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Introduction

Non-surgical chronic wounds constitute a significant
number of non-healing or delayed-healing wounds
[1-3]. The Wound Healing Society defines four types of
chronic wounds: diabetes-related foot diseases (DRFD),
vascular ulcers (venous and arterial ulcers), and pres-
sure injuries (PI) [4, 5]. DRFDs are particularly prevalent
in uncontrolled diabetes mellitus, increasing the risk of
diabetic foot infection (DFI), which can progress to dia-
betic foot osteomyelitis (DFOM) and have a significant
impact on the morbidity and mortality of this popula-
tion [6]. Indeed, the severity of DFI evolution leads to
foot amputations and mortality in 17% and 15% of cases,
respectively [7, 8]. PIs are unrelieved injuries caused by
sustained soft tissue compression bordering the bones,
classified into six stages according to the National Pres-
sure Injury Advisory Panel depending on the severity
of the PI and its evolution [9, 10]. This may progress to
life-threatening complications in 21-58% of PIs, includ-
ing 27% of recurrent wounds [11]. Venous leg ulcers
(VLU) represent from 60 to 80% of all lower-limb ulcer-
ation [12]. The risk of VLU increases among older people
with concomitant chronic venous insufficiency [12]. In
all these chronic wounds, patient care is expensive, chal-
lenging clinical management and wound healing [1-3,
13, 14].

Chronic wounds healing is usually impacted by colo-
nising microorganisms [15-17]. Skin, digestive and/
or environmental microbiomes are the main origins of
the microorganisms colonising the wounds, while hos-
pital environment including medical equipment and
healthcare professionals increases the risk of cross-
contamination and colonisation by multidrug resistant
microorganisms [3, 18-21]. However, the distinction
between colonisation by normal opportunistic micro-
organisms and infection due to pathogenic bacteria
remains a challenge in clinical microbiology, and incor-
rect diagnosis contributes to delayed wound man-
agement and patient cure [17, 20]. Current routine
microbiological investigation of chronic wounds using
swabs and/or tissue biopsies are mainly based on in
vitro culture inoculation, limiting the discoverable bac-
teria [14]. Staphylococcus aureus is the most prevalent
Gram-positive bacteria identified in routine bacteriol-
ogy, including a high rate of methicillin resistance [22].
Other Staphylococcus species, such as Staphylococcus
epidermidis potentially transmitted from skin micro-
biota, and other bacteria belonging to the Firmicutes
phylum (e.g., Streptococcus agalactiae, Streptococcus pyo-
genes, Streptococcus mitis, and Enterococcus faecalis) are

also frequently identified in these clinical situations [23].
Enterobacteriaceae family including Escherichia, Klebsi-
ella, Enterobacter, Citrobacter, Proteus and Serratia spe-
cies and non-fermenting Gram-negative bacilli including
Pseudomonas and Stenotrophomonas, are the predomi-
nant Gram-negative bacteria in chronic wounds, particu-
larly frequent in PIs, chronic and recurrent DFU and in
warm countries [14, 22].

Routine molecular detection tools of chronic wounds
infections are based on simplex or multiplex real-time
PCR targeting a limited number of bacteria commonly
isolated from chronic wound samples, as well as the par-
tial sequencing of the 16 S rDNA [23, 24]. The lack of
universal identification of microorganisms involved in
these infections complicates diagnosis and patient man-
agement. Moreover, the polymicrobial biofilm forma-
tion present in most chronic or hard-to-heal wounds
challenges the antimicrobial therapy. The secretion
of immune evasion factors increases and extends the
inflammation response, delaying the wound healing [25,
26]. Metagenomic next generation sequencing (mNGS)
of chronic wound swabs and biopsies targeting 16 S
rDNA gene have emerged within the last 15 years [27].
Shotgun mNGS has been developed to detect and char-
acterise mono- and polymicrobial infections in record
time. Based on the limited molecular findings in accor-
dance with clinical opinions qualifying microorganisms
infecting or colonising the wounds, current international
consensus suggests that molecular techniques should
not be used for the first-line identification of pathogens
from tissue or bone samples in a patient with a DFI [8,
28]. To our knowledge, no papers have reviewed the
clinical recommendation and the routine application of
mNGS approach in this context. To compile the existing
knowledge about the direct investigation of non-surgical
chronic wounds by mNGS, we conducted a literature
review for studies applying shotgun and 16 S rDNA
mNGS to chronic wound swabs and tissue biopsies for
microbial screening.

