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Abstract

Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting
phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential
leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo
loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic

and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to gener-
ate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known
role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential

of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage
this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a poten-
tial targeted treatment’ or 'therapy’ Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs;
summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion

of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting
benchtop studies to propel potential clinical translation on the forefront of nanomedicine.
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Introduction
The field of EV research has grown exponentially in
recent decades due to their functional association as per-
tinent nano-shuttles to transfer bioactive molecules [1].
Extracellular vesicle, is an all-encompassing term under-
written by the International Society for Extracellular
Vesicles (ISEV) to broadly connect lipid-encapsulated,
secreted cellular particles to include exosomes, microves-
icles (MVs), and apoptotic bodies (ApoBDs) [2, 3]. From
the perspective as cargo carriers, EVs are intriguingly
similar to liposomes, paralleling their dense phospholipid
nature. Of specific distinction, dependent upon their bio-
genesis, EVs are constructed with a blend of lipids and
surface membrane proteins, ultimately aiding in their
downstream functions [4]. As tags for precise sites both
locally and distant, intracellular molecules entertain the
capacity to traffic through extracellular spaces, as effec-
tive drug carriers for therapeutic applications and novel
scientific research avenues at the forefront of discovery.
Here, we discuss effective loading techniques to pre-
cisely harness EVs with miRNAs as bioactive compounds
for the application as a cutting-edge platform for drug
discovery and delivery. Previous attempts to review
miRNA-enriched EVs focused primarily on the composi-
tion of EVs and the functional basis of miRNAs as future
therapeutic prospects [5]. In this review, we largely focus
on mechanisms of targeted loading miRNAs into EVs,
with a principal element of incorporating recently pub-
lished and impactful articles that include functionally
relevant preclinical, clinical, and therapeutic involvement
of engineered and/or modified EVs with specific nano-
medicinal application.

Biological role and EV uptake

EV Biogenesis

Extracellular vesicles possess heterogeneous structural
and biochemical properties, which reflect their cellular
origin and biogenesis pathways. According to their ori-
gin, biogenesis, shape, and molecular constituents, EVs
are broadly categorized as exosomes, microvesicles, and
apoptotic bodies [6]. Exosomes comprise the smallest and
rather homogenous size of EVs with a range in diameter
from 30-150 nm and originate from the inward invagina-
tion of late endosomal membranes forming multivesicu-
lar bodies (MVBs), released into the extracellular space
as exosomes upon fusion with the plasma membrane [7,
8]. Conceptually, during EV biogenesis, early endosomes
are formed from the inward budding of the plasma mem-
brane and mature to form intraluminal vesicles (ILVs)
and MVBs. Frequently, the lysosomal fusion of MVBs
results in its degradation. However, when MVBs contain
CD63 in conjunction with lysosome-associated mem-
brane proteins (LAMPs; LAMP1 and LAMP2), as well as
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MHC class II molecules, their contents are then released
into the extracellular space upon fusion with the plasma
membrane [9]. The formation of ILVs and MVBs are
largely commissioned by the endosomal sorting complex
required for transport (ESCRT)-dependent [10] or the
ESCRT-independent pathways via the tetraspanin pro-
tein, CD63 [11]. Alternative pathways regulating ILV and
MVB formation are associated with the sorting of cargo
into exosomes [12]. On the other hand, microvesicles are
often termed as shedding vesicles being comparatively
irregularly shaped and a relatively heterogeneous popula-
tion, with a size ranging from 100-1000 nm in diameter
and generated via the outward budding of the plasma
membrane [13]. Nevertheless, the largest fraction in size
of EVs are apoptotic bodies, which range from 1-5 pm
in diameter and are released during cellular disintegra-
tion preceding apoptosis [14, 15]. In addition to differ-
ing from their modes of biogenesis, EVs collectively can
be differentiated based on their encapsulated molecular
cargo contents. For instance, exosomes and MVs are more
commonly preferentially enriched with a multitude of
cytoplasmic components, including RNAs, proteins, and
lipids. Alternatively, ApoBDs are largely enriched with
cellular organelles and nuclear components [16, 17].

Ensuing biogenesis, EV release into the surrounding
extracellular space is predominately facilitated by sev-
eral subclasses of Rab family-GTPase proteins including
RABI11, RAB35, and RAB27. For instance, exosomes are
released from MVBs upon fusion with the plasma mem-
brane through the facilitation of the RAB35 protein [18].
Moreover, exosomes are enriched with specific proteins
including Wnt, PLP, TfR and flotillin [19]. The presence
of highly-conserved and identifiable proteins, primar-
ily membrane-associated proteins such as CD63, CD81,
CD9, Alix, and TSG101 encompass hallmark characteri-
zation probes anchored amidst EVs [20]. These proteins
also serve as marker proteins during EV processing and
verification within EV preparations for functional studies
as set forth by the guidelines in the Minimal Information
for Studies of Extracellular Vesicles (MISEV), a posi-
tion statement of the ISEV [2, 3]. All in all, crucial fac-
tors including the type and physiological status of varying
cell types, ultimately determine facets of EV biogenesis,
affecting their selection and packaging of key regulatory
proteins [4].

