migration from the ancestral A region to the D region, 
while there was no reverse route. Finally, migration from 
west to east could be a major direction, while recipro-
cal migration between the south and the north could be 
minor, which could have resulted from climate oscilla-
tion in the past [17]. The main route and direction of A. 
trifoliata migration could be closely related to its natural 
spread through west-east-flowing rivers, especially the 
Yangtze River [31], animals such as birds [82] and even 
commercial action [83]. Moreover, incomplete coverage 
of glaciers during this process [84] may also explain the 
widespread differentiation of A. trifoliata.

The last concern was the origin of the A. trifoliata dis-
tributed in Korea and Japan, and in our opinion, these A. 
trifoliata possibly migrated from the D region of main-
land China, which could be resolved by a future study 
with samples from these two countries.

Conclusions
Both conserved DNA sequences and continuously and 
widely distributed large populations provide a valuable 
opportunity to elucidate the evolutionary history of a 
given species. In this study, a maternally inherited chlo-
roplast gene (rps16) and a biparentally inherited nuclear 
ITS sequence were simultaneously employed to assess 
the phylogeographic structure of A. trifoliata populations 
in the region across the QTP eastern edge and subtropi-
cal China, where more than 90% of publications about 
the species originated. Our results suggested that A. trifo-
liata originated on the eastern edge of the QTP and then 
migrated eastwards to the east coast of mainland China, 
even to Korea and Japan, and that multiple ice shelters 
in the Qinba Mountains, Nanling Mountains and Yun-
nan-Guizhou Plateau region supported its proliferation 
throughout subtropical China. Overall, the unique origin, 
long-distance migration, high intraspecific divergence, 
multiple ice shelters and regional expansion of A. trifo-
liata resulted in its continuous and wide distribution.
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