Methods

Literature search

The literature search was conducted on PubMed, Google
Scholar, Web of Science, Microsoft Academic, Crossref
and Semantic Scholar databases according to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines [29]. We included studies
published in English up until October 31, 2022, that were
related to chronic wounds and metagenomic investiga-
tion. Duplicates were removed, and the remaining studies
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were screened by title and abstract according to the eligi-
bility criteria. After reading the full text, only papers that
met the eligibility criteria were selected for this review,
using the following keywords: “chronic wound’, “chronic
ulcer”, “chronic injuries’, “diabetic foot ulcer (DFU)’
“Diab’, “diabetes’, “diabetes foot related diseases (DFRD)’,
“pressure ulcer (PU)’, “pressure injuries (PI)’, “decubitus
ulcer”, “venous leg ulcer (VLU)’, “diabetic foot infection
(DFI)’, diabetic foot osteomyelitis (DFOM)’, “metage-
nomics’, “16S rRNA’ “shotgun’, “mNGS’, “microbiota’,
“microbiome’, and “next generation sequencing (NGS)"
These keywords were used in combination to perform an
exhaustive search as presented in Fig. 1.

Screening and inclusion

Studies that met the following criteria were included in
this review: Studies applying mNGS on chronic wounds
for: (1) case report; (2) prospective series; (3) retrospec-
tive series; (4) 16 S rRNA metagenomics; (5) Shotgun
metagenomics application for either microbiome or diag-
nosis. Review articles, studies performed on animals, in
vitro model optimisation, benchmarking, treatment opti-
misation studies, and non-clinical studies were excluded.
Data extracted from the selected studies included first
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author’s name, year of publication, country, nucleic acid
extraction method (including the commercial kit used),
the sequencing platform, the type of mNGS (including
the sequencing instrument, pipeline data analysis and
software), reference microbial database, and the identi-
fied microorganisms. We included the total number of
data yielded in both metagenomic approaches and data
obtained by conventional in vitro culture. The data were
extracted, cleaned, and selected by MM and FS and
reviewed by CM and CDR, and then validated by AS and
JPL.

The microbial colonisation of chronic wounds is nota-
bly diverse due to body and/or environmental microbiota
translocations. To simulate the origin of the bacteria col-
onising the wounds and to understand the wound micro-
bial colonisation dynamics, supplementary studies
investigating the healthy gut, skin, urine microbiota, as
well as environmental microbiome, were analysed for
microbial comparison (Supplementary Figures S1, S2).

Results

Study selection

The database search identified 3,202 articles; 2,336 arti-
cles were removed after deduplication. Based on title and
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Fig. 1 Literature search and study inclusion according to the PRISMA flow-chart. Six bibliographic databases were reviewed using the following key-
words: “‘chronic wounds', “chronic injuries’, "diabetic foot ulcer (DFU)’, "diabetes foot related diseases (DFRD)’, “diabetes’, “diab’, “decubitus ulcer (DU)’, “pres-
sure ulcer (PU)’ “pressure injuries (P1), “venous leg ulcer (VLU)', “diabetic foot infection (DFI)’, diabetic foot osteomyelitis (DFOM)", “metagenomics’, “16S
rRNA, “shotgun’, “mNGS”, “microbiota’, “microbiome’, and “next generation sequencing (NGS)’, used alone and/or in combination, interested only to the

mNGS application of CW samples
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abstract screening, 834 articles were excluded. Of the 32
remaining articles, 14 were removed after full-text read-
ing, including five review articles and nine articles that
were not relevant to the topic of the review. Finally, 18
articles were included (Fig. 1).

Studies characteristics

The first analysis of chronic wound microbiota by
metagenomics was published in 2009, analysing 2,987
patients by 16 S rDNA pyrosequencing. This first and
largest series included 916 VLUs, 910 DFUs, 791 PI, and
370 non-healing surgical wounds, identifying Staphylo-
coccus spp. and Pseudomonas spp. as the most frequent
species in 63% and 25% of all wounds, respectively [16].
Five studies were published between 2009 and 2018. Two
studies were published in 2019 [30, 31], and 11 between
2020 and September 2022. Regarding the geographi-
cal origin of publications, nine studies were from Asia,
including two publications each from Chinese, Indian,
and South Korean laboratories [31-36]; one each from
Saudi Arabia, Israel, and Taiwan [37-39]; four in the
United States [16, 27, 40, 41]; four in Australia [30, 42—
44] and only one from Europe, specifically France [45]
(Supplementary Figure S1).