Unpacking EV cargo

In their infancy, EVs were assumed to be merely media-
tors that shuttle cellular toxicants into the extracellular
space for the maintenance of cellular fitness and homeo-
stasis [21]. However, studies have more recently shown
the critical role of these nanovesicles in facilitating com-
munication with neighboring cells, which are capable of
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posing both beneficial and deleterious effects. Phenotypic
changes undergone by naive recipient cells arise from the
transfer of functionally active biomolecular components
including lipids, proteins, mRNAs [22], and miRNAs
[23], that subsequently interact with the ensuing extracel-
lular matrix of naive cells. Initial attempts to profile the
protein contents of EVs have revealed their capacity to
conceal both integrated proteins and proteins attached to
their bilipid membranes. Although there is a clear diver-
gence in the biogenesis pathways of both exosomes and
MVs, no distinctive proteins have been reported that
clearly differentiate the two EV subpopulations. This
could in part be a result of the shared features of the
endosomal and plasma membranes. Reports have shown
that proteins necessary for exosome biogenesis such as
ESCRT proteins are highly abundant in the proteome
profile of exosomes [24]. Due to the amplified nuclease
activity amidst the extracellular environment, it can be
assumed that secreted EVs are potentially vulnerable and
subject to degradation. Therefore, EV structural compo-
sition is integral in protecting their harnessed bioactive
cargo from degradation upon release into the extracellu-
lar space [25]. The multifaceted structural characteristics
that allow EVs to withstand adverse extracellular condi-
tions poise them as attractive vehicles to shuttle thera-
peutic proteins and RNAs as a potential drug delivery
platform [26, 27]. Various forms of EV interactions with
recipient cells underpin their functional delivery of bio-
active molecules [28]. Once integrated within recipient
cells, EVs are capable of evading lysosomal degradation as
a means to release their functional cargo molecules. Here
we focus on miRNAs, which exert functional regulatory
impacts on gene expression through post-transcriptional
regulation of target mRNAs. It is well-documented
that the expression level of particular miRNAs are key
during development [29, 30] and stress responses [31,
32], and that EVs play an important role in transferring
miRNA cargoes between cells [33]. Alterations in the
release and uptake of EVs are associated with pathologies
including cancer [34] and cellular stress [32, 35-39].

Mechanisms of EV uptake

The uptake of EVs by recipient cells can be confirmed
either via direct or indirect evidence. EVs can be directly
visualized by labeling their bilipid membranes using lipo-
philic fluorescent dyes, including the commonly used
PKH67 and PKH26, Rhodamine B (R18) and DIL [40].
Alternatively, EVs can be stained using permeable dyes
like CFSE and CFDA, amidst the confines of their cyto-
plasmic lumen [41]. The incorporation of fluorescently
labeled EVs can then be verified either using micros-
copy [42] or via cellular sorting technologies in recipi-
ent cells using flow cytometry [28, 40]. In vivo, various

Page 3 of 41

mechanisms of EV internalization into recipient cells
and/or tissues are discussed within the literature across
many fields of study. Among those mechanisms com-
monly represented, clathrin-mediated endocytosis,
phagocytosis, micropinocytosis, lipid raft-mediated
internalization, and direct fusion with the plasma mem-
brane of the receiving cell are among the most widely
reported. Specific physiological uptake mechanisms of
EVs are largely dependent upon their molecular compo-
sition, most commonly the surface protein and/or gly-
coprotein configurations of both the EVs membrane and
the plasma membrane of the receiving cell [43]. This has
in part been confirmed where tetraspanin proteins CD9
and CD81, which are present on the surface of EVs, were
evidenced to play important roles in the cellular uptake
of EVs. Cells treated with anti-CD9 and anti-CD81 anti-
bodies showed similar reductions in EV uptake [44].
Additionally, a study using EVs treated with proteinase K
(broad-spectrum serine protease used for protein diges-
tion), resulted in the reduced uptake of EVs in recipient
cells [45]. Conceptually, the dominant mechanisms of EV
uptake can vary greatly amongst cells of differing patho-
physiological conditions.

Extracellular miRNAs and their incorporation
within EVs

miRNAs

As implied by their name, miRNAs are short, single-
stranded RNA molecules of ~22 nucleotides, initially
discovered by Lee and colleagues in 1993, while studying
the nematode Caenorhabditis elegans [46]. MicroRNAs
function to effectively modulate the stability of mRNA,
most commonly inhibiting the translational potential
and/or inducing degradation to respective mRNA targets
via a sequence-specific complementarity mechanism
[47, 48]. Focusing primitively on canonical miRNAs,
their biogenesis primarily initiates from DNA sequences
called miRNA genes, which are then transcribed into
primary miRNAs (pri-miRNA;~ 150 nt) by RNA poly-
merase III, and further processed via a microprocessing
system into precursor miRNA (pre-miRNAs;~70 nt).
Pre-miRNAs are then shuttled from the nucleus of the
donor cell into the cytoplasm via a complex of exportin5
and RAS-related nuclear protein-guanosine-5-triphos-
phate-ase [49]. Amid the cytoplasm, the terminal loop
of pre-miRNAs are sequestered via the RNase III endo-
nuclease, Dicer [50], molding miRNA duplexes that are
then catalyzed by Argonaute RISC Catalytic Component
2, responsible for leaving and/or removing one strand of
the duplex to propagate the directionality of a mature
miRNA strand [51, 52] with the capacity to be packaged
into EVs for potential functional alterations upon its
effective release amidst receptor cells (Fig. 1).
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Fig. 1 Diagrammatic Overview of Extracellular Vesicle Biogenesis and miRNA Processing. Extracellular vesicles (EVs) are a heterogeneous
collection of membrane-enveloped nanoparticles that serve as a mass transit mechanism for the packaging and release of complex cargos,
including miRNAs. Exosomes (30-150 nm), are commonly spherical in shape and arise via the endocytic pathway via exocytosis from the fusion

of the vesicular membrane into the plasma membrane. Microvesicles (100-1000 nm), notably irregularly shaped, are the byproduct of the outward
budding/pinching of the plasma membrane. Apoptotic bodies (> 1 um) are formed through apoptotic cell disassembly or programmed cell death,
and released through cell blebbing. The cargo ‘selection’or ‘sorting’ process that ensues, specifically the local enrichment of miRNA cargo molecules

during nascent EV formation is largely propagated through the miRNA processing enzymes Drosha and Dicer, required for the maturation
of miRNAs that lead to the translational repression or degradation of target mRNAs