Workflow

Among the 18 studies, 13 (72.22%) applied the metage-
nomic 16 S rDNA targeted protocol directly on clini-
cal samples including swabs, tissue or bone biopsies
(Table 1). Four studies used shotgun metagenomics on
DFU biopsies, and only one study applied both shotgun
and 16s rDNA approaches on DFI biopsies [38].

DNA extraction

Depending on the sample origin, genomic DNA was
extracted following specific protocols. Mechanical and
enzymatic pretreatments were needed to increase the
DNA extraction from swabs, tissue, and bone biopsies
of chronic wounds. Chemical treatment by Tissue Lyser
solution (Qiagen, Hilden, Germany) was used with or
without prior incubation at 37 °C in five studies, followed
by a vortexing step to destroy bacterial cells. A supple-
mentary incubation with proteinase K at 56 °C was rec-
ommended before DNA isolation [16, 27, 37, 42, 45].
In specific protocols, the mechanical treatment using
steel and glass beads was combined with enzymatic and
chemical procedures directly applied on chronic wounds
tissue or bone biopsies performed after debridement
and followed by manual or automatic DNA extraction
(Table 1). Further post-extraction treatments, including
microbial genome enrichment using bead-based cap-
tor, nonspecific amplification, and host genome removal,
were applied prior to library preparation to improve the
microbial genome detection [31, 38, 39, 41].

(2024) 23:39

Page 4 of 17

Metagenomic analysis

In order to estimate the microbial diversity based on
DNA analysis, targeted metagenomics was applied
directly on clinical samples in 13/18 (76.5%) studies,
amplifying the full or partial 16 S rRNA encoding gene
following an in-house or commercially developed PCR
(Table 1; Fig. 2).

The V3 and V4 hypervariable rDNA regions were tar-
geted in 10/13 studies, using one-shot amplification and
library preparation procedure (Supplementary Table 1).
Unique amplification of V4 or V3 regions was noted in
three [38, 43, 44] and one [35] studies, respectively. In the
five remaining studies, a double amplification was applied
targeting V3-V4 or V1-V3 or V3-V6 16 S rDNA variable
regions [30, 31, 38, 39, 41].

A DNA library was constructed using 16 S rDNA
amplification following the Illumina Nextera-XT paired-
end sequencing protocol (Illumina, San Diego, USA).
An Ion-Torrent commercial multiplex amplification
targeting most variable 16 S rDNA regions V2, V3, V4,
V6, V7, V8, and V9 was used in two studies, followed by
Ion Xpress Barcode Adapters library preparation pro-
tocol and Ion-Torrent sequencing [34, 37]. Full length
16 S rDNA gene was sequenced in only one study using
Rapid Barcoding Sequencing Kit (Oxford Nanopore tech-
nologies, Oxford Science Park, UK) [33]. For global and
real microbiome detection in chronic wound samples at
species-level identification, shotgun metagenomics was
applied with no prior amplification and no specific target
(Table 1).

Microbial genome enrichment increases the possibility
of microbial genome detection. Two different approaches
were used, either by human genome depletion using
NEBNext Microbiome DNA Enrichment kit (New Eng-
land Biolabs, Ipswich, USA) [38, 41], or with non-specific
random amplification after end-repaired adapters [39],
followed by paired-end deep sequencing.

Data analysis

For 16 S rDNA or shotgun metagenomic investigation,
commercial or in-house developed pipelines were used
for data analysis according to the sequencing procedure
(Table 1). Exhaustive analysis of shotgun metagenomes
usually started with human genome removal by align-
ment of total reads against a reference human genome
using WBA software [39], or with HUMANnN2 pipeline
The filtered reads were again aligned against the NCBI
GenBank database or a specific in-house microbial
database constructed from GenBank, using an adaptive
algorithm [36, 39, 41, 42]. Bacterial diversity based on
targeted metagenomics was estimated by aligning the
16 S data using an adaptive pipeline against a specific
database (Fig. 2). Greengenes, SILVA, and NCBI Gen-
Bank were the most commonly used reference databases
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Fig. 2 Metagenomic workflow applied to chronic wound samples. Clinical swabs and biopsies underwent chemical and mechanical lysis, after which
microbial DNA was extracted using either a manual or automatic protocol. Post-DNA extraction treatment was performed for microbial genome enrich-
ment and human genome removal. The remaining DNA was used for single-end or paired-end library preparation, following either shotgun or 16 S rDNA
targeted mNGS protocols, and then sequenced according to the sequencing platform. Microbial genomes were identified by alignment against local or

online databases using either in-house or commercial pipelines

for microbiome analysis (Table 1, Supplementary Figure
S1).

Chronic wound microbiology

Wound evolution could be defined by microbial diversity
and the colonising bacteria, which may progress into an
infection [46, 47]. More than 400 bacterial species were
isolated from different chronic wounds [48], but more
than 1,000 bacteria colonising human skin could generate
the wound microbiome, on tributing to wound evolution
[49, 50]. Focusing only on the most abundant bacteria in
chronic wounds, 164 bacterial genera were identified by
both 16 S and shotgun metagenomics. Streptococcus was
the most common bacteria genus, followed by Staphy-
lococcus, Pseudomonas, Corynebacterium, and some
anaerobes (Prevotella, Finegoldia, Anaerococcus) (Fig. 3;
Table 2).

Pseudomonas, Corynebacterium, and anaerobic bac-
teria such as Finegoldia, Dialister, Anaerococcus, Pre-
votella, and Bacteroides were the most common bacteria
colonising the chronic wounds and were detected in all
types of lesions. Moreover, aerobic Gram-positive cocci,
Staphylococcus and Enterococcus, were detected in both
DFRDs (DFU and DFOM) and VLU. Aerobic Gram-
negative bacilli belonging to Enterobacteriaceae were

isolated from DFU (Morganella, Providencia and Citro-
bacter), DFOM (Providencia and Citrobacter), and VLU
(Morganella), whereas other Gram-negative bacilli were
detected in DFU (Sphingomonas, Xylella and Tepidimo-
nas), PU (Sphingomonas, and Tepidimonas), and VLU
(Xylella). Interestingly, anaerobes were particularly
present. Anaerobic Gram-negative bacilli were isolated
from DFU and DFOM (Veillonella, Fusobacterium, Por-
phyromonas, Enhydrobacter and Terrimonas) and VLU
(Fusobacterium, Porphyromonas, Enhydrobacter and
Terrimonas). Moreover, anaerobic Gram-positive cocci
were detected in DFU (Parvimonas, Peptostreptococcus,
and Peptococcus), VLU (Peptostreptococcus) and PI (Par-
vimonas, and Peptococcus). Anaerobic Gram-positive
bacilli were detected in chronic wounds included: DFU
(Clostridium, Brevibacterium, Actinomyces, and Atopo-
bium), VLU (Brevibacterium and Actinomyces) and PI
(Clostridium and Atopobium). Finally, some fastidious
bacteria such as Granulicatella, Helcococcus Campy-
lobacter, and Nocardioides were detected in DFU and
VLU, whereas Dermabacter was detected in DFU and PI
(Fig. 4; Table 2).

DERDs were the wounds with highest microbial rich-
ness, with a total of 147/157 bacterial genera including
107 genera detected only in DFU and DFOM samples,
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Fig. 3 Most abundant bacterial genera detected by mNGS in chronic wounds. Out of a total of 160 bacterial genera detected in all chronic wounds,
Streptococcus, Pseudomonas, Corynebacterium, Finegoldia, Dialister, Anaerococcus, Prevotella, and Bacteroides were the most common bacteria colonising
the chronic wounds and detected in these lesions. Anaerococcus, Bacteroides, Corynebacterium, Finegoldia, Fusobacterium, Peptinophilus, Prevotella, Pseudo-
monas, Staphylococcus, and Streptococcus were reported in more than 75% of studies. The prevalence of the remained genera depended on the nature

of the chronic wounds and the colonisation/infection stage

compared to 47 from VLU, including 14 detected only
in VLU samples. In contrast, PI is the least colonised
wound, with a total of 31 bacteria genera identified
(Fig. 4). Supplementary information about fungal (Asper-
gillus and Candida) and viral species was provided by
shotgun metagenomics, as well as identification of Staph-
ylococcus and Pseudomonas bacteriophages that could be
used as a therapeutic approach to treat chronic wound
infection [27, 39, 41].