Initial studies reporting that EVs carry miRNAs [23, 53,
54] have fueled further research efforts to unpack the all-
inclusive nature of EVs and their biological cargoes. It has
been previously reported that over 60% of all mammalian
mRNAs are predicted to be post-transcriptionally regu-
lated by miRNAs [55], indicating that miRNAs function-
ally constitute a significant class of pervasive regulators

of various cellular processes, outnumbering kinases and
phosphatases [56]. Collated data generated from small
RNA sequencing reports have indicated that miRNAs
comprise anywhere from<1% to 30% of the total read
counts within EVs of diverse origins [57]. Extracellular
miRNAs encapsulated within EVs are progressively being
explored as promising circulating biomarkers for many



Menjivar et al. Biological Procedures Online (2024) 26:14

cancers and diseases [58], and their ability to remain
predominantly stable while evading degradation from
external nucleases, underpins their significance, and the
basis for studying EVs as cargo carriers for downstream
therapeutic usage. However, the precise mechanisms by
which specific miRNAs are packaged and released and/or
enriched into EVs still largely remains unknown.

Encasing selective miRNAs into EVs

Attempts to pinpoint the explicit processing mechanisms
leading to extracellular miRNAs export into EVs versus
their cellular retention have been predominantly incon-
clusive. Many studies exist to suggest that collectively,
RNAs are primarily shuttled into EVs selectively via the
interaction of specific RNA sequence motifs [59] or lipid
interactions [60] in association with RNA-binding pro-
teins (RBPs) [61-63], or possibly through non-selective
measures as evidenced previously [64, 65]. In more recent
efforts and extending past the initial observations of single
tetranucleotide motifs connected to miRNA export [61, 66,
67], Garcia et al. has shown up to an 80-fold enrichment
of specific RNA sequence motifs (CGGGAG) identified
by ‘reader’ proteins Alyref and Fus, which function to pro-
mote the sorting of sequence motif-bearing miRNAs into
EVs for potential downstream delivery [59]. Still, a range of
other EV-sorting signals including RNA and/or RBP modi-
fications that inherently impact RNA stability and miRNA
biogenesis also exist [68], such as ubiquitylation, sumoyla-
tion, phosphorylation, and uridylation, which likely involve
regulatory processing machinery that implicate miRNA
packaging into EVs. Together, these studies along with
many others suggest an overabundance of influences that
likely labor interchangeably, and coalesce in the packaging
of various forms of RNAs into EVs. A more detailed under-
standing of RNA incorporation mechanisms is discussed in
a recent review by Dellar and colleagues [57].

Methods of miRNA cargo loading for incorporation
into EVs

Primitive compositional and nano-mechanical properties
of EVs including their admirable biocompatibility and
stability, non-cytotoxic and low immunogenic traits, high
loading ability and lengthy life span, and their intrin-
sic aptness to cross biological barriers make them ideal
drug delivery candidates that natively carry cargo com-
ponents, easily modifiable to contain therapeutic agents
of interest (e.g., nucleic acids). Recent evidence in mice
using engineered EVs with small interfering RNAs (siR-
NAs), indicated more than a tenfold improvement in
functional siRNA delivery in contrast to synthetic lipid
nanocarriers [69]. Compared to EVs, to date, a multitude
of hindrances exist in developing synthetic nanocarri-
ers for downstream clinical usage in drug delivery [70],
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specifically involving their toxicity and immunogenic
responses, lack of specificity, and preferential aggrega-
tion amidst the liver and spleen [71]. All things consid-
ered, copious evidence suggests that the advantageous
and distinct features of EVs are likely the eminent angle
catalyzing their integration as a mainstream effort at the
forefront of nanomedicinal discovery.

Complexities in EV sample heterogeneity combined
with the variability in encapsulated molecular cargoes
primitively pose an inherent need in EV loading mecha-
nism optimization in producing cargo-modified EVs for
downstream therapeutic applications. Conceptually, EV
loading techniques can be categorized into two main
approaches: indirect modification to donor cell physi-
ology (‘endogenous’ or ‘passive’ cell-based alterations)
or through the direct modification of EVs (‘exogenous’
or ‘active’ cargo harnessing), each of which, with vary-
ing degrees in efficiency. Utilizing ‘endogenous’ or ‘pas-
sive’ loading measures, molecular constituents act upon
and are taken up via donor cells, and subsequent excess
cargo can then be shuttled into EVs prior to formation,
resulting in the subsequent secretion of indirectly modi-
fied EVs with an increased abundance of the molecular
component of interest. Assuming a more natural role in
cargo loading, the enriched EVs can then be utilized as
a delivery platform to recipient cells [72]. Alternatively,
‘exogenous’ or ‘active’ loading measures, primarily draw
a focus on implementing catalytic reagents post-EV isola-
tion to induce a permeable bilipid membrane to bolster
cargo loading with precision molecules of interest [73].
In spite of the fact it is a more direct approach, such re-
engineering of EVs heavily influences the composition of
their bilipid membrane, which serves as the primary con-
tact point in cell-to-cell communication propagating the
various mechanistic routes of their ensuing uptake [74]
(Fig. 2). The following sections offer a more compara-
tive approach of multiple loading techniques in greater
depths, focused on cargo loading efficiency with an
emphasis on loading selective miRNAs into EVs.