A deep 16 S rDNA and shotgun-based metagenom-
ics investigation yielded 116 microbial species in the 13
selected studies. A total of 100 species were detected
in DFRD samples, including 96 species in DFU with 66
in DFU only, 10 in DFOM biopsies with five in DFOM
only, 30 in VLU with nine in VLU only, 20 species only
detected in PIs. These species were mostly represented
by S. aureus, S. agalactiae, Escherichia coli, Pseudomonas
aeruginosa, Corynebacterium striatum, Corynebacterium
tuberculostearicumn, and some anaerobes (Finegoldia
magna, Peptoniphilus harei, Anaerococcus vaginalis, and
Prevotella bivia) (Fig. 4, Supplementary Table S2). Based
on wound colonisation, 16 bacteria species were shared
between DFRD, PI and VLU (S. aureus, S. epidermidis,

Staphylococcus haemolyticus, Staphylococcus lugdunen-
sis S. agalactiae, E. faecalis, Enterobacter hormaechei,
P aeruginosa, Stenotrophomonas maltophilia, Acineto-
bacter baumannii, Delftia acidovorans, Corynebacterium
jeikeium, C. striatum, C. tuberculostearicum, A. vaginalis,
and E magna) [16). Staphylococcus pettenkoferi, E. coli,
Serratia nematodiphila, Actinomyces europaeus, and P,
harei were specifically detected in DFU and PI. Klebsi-
ella pneumoniae, Prevotella denticola, Prevotella fusca,
and Veillonella parvula were identified from DFU and
DFOM. Proteus mirabilis, Fusobacterium nucleatum, and
P, bivia were detected in DFU and PI, and only Bacteroi-
des fragilis were identified from DFOM and PI (Fig. 4).
With no prior target, shotgun metagenomics identi-
fied the presence of Epstein Barr Virus (EBV), involved
in non-healing DFU through association with NK/T-cell-
lymphoma [39]. In addition to bacterial and viral detec-
tion, shotgun mNGS detected the presence of Candida
albicans, Candida glabrata, Candida tropicalis and
Aspergillus spp. in DFU and VLU samples [23].
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Prediction of wound-colonising microbe ecology

To understand the process of chronic wound colonisation
and the potential origin of the microorganisms colonis-
ing the wound, we compared the wound microbiome and
other body microbiomes. Unfortunately, only two stud-
ies compared skin and wound microbiomes [31, 43]. To
complete this analysis, we recovered healthy skin, urine,
and gut microbiota present in the literature [51-56]
(Supplementary Figure S2). At least 90 bacterial genera
colonising the chronic wound could be translocated from
the different body microbiota. Gut microbiota was the
principal source of wound-colonisation microorganisms
(53.5%), followed by cutaneous (17.2%) and urine (12.1%)
microbiota (Supplementary Table S3). The remaining
67 microorganisms potentially belonged to other body
microbiota and environmental microbiota, possibly
transported by healthcare professionals and the hospital
ecosystem.

Microbial diversity in chronic wounds according to
geographical distribution was highest in Asian popu-
lations, with 31.2% of bacterial genera identified com-
pared to 19.2% in Australians and 10.2% in Americans.
The microbial diversity of wounds in European and Ara-
bic and Middle-Eastern populations were the lowest,
with only a mean of 3 and 8 microorganisms identified,
respectively (Supplementary Figure S3). Staphylococcus,
Streptococcus, Enterococcus, Proteus, Pseudomonas, Aci-
netobacter, Corynebacterium, Lactobacillus, Dialister,
Fusobacterium, and Peptoniphilus were the most com-
mon bacteria genera identified in chronic wounds world-
wide. Escherichia and different anaerobes (Finegoldia,
Anaerococcus, Parvimonas, Atopobium, and Porphyromo-
nas) were preferentially detected in chronic ulcers from
American, Asian, Australian, and European patients,
whereas Campylobacter, Prevotella, and Bacteroides were
only identified in American, North African, Middle-East-
ern, Asian, and Australian patients. Interestingly, Klebsi-
ella was not detected in wounds from Australian patients
and Clostridium in ulcers from American patients.
Twenty-six bacterial genera were shared between Ameri-
can, Asian, and Australian patients in which Morganella,
Enterobacter, and different fastidious (Gemella, Helcococ-
cus, Granulicatella) or anaerobic bacteria (Peptostrepto-
coccus) were only identified in these populations. The low
™ - microbial diversity in chronic wounds from European,
North African, and Middle-Eastern patients could be due