Endogenous (Passive) pre-loading of EVs

Pre-loading miRNAs as potential therapeutic cargoes
into EVs is a method widely executed across many dis-
ciplines, largely accomplished through donor cell manip-
ulation via incubation and transfection with synthetic
miRNAs (also known as miRNA mimics) and/or with
miRNA-expressing plasmids/viral vectors, to increase
endogenous levels of selective miRNAs that can then be
passively incorporated into EVs during their biogenesis
[75]. Although, current attempts in manipulating donor
cells to secrete therapeutic-miRNA enriched EVs largely
bypass the structural and/or compositional alternations
of miRNA loading post-isolation, recent reports also
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Fig. 2 Schematic Representation of Methodological Approaches in Extracellular Vesicle Loading for Functional Uptake in Target Cells. Lipid
bilayer-delimited particles (EVs) serve as an effective novel drug delivery system for endless pharmaceutical compounds, including miRNAs. Thus,
the method of incorporation for enriching miRNA cargoes into EVs can be segmented into two main sub-types: passive (donor cell manipulation)
and active (direct EV alterations) loading methods
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suggest that circumjacent transfection reagents critically
affect downstream RNA cargo delivery [76-78]. Never-
theless, methods of endogenous cargo loading are still
widely used, warranting further discussion of specific
loading techniques.

Donor cell manipulation and genetic engineering

Direct transfection of EV-secreting cells as a means to
modulate their cargo content is a rather straightforward
and simple method to enrich or deplete EVs, prior to
their inception. The use of chemical transfection reagents
to load synthetic mimics and/or precisely designed vec-
tors/plasmids effectively transduced into donor cells, are
the two predominant methods utilized in overexpress-
ing desired molecules (therapeutic drugs), such as small
nucleic acids to include miRNAs. Assimilating and con-
centrating miRNAs within the cytosol of naive cells fol-
lowing assisted passage across the cell defining plasma
membrane, miRNAs have the potential to escape the
endolysosomal system, and withstand dynamic and deg-
radative ribonucleases. If successful, assimilated miRNAs
typically favor incorporation into ILVs, which foregoes
their exocytosis within EVs. Endogenous RNA modula-
tions have been reported using commercialized trans-
fection reagents such as Lipofectamine™ 2000 (Thermo
Fisher Scientific; Waltham, MA, USA) and HiPerFect®
(Qiagen; Hilden, Germany), artificially designed con-
structs/vectors [79], RNA aptamer—protein interactions
and reversible light-inducible protein—protein interac-
tion modules [80], EXOtic RNA-packaging devices [81],
and the TAMEL loading platform [82]. To this point,
the generation of stably modified HEK293T cell lines
designed to express miR-21, have been reported to pro-
duce modified EVs for downstream therapeutic use in
glioblastoma rat models [83]. In addition, the develop-
ment and delivery of CRISPR-Cas9 technologies as a
novel gene editing molecular tool has also been shown to
be applied to living cells through electroporation for the
establishment of manipulated parent cells designed for
the production of EVs bearing specific cargoes [84—86].
Although extensive damage to the physiochemical prop-
erties of EVs using passive loading measures is largely
averted, preserving their integrity, the endogenous pre-
loading of EVs is predominantly unmanageable due to the
elusive disparities in RNA incorporation within EVs [63],
and the presence of residual contaminants such as trans-
fection reagents that ultimately affect RNA cargo deliv-
ery [76—78]. Given the regulatory properties of miRNAs,
the low loading efficiencies of this method likely induce
some level of cytotoxicity in donor cells, promoting ensu-
ing cellular damage that hinders a natural homeostatic
condition, thus altering the function of subsequent EV
secretions under basal conditions of homeostasis [87,
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88]. Moreover, a major drawback of this approach is
the lack of control over the incorporation of other car-
goes, including non-selective miRNAs, mRNAs, lipids,
and proteins. Furthermore, the contribution of specific
miRBPs in functionally regulating in part the efficiencies
of passive loading of target miRNAs into EVs, is not yet
fully investigated or understood, ultimately preventing a
more specific and controlled method of cargo loading.

Exogenous (Active) post-loading of EVs

Post-isolation loading of EVs with exogenous biomol-
ecules has been principally achieved through incubation
strategies promoting a close-knit association of the cargo
of interest with the EV lipid bilayer membrane [89], har-
nessing therapeutic cargo interests to the EVs surface [90],
or most regularly through the diffusion of biomolecules
into EVs employing techniques to mechanically and/or
chemically stimulate a porous membrane [91]. Despite
initial reports indicating a low cargo loading efficiency
and an ineffective delivery of active RNA cargos [92],
more recent reports have shown a robust miRNA upregu-
lation (>1000-fold) into EVs via exogenous manipulation
[93]. However, mechanistic follow-up studies to evaluate
the compositional surface of EVs in supporting the deliv-
ery of targeted cargo, effectively need to be further eluci-
dated to unlock the full translational potential of EVs as
carriers of therapeutic agents. The following subsections
review precisely in greater depth, common methods of
exogenous cargo loading, elucidating both their strengths
and drawbacks as a serviceable EV loading system.

Provisional membrane permeabilization

Understanding the compositional elements encompass-
ing the structure of EVs is quintessential to conceptual-
izing progressive approaches for therapeutic alterations
in cargo packaging. Broadly speaking, bi-lipid encap-
sulated nanoparticles (EVs) principally express surface
ligands and receptors from their source cells, all while
encircling a hydrophilic core [94]. Early attempts of
miRNA cargo loading into EVs post-isolation, all fol-
lowed a common and relatively simple method of incu-
bation. Under specialized conditions, cationic lipid
formulations like Lipofectamine™ RNAiMAX Trans-
fection Reagent (Thermo Fisher Scientific; Waltham,
MA, USA) have been shown to successfully incorporate
miR-335-5p into EVs for functional therapeutic delivery
in vivo to desmoplastic cancers [95]. Pending the cargo
of interest, incorporation into isolated EVs is target-
edly achieved through simple diffusion across the EVs
bilipid membrane, while its stunted loading efficiencies
are generally restricted via the concentration gradient
within the solution and the hydrophobicity of the loading
compounds [91]. Other direct mechanistic approaches



Menjivar et al. Biological Procedures Online (2024) 26:14

to destabilize the bilipid membrane of EVs are predomi-
nantly performed through sonication and electropora-
tion. For instance, recent reports from Pottash et al. used
sonication-mediated EV loading techniques to incor-
porate anti-inflammatory miRNAs (miR-146a, miR-
155, and miR-223) into HEK293T EVs for downstream
use in inflammation-related diseases [96]. The focus of
sonication is on disrupting the membrane rigidity and
microviscosity through ultrasound waves, while the elec-
troporation of EVs is highly dependent upon their subjec-
tion to a high-voltage pulsing that dismembers its pores.
Taken together, central technical adversities exist involv-
ing both methods including the destabilization of the
membrane and the preservation of EV integrity, which
regulate and affect downstream cellular uptake [97].
Additionally, the electroporation of EVs with uncommit-
ted nucleic acids have been described to manifest large
cargo aggregates, which have partially been attempted to
have been offset by incorporating EDTA in conjunction
with an electroporation buffer [98]. Aside, recent reports
have suggested that sonication-assisted loading (28%) is
comparably more efficient than both incubation (1%) and
electroporation (5%), respectively [99].

Various other techniques exist to include: calcium chlo-
ride transfection, freeze—thaw cycles, pH gradient modi-
fications, as well as kit-based assays like the Exo-Fect "
siRNA/miRNA Transfection Kit (System Biosciences;
Palo Alto, CA, USA) that secure the potential application
to targetedly load precision molecules into EVs as a new
and promising frontier among established drug delivery
systems. Exogenous loading of miRNA molecules using
calcium chloride transfection has been evidenced and
slightly modified via heat shock, which alters the fluidity
of the exosomal membrane to promote the incorpora-
tion of miRNA into EVs with similar efficiencies in load-
ing to electroporation [100]. Additionally, the notion of
EVs as nanocarriers has also been evidenced through
the successful accumulation of carrier RNA complexes
using repeated freeze—thaw cycles (10 times), from
room temperature to -80 °C [101]. Although, recent evi-
dences have duly suggested that repeated freeze—thaw
cycles leads to a reduction in the number of EVs, as well
as a cycle-dependent increase in their particle size, sug-
gesting the phenomena of EVs subsequent fusion during
storage [102]. Aside, given the structure and composi-
tion of EVs, pH gradients between the intravesicular and
extravesicular environments have also been studied to
mechanistically load negatively charged cargos via dehy-
dration/rehydration using 70% ethanol and acidic citrate
buffer (pH 2.5) followed by dialysis in HEPES-buffered
saline (HBS; pH 7), respectively. The same study revealed
decreased levels of Alix and TSG101 following mecha-
nistic measures of pH gradient modifications, suggesting
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potential surface protein and lipid rearrangements amid
the EVs surface [103]. Of particular ineterst in terms of
loading efficiencies, recent reports have indicated that
EV cargo modulations via the Exo-Fect'" system (System
Biosciences; Palo Alto, CA, USA) have revealeda >1000-
fold upregulation of specific miRNA moleculaes of inter-
est. In the same study, it was also shown that Exo-Fect "
miRNA-modified EVs contained altered membranes that
catalyzed their internalization within target cells, while
duly minimizing their lysosomal colocalization compared
to native EVs, underpinning a very promising method of
incorporation for loading therapeutic miRNAs into EVs
[93]. These summarized findings elucidate useful techni-
cal advancements in developing an efficient platform to
produce therapeutic miRNA-enriched EVs capable of
downstream clinical usage.

Therapeutic and clinical translation of miRNA
Cargo-Enriched EVs for disease treatment
EVs hold great therapeutic and clinical potential, owing
partially to their ability to be used in allogeneic and/or
xenogeneic applications without eliciting signs of cyto-
toxicity and/or immune reaction [104-106]. As such,
they are routinely investigated as both a stand-alone
therapy and as carriers for a variety of drug-based thera-
peutic compounds. Of these applications, miRNA load-
ing into EVs has gained significant popularity within
the last decade, given the proven regulatory properties
of miRNAs becoming more widely recognized within a
variety of tissues [107]. The first results of miRNA load-
ing into EVs quickly followed such discoveries, with
Katakowksi et al. 2013 demonstrating that engineered
mesenchymal stem cell (MSC) exosomes loaded with
miR-146b, having the ability to significantly reduce
glioma xenograft growth within a rat model of primary
brain tumor [108]. That same year, Ohno et al. adapted
measures to transfect HEK293 cells with Let-7a, reveal-
ing that the purified exosomes resulting from the cell cul-
ture were able to effectively, translationally inhibit tumor
formation in a murine model of xenograft breast can-
cer [109], while Bryniarski et al. duly used exosome-like
nanovesicles to deliver miR-150, as a means to regulate
T-cell tolerance, which also in a murine model showed
to inhibit allergic contact dermatitis [110]. Agreeingly,
these discoveries provided early evidence of the thera-
peutic application and clinical potential, which has since
aided in helping to shape the steadily increasing interest
in miRNA-enriched EV therapies spanning multiple dis-
ciplines, as evidenced in the provided schematic (Fig. 3).
Recent research into the clinical application of miRNA
cargo-enriched EVs have been heavily driven by their
oncological appeal, notably in breast, lung, liver, colo-
rectal, ovarian, and brain tissues, given that cancer
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Collectively, EV treatments have been implicated as a targeted approach in combating disease, as therapeutically-enhanced tiny particles
with immense therapeutic potential in nanomedicine. Major areas of therapeutic interest include: tissue regeneration, oncology, as well
as within various musculoskeletal, cardiovascular, and neurological disorders