Fusobacterium, Klebsiella, Lactobacillus, Parvimonas, Peptococcus, Peptoniphilus, Porphyromonas, Proteus, Pseudomonas, Sphingomonas, Sporobacte-

streptococcus, Porcine, Porphyromonas, Prevotella, Propionibacterium, Propionimicrobium, Proteus, Providencia, Pseudomonas, Rhodopseudomonas,
rium, Staphylococcus, Streptococcus, Tepidimonas

Dermabacter, Dialister, Dietzia, Dolosigranulum, Eggerthella, Eikenella, Enhydrobacter, Enterococcus, Escherichia, Finegoldia, Fusobacterium, Gemella,
Solobacterium, Staphylococcus, Streptococcus, Tannerella, Varibaculum, Veillonella

bacterium, Brevibacterium, Brevundimonas, Campylobacter, Citrobacter, Clostridiales, Clostridium, Comamonas, Coprobacillus, Corynebacterium,
Granulicatella, Haemophilus, Helcococcus, Lactobacillus, Massilia, Morganella, Murine, Nocardioides, Parvimonas, Pasteurella, Peptoniphilus, Pepto-
clostridium, Lactobacillus, Mobiluncus, Moraxella, Ornithobacterium, Parabacteroides, Peptoniphilus, Prevotella, Proteus, Pseudomonas, Roseburia,

Bacteroides, Bifidobacterium, Campylobacter, Clostridium, Dialister, Eggerthella, Eikenella, Flavonifractor, Fusobacterium, Intestinimonas, Lachno-
Streptococcus, Veillonella

Achromobacter, Acinetobacter, Actinobaculum, Actinomyces, Alloprevotella, Anaerococcus, Arcanobacterium, Atopobium, Bacteroides, Bifido-
Acidovorax, Acinetobacter, Anaerococcus, Atopobium, Clostridium, Corynebacterium, Dermabacter, Dialister, Enterococcus, Escherichia, Finegoldia,

Candida, Pseudomonas, Staphylococcus
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Fig. 4 Venn diagrams illustrating the distribution of microorganisms identified by metagenomic in the different chronic wounds (DFU, diabetic foot
ulcer; Pl pressure injuries; VLU, venous leg ulcer; DFOM, diabetic foot osteomyelitis). A) Venn diagram of the 164 genera identified by mNGS across all in-
cluded studies. DFUs are the most diversified wounds with 138 genera, followed by VLUs with 41 genera, Pls with 30, and DFOMs with 27. B) Venn diagram
of the 116 microbial species identified by both 16s and shotgun metagenomics across 13 studies. A total of 94 species were identified in DFU samples,

followed by VLU with 30 species, DFOMs with 27, and Pls with only 20 species
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Fig. 5 Venn diagram illustrating the distribution of microbial species between infected and non-infected chronic wounds. Out of the 116 microbial
species identified in all selected studies, 61 species were only detected in infected wounds, 33 exclusively found in non-infected wounds, and 22 were

present in both

VLU, and PI. Microbial comparison between the two
groups highlighted a high microbial diversity in infected
wounds compared to non-infected ulcers. A total of 73
microbial species were detected in the infected wounds

including a majority of anaerobic bacteria (63.6%) while
only 54 species were detected in the non-infected cat-
egory, in which Gram-positive bacteria were predomi-
nant (61.1%) (Fig. 5). Both categories shared 18 bacterial
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species, represented by common Gram-positive cocci (S.
aureus, S. agalactiae, S. pettenkoferi, E. faecalis, Strepto-
coccus anginosus), Gram-negative bacilli (E. coli, P. mira-
bilis, P. aeruginosa) and anaerobes (P harei, F magna,
(A) vaginalis, FE. nucleatum, P. bivia, (B) fragilis and Vari-
baculum cambriense). The majority of these species are
pathogens and involved in infection and/or the worsen-
ing evolution of the chronic wounds.