progression and metastasis are intently connected with
the repressed expression of tumor-suppressing miR-
NAs [111]. In addition, the therapeutic applicability of
miRNA-enriched EVs are under investigation regarding
tissue regeneration and amelioration of chronic illnesses
in nearly every tissue in the body (Table 1); most promi-
nently in the musculoskeletal, cardiopulmonary, and
nervous systems. Research studies involving the poten-
tial clinical translation of miRNA-enriched EVs encom-
passes a large body of literature/number of publications,
spanning a lengthy list of high-impact scientific journals
amidst diverse fields, previously summarized by other
groups [5]. With the rapid growth of miRNA-enriched
EV research enhancing our basic scientific knowledge
of EVs for downstream application, this review largely
focuses on previously undiscussed publications with
the substantial translational potential to feasibly favor the
journey from benchtop to clinic.

Oncology

Globally, nearly 20 million people are diagnosed with
cancer every year, with that number predicted to rise to
nearly 30 million by 2040 [116]. Given the steady increase
in the global cancer burden, it is imperative that new
therapeutic strategies are developed to reduce cancer
deaths. Trends in miRNA-engineered EV therapies for

cancer treatment have catapulted studies amidst some
of the most commonly diagnosed and deadliest cancers,
with a strong focus on breast, lung, liver, and colorectal
cancers. Significant research has also been conducted on
ovarian and brain cancers, likely due to their high mor-
tality rates [117].

Breast cancer has recently surpassed lung cancer as
the most commonly diagnosed cancer, with an estimated
2.3 million new cases every year, globally [116]. As such,
it has become the target of multiple potential miRNA-
engineered EV therapies. Largely, targeted therapies
for breast cancer can be bisected into two groups, with
a focus either on the activation of the immune sys-
tem to inhibit malignant growth or through the direct
tumor suppression via miRNA-mediated cellular apop-
tosis. Case in point, a previously reported attempt
using exosomes derived from M1 macrophages, loaded
with miR-511-3p were opportunely surface-modified to
include interleukin-4 receptor-binding peptide and sub-
sequently showed to successfully induce M1 polariza-
tion through the downregulation of M2 markers in vitro,
showing greater homing properties to tumors in a murine
model using 4T1 breast cancer cells. In vivo experi-
ments duly confirmed the inhibition of tumor growth
and decreased levels of M2 cytokines and immune-
suppressive cells, increasing levels of M1 cytokines and
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immune-stimulatory cells [118]. In addition, other groups
have also reported the successful targeting of breast can-
cer cells with miRNA-loaded EVs, namely miR-34a-en-
riched exosomes, which were shown to dose-dependently
induce breast cancer cell death, visibly increasing the
inhibition of cell migration and invasion, compared to
unloaded-exosomes [119]. Conversely, lung cancer, now
the second most prevalent cancer worldwide, is reported
as the leading cause of cancer death [116]. Implemented
strategies to actively inhibit non-small cell lung cancer
have been predominantly focused on promoting tumor
cell apoptosis in both human cancer cell lines and murine
models. For example, Zhou et al. tested the efficacy of
miRNA-enriched exosomes on both A549 cells, as well
as in a murine xenograft model. The application of miR-
449a-loaded exosomes to A549 cells, revealed their ability
to effectively inhibit proliferation and promote apoptosis,
while duly decreasing tumor volume, nearly doubling the
survival time of the mice in vivo [120]. Although these
studies demonstrate the modulatory effects and the sig-
nificance of selected candidate miRNAs as a targeted
treatment to combat several types of aggressive cancers,
further in-depth studies are required to explicitly evalu-
ate their encompassing functions and off-target effects
in order to ultimately apply these therapeutics to in vivo
human models as EV-based miRNA therapies.