Limitations

There are three main limitations of the studies. Fistly, fun-
gal infections are a major contributor to delayed wound
healing, involved in polymicrobial biofilm formation
and helping commensal bacteria in resisting antibiotics
and the host immune response [57, 58]. However most
studies (12/17) used 16 S rDNA metagenomics, which
only detected bacteria, leaving wound viral, fungal and/
or parasites communities underestimated and specially
fungal infections undocumented [27, 39]. Secondly, the
final inclusion of patients was restricted by the extracted
DNA quantity and the sampling methods. Low DNA
concentrations reduced the depth of sequencing, which
limited further genomic and taxonomic investigations
[45]. Swabs were mainly used for superficial wound sam-
pling, although this technique should be avoided, due to
its sensitivity, which restricts the identification of anaero-
bic bacteria. More in-depth sampling methods should be
considered [34, 35, 37, 41, 43]. Finally, DNA extracted
from wound swabs and biopsies generated a high human
genome level, which required microbial genome enrich-
ment and/or human genome depletion to improve the
microbial genome detection [31, 38, 39, 41]. The low level
of bacterial genera detected from DFOM and PI could be
due to the complexity of DNA extraction and the human
genome fraction [30, 32, 45]. More studies should inves-
tigate DNA extraction methods in combination with
microbial genome enrichment to improve the detection
of microorganisms in the sequenced samples [42, 59].
Alternatively, human DNA depletion prior to library
preparation could remove some microbial genomes and
genomic signatures of DNA viruses (such as EBV able to
be integrated into the human genome [39]), leaving a part
of the microbial documentation unexplored.

An additional limitation arose from the data analysis,
focusing either on in-house pipelines or commercial soft-
ware using old versions of reference databases, which
could have misreported taxonomic classification of more
recently described bacterial species. Regular updates of
the reference microbial databases or amalgamation of
several reference databases are needed for an exhaustive
classification of the sequenced microorganisms (Table 1).
Finally, the simulation of the wound-colonising microor-
ganisms was based on healthy skin, urine, and gut micro-
biota from the literature, which was insufficient to clarify

(2024) 23:39
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the source of this colonisation. A comparison of multiple
body and wound microbiota as well as environmental
microbiome is recommended to better understand the
wound colonisation.

Discussion
Delayed wound healing including non-surgical chronic
wounds affects more than 100 million individuals world-
wide and cost over $31 billion in patient care and treat-
ment [13, 50]. Clinical outcomes of these lesions could
be related to the origin of the microorganisms colonising
the wound from diverse body microbiota and environ-
mental contamination, involved in biofilm formation and
infection [2, 13, 60, 61]. The difficulties in distinguish-
ing between wound colonisation and infection represent
one of the factors that delay treatment and wound heal-
ing [13, 41, 59, 62-64], faced with routine microbiology
limited by selective bacteria cultures [2, 8, 65]. Shotgun
and 16s mNGS allowed to investigate wound microbiota
diversity, its origin and infection [31, 41, 43, 66]. This
review of 18 original studies documented 164 bacteria
genera detected by mNGS in chronic wounds and suc-
cessfully identified 116 microbial species (Fig. 5), dem-
onstrating a high variability of bacteria present in these
wounds. In addition to traditional investigations looking
strictly at bacterial communities, mNGS also detected
fungi and viruses colonising these wounds. Candida and
Aspergillus were the most detected fungi [27, 39], and
once EBV was documented in a non-healing wound EBV-
associated NK/T cell lymphoma [39]. Most of these non-
bacterial microorganisms are missed by the current in
vitro approaches and even several molecular tools.
Global comparison between microbiota of different
chronic wounds showed that DFRD had the greatest
diversity (more than 87% of the detected microorgan-
isms) (Table 2), whereas VLU and PI had the lowest. This
result could be due to the low number of articles study-
ing VLU and PI microbiomes, as well as the difficulties
encountered with sampling, storage, DNA extraction,
and mNGS library preparation [45]. The high similar-
ity between chronic wound microbiota and other body
microbiota (Supplementary Fig. 3) is suggestive of
translocation of body microbiota to the wound [43, 63,
66] (Fig. 4). Geographical location influences the body
microbiota [67], and here was shown to affect the diver-
sity of microorganisms colonising the wounds. The high
diversity in Asian patients may be due to the patient’s
physiology, cultural and individual habits, hygiene, life-
style, socioeconomic factors, patient ecology, and climate
[68]. However, it is important to note that, despite this
geographical distinction in wound-colonising microor-
ganisms, the main microorganisms present on chronic
wounds and influencing their evolution remained
the same worldwide including Gram-positive cocci
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(Streptococcus, Staphylococcus, Enterococcus) and bacilli
(Corynebacterium), Gram-negative bacilli (Pseudomonas,
Acinetobacter, Proteus) and an anaerobe (Peptoniphilus)
[61]. Based on wound evolution, infected wounds had a
greater microbial diversity than non-confirmed infected
wounds (Fig. 5). Among these microorganisms, the iden-
tification of biofilm-forming bacteria in infected or non-
infected wounds could provide additional information
on the worsening evolution of wounds [69-71]. These
bacteria are frequently associated with anaerobes, which
interfere with the inflammatory response and remodel
wound healing processes [72]. Moreover, the presence of
certain pathogenic Gram-negative bacteria (Escherichia,
Klebsiella and Pseudomonas) increases the worsening
evolution of the wound due to the high secretion of vir-
ulence factors, their potential for immune evasion, and
their antiphagocytosis activity [73]. Non-fungal investi-
gation is the most limit encountered here, despite their
high contribution in chronic wound healing delay, only
shotgun investigation had been added supplementary
information about fungi infecting wounds [27, 39], which
leaves part of the microbiome in obscurity.

A key point in the management of chronic wounds is
the importance of multidrug resistance. Interestingly,
information about antiseptic and antibiotic resistance
could be predicted in silico by shotgun mNGS [37, 45,
59], as well as pathogen genotypes determined by micro-
bial genome analysis [33, 34, 40]. In the future, continu-
ous surveillance of wound evolution according to the
microbial colonisation throughout treatment could help
clinicians manage the wounds by revealing the role of
bacteria in wound healing and patient outcomes [1, 60,
63, 74, 75].

New therapeutic approaches can be applied based on
metagenomic results. According to an experimental
study, the dominance of probiotic bacteria like Lacto-
bacillus and Bifidobacterium could promote the healthy
microbiome by controlling the wound colonisation that
leads to wound healing [62, 76, 77]. Moreover, shotgun
mNGS may add supplementary information about bac-
teriophages, which could be used as an alternative for
phage therapy against biofilm-forming bacteria such as
Staphylococcus species [41, 59, 60], as demonstrated by in
vitro investigations of lytic activity of the Rosa-like phage
against S. aureus, providing a phage therapy treatment
for DFRD [78]. Unfortunately, despite the advantage
offered by mNGS, this technology has been little used in
chronic wounds microbiome investigation, while RNA
and DNA viruses were also poorly investigated, obscur-
ing a part of the wound microbiology. This may be due
to the difficulties encountered in DNA extraction from
the clinical samples usually studied by swabs and biopsies
and the sample storage [43], which requires more optimi-
sation of DNA extraction and sequencing protocols.
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With the emergence of real-time sequencing, bacteria
detection and profiling could be performed within hours
of the patient’s admission, which will improve the man-
agement of the patients and reduce the risk of wound
complications [69, 70]. Molecular methods should be
adopted in routine microbiology to identify microbes
escaping conventional cultures. These cost and time-
effective innovative technologies are promising tools to
better understand the local ecology of chronic wounds,
to help clinicians to differentiate colonisation more accu-
rately from infection, and to optimise an adaptive treat-
ment based on wound microbiome. However, some
difficulties will have to be overcome. The sensitivity of
molecular techniques can detect non-viable microor-
ganisms disturbing the data interpretation. Moreover, it
would be necessary to categorize all bacteria (genus or
species) identified by bioinformaticians to clearly guide
the clinicians in their management of patients and in
their antimicrobial stewardship. Finally, other biomark-
ers (from hosts, host immune responses, wounds) identi-
fied by metaproteomic or metabolomic approaches could
represent an attractive solution in the future [79].

Conclusions

Current challenges for non-surgical chronic wound
management include decreasing the delay in micro-
bial identification of wound colonisation. However, the
distinction between normal colonisation and infection
remains unclear, leading to overtreatment, which in
turn contributes to the increase in multidrug resistance.
Moreover, biofilm formation following wound colonisa-
tion by pathogenic and commensal bacteria increases
the risk of wound infection. The new metagenomics
approaches represent a promising solution and could
be implemented in future routine microbiology for the
documentation of chronic wounds and the surveillance
of post-treatment wound-colonising microorganisms
[80, 81]. This review confirmed the need for standardised
protocols to study chronic wound microbiota, including
sampling methods, sample preparation, and DNA extrac-
tion. Future comparative investigation based on microbi-
omes from wounds, different parts of the body, and other
environmental sources are needed to understand the ori-
gins of wound microbiota and its implications in wound
evolution.
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