Apart from breast and lung cancers, liver cancers are
currently the third leading cause of cancer-related deaths,
accounting for approximately 8.3% of all cancer-related
deaths worldwide [116]. Given miRNAs’ powerful use as
both biomarkers and mediators of physiology and dis-
ease, miRNA-enriched EV therapies for liver cancers have
predominantly focused on identifying candidate miRNAs
downregulated in hepatocyte cancer progression, prior
to designing potential strategic EV-based therapies. Yu
et al. tested the anti-tumor capacity of lowly expressed
miR-375 in human hepatocellular carcinoma (HCC),
revealing miR-375-loaded exosomes ability to reduce
proliferation, increase apoptosis, and decrease the num-
ber of migratory and invasive HCC cells in vitro. Employ-
ing the use of an in vivo murine model, the anti-tumor
effects of miR-375-loaded exosomes injected with Huh-7
cells were shown to result in a significant inhibition of
Huh-7 tumor growth, with reductions in the proportion
of KI67-positive proliferative cells [121]. Alongside liver
cancers inimical effects, colorectal cancer (CRC), the
third most commonly diagnosed cancer and the second
leading cause of cancer death [116], has also positionally
implemented broad utilization of EV-based treatments
using a numerous amount of cell lines for both in vitro
and in vivo work. Alike, a representative study from Hos-
seini et al. aimed to investigate the anti-tumor effects
of CT-26 murine CRC-derived exosomes loaded with
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miR-34a in an in vivo murine model, disclosing miR-34a-
loaded-exosomes ability to greatly reduce tumor size,
prolonging the survival time of mice. Additionally, miR-
34a-enriched exosomes were shown to aptly induce T cell
polarization towards the cytotoxic T cell subtype, which
is in part responsible for targeting and destroying cancer-
ous growths [122]. In addition to those aforementioned
cancerous subtypes, ovarian cancer (OC), accounts for
5% of female cancer deaths and approximately 2.5% of all
malignancies among women, despite its 1.3% lifetime risk
of development in the United States [117]. Despite the
immense amount of research in the field, a massive short-
age persists for promising screening tools given OCs high
morbidity and low survival rates. In the case of miRNA-
engineered EV therapies, two predominant strategies are
commonly utilized and explored for OC: (1) comparing
the miRNA expression patterns between healthy and
cancerous ovarian tissues aimed in identifying potentially
therapeutic miRNAs, or (2) selecting miRNAs capable of
reducing cancer cell sensitivity to chemotherapeutics. A
previous attempt by Zhao et al. aimed to combine both
approaches through first selecting a candidate miRNA
(miR-484) post-comparison of the miRNA expression
patterns of ovarian cell lines and tissues, denoting the
significant downregulation of miR-484 in cancerous tis-
sue types. Aimed to unveal its functional relevance in
a murine model revealed, miR-484-loaded HEK293T-
derived exosomes improved vascular normalization and
the chemotherapeutic sensitization of ovarian tumors
[123]. Collectively, these studies suggest the broad effi-
cacy of identifying potential targeting therapies through
the investigation of differentially regulated miRNAs
amidst cancerous tissues, a technique that could be more
broadly applied to create therapeutics for both cancerous
and non-cancerous illnesses.

Alas, brain cancers, including gliomas and meningi-
omas, constitute fairly rare types of cancers, but other-
wise have one of the lowest survival rates. Alongside,
such cancers persist and are particularly prevalent in
areas embodying a high Human Development Index
(i.e. North America, Europe, Russia, China), compos-
ing double the incidence and mortality per 100,000 peo-
ple, compared to areas with a low Human Development
Index [116]. These statistics undeviatingly underpin just
why brain cancers are a common target for miRNA-
engineered EV therapeutics, with glioma treatments
being actively investigated by multiple groups. From ini-
tial attempts screening glioma stem cell lines, Lang et al.
found that miR-124a packaged into BM-MSC exosomes
showed significant reductions in glioma stem cell viabil-
ity and clonogenicity. Using an in vivo murine model,
glioma stem cell lines were exposed to miR-124a-loaded
exosomes prior to intracranial xenograft, revealing a 50%
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survival rate over a 120-day period, whereas both the PBS
and unloaded-exosome control treatments plummeted to
a 0% survival rate by day 70 [124]. In short, initial piloting
efforts in the development of cancer therapies for imple-
mentation in mainstream medicine by use of miRNA-
engineered EVs are currently being explored both using
in vitro and in vivo models, as an effective nanodelivery
system (Table 2).

Musculoskeletal disorders

Musculoskeletal disorders affect the motor organs, mus-
cles, tendons, bones, cartilage, ligaments, and nerves,
which are characterized by varying forms of discomfort
to irreversible and disabling injury [157]. Moreover, the
prevention and treatment of musculoskeletal disorders
is a global concern, fueled primarily through govern-
ment and private company efforts. More recently, in
several classified musculoskeletal disorders, adipose-
derived mesenchymal stromal cell EVs have been shown
to improve tissue healing as a primary paracrine effector,
providing yet another potential alternative therapeutic
solution [158—162]. While the underlying mechanisms of
EV-mediated repair are not explicitly and/or fully under-
stood, studies entailing aspects of bone, intervertebral
disc degeneration (IVDD), and cartilage therapies have
begun to focus on aspects of deciphering EV-mediated
cargo and subsequent RNA manipulation for the genera-
tion of miRNA-engineered EVs for downstream thera-
peutic applications.

Therapies involving miRNA-engineered EVs in bone
tissue profile two main categories; (1) the treatment of
osteoporosis and (2) attempts to increase osteogenesis
for larger defects. In this respect, miRNA-loaded EV
approaches using miR-19b-3p applied to osteoporotic
BMMSC:s resulted in the promotion of osteogenic dif-
ferentiation and potential, evidenced by the significant
upregulation of ALP, collagen type 1, and RUNX2 expres-
sion, compared to the unloaded control exosome treat-
ment [163]. Subsequent investigations of miRNA-loaded
EV therapies in the intervertebral disc have followed
a similar pattern in accordance to bone regenerative
strategies, primarily using miRNA sequencing analysis
techniques, as a means to identify potentially therapeu-
tic miRNAs. Indeed, Zhang et al. identified a potential
candidate miRNA by first recognizing six major protein-
ases that drive IVDD. Through functional use of IL-1j
as a means to mimic degenerative conditions, miR-27a-
loaded EVs were applied to degenerated rat nucleus pul-
posus cells and showed significant protein alterations,
such as upregulated collagen type II and aggrecan, and
conversely correlated decreases in their potent deg-
radative molecule, MMP-13 [164]. Apart from IVDD,
investigations involving cartilage tissue have almost
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exclusively honed in on the alleviation of osteoarthritis
(OA), a habitual disease affecting the joints. Using simi-
lar approaches to those aforementioned, multiple groups
have focused on miRNA-loaded EV strategies in ortho-
paedic tissue through the comparison of miRNA expres-
sion profiles of normal and OA-afflicted tissues. In vitro,
exosomes from synovial fibroblasts isolated from knee
joints of Sprague—Dawley rats loaded with miR-126-3p,
have been shown to decrease chondrocyte apoptosis and
suppress inflammation through decreased levels of IL-1,
IL-6, and TNF-a. Furthermore, using an OA rat model
in vivo, miR-126-3p-loaded exosomes were also shown to
decrease the occurrence of abnormal lesion- or edema-
like inflammation, restore bone volume fraction levels,
and to increase the articular cartilage thickness and sur-
face regularity [165]. Nevertheless, the breadth of studies
in this regard (Table 3) contain a wide-array of interfacial
engineering strategies that require extensive investigation
in further developing this technology, as both a promis-
ing diagnostic and an effective therapeutic system.

Cardiovascular disorders

Accounting for almost a third of all deaths, cardiovas-
cular disease is the leading, predominant, and principal
underlying cause of death worldwide [179]. Aside from
established cardiac care and continued advancements in
certain aspects of applied research, calls for novel and
strategic alternatives, such as therapeutically-enriched,
miRNA-engineered EVs, are imperative in pushing the
threshold on the forefront of nanomedicine. Initially
emerging as a promising diagnostic tool, the noninvasive
nature of EV collection has propagated their exploitation
for disease prevention, intervention, and palliation in car-
diovascular disease and repair [180]. Repair strategies for
the heart entailing miRNA-engineered EV therapies have
largely focused on aspects of regeneration post-heart
attack, either through the investigation of ischemia—
reperfusion (I/R) injury or via myocardial infarction. As
such, parameters for healing in these models are gener-
ally characterized by reduced inflammation and rates
of apoptosis (Table 4). Hence, Chen et al. showed that
in vitro, miR-125b loaded exosomes applied to rat myo-
cardium cells derived from an I/R injury model led to the
restoration of cell viability (similar values to the sham rat
myocardium cells), as well as decreased apoptosis and
levels of inflammatory proteins IL-1f, IL-6 and TNE-
a. Moreover, the same group showed that in vivo, the
cardiac function of I/R rats was restored following the
administration of miR-125b loaded exosomes through
lowered infarct size, reduced ratios of inflammatory cells,
and restored left ventricular function [181]. Collectively,
this suggests in part, the role of miR-125b in contributing
to the remission of I/R in myocardium and its functional
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applicability to serve as a potential therapeutic agent for
myocardial I/R. MicroRNA-engineered EV therapies for
cardiovascular repair have thus far shown in vivo prom-
ise for the treatment of several prominent and deadly car-
diac pathologies, however, additional work is needed to
exclusively translate these therapeutic applications bed-
side for the implementation in human patients.

Neurological disorders

The brain is an infinitely complex, temporally, and spa-
tially multiscale structure that is far from well under-
stood. The development of new treatments and therapies
for brain-related diseases are furthermore hindered due
to epithelial-like tight junctions within the brain capil-
lary endothelium that compose the blood—brain barrier
(BBB), preventing the uptake of most pharmaceutical
compounds [188]. Fortunately, EVs effectively traverse
this restriction via the bidirectional BBB transendothelial
transport, both from the blood into the brain and from
the brain into the blood [189]. Hence, treatments for neu-
rodegenerative afflictions using miRNA-engineered EVs
compose a strategic and novel system to combat ailments
like subarachnoid hemorrhage, alzheimer’s disease, and
depression (Table 5).

Implementation of miRNA-engineered EVs to treat
brain illnesses inherently provoke query on their capacity
to reach targets in effective concentrations after systemic/
intranasal administration, or targeted deposition. Com-
paring the global miRNA profiles from plasma exosomes
of subarachnoid hemorrhage (SAH) and healthy patients,
followed by extrapolation to a murine model of SAH,
Lai et al. functionally revealed the role of miR-193-3b-
loaded BM-MSC-derived exosomes in reducing inflam-
matory cytokine levels, improving neurological scoring,
and decreasing brain edema post-SAH treatment, all of
which indicate neurobehavioral impairment alleviation
[199]. This study, along with others denoted previously,
precisely specify the value of using multi-omics analysis
to accurately identify differentially regulated miRNAs
that govern health and disease. Such studies unveiling
the functional applicability of miRNA-engineered EVs
using small animal models suggest their preeminent role
as future clinical therapeutic treatments. Additionally, at
minimum, rigorous and in-depth studies are still needed
to optimize various aspects of EV production, loading,
and administration, prior to potential clinical EV-based
therapy commercialization.

Therapeutic use of miRNA-loaded EVs

under clinical trial

EV therapies have been investigated amid multiple clini-
cal trials, demonstrating acceptable safety profiles and
therapeutic proof of efficacy in humans [200-203]. While
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promising, at least 1 miRNA-engineered EV therapy
exists under clinical trial, although its results have yet to
be substantiated and published. Additionally, phase I/II
testing of allogenic MSC-derived exosomes loaded with
miR-124 for the treatment of acute ischemic stroke is also
currently in the recruiting phase, with the trial expected
to consist of 5 patients (NCT03384433). Aside from EVs,
several miRNA-based therapies have already undergone
and completed clinical trials. In the past several years, in
total, at least 4 miRNAs (miR-16, miR-29, miR-34a, and
miR-124) have shown clinical relevance for subsequent
translation to EV-based therapeutics.

A multicenter phase 1 clinical trial completed sev-
eral years back used miR-16 to treat mesothelioma and
non-small cell lung cancer (NCT02369198). Twenty-six
pleural mesothelioma patients received weekly doses of
miR-16 loaded into non-living bacterial minicells (Tar-
gomiRs), which revealed an acceptable safety profile,
producing an objective response in 1 of 22 patients. The
foremost side-effect observed was a heightened inflam-
matory response, although unable to pinpoint and deci-
pher its origins as the delivery of miR-16, the bacterial
origin of the TargomiRs, or an antitumor effect [204, 205].
Aside, the confirmation of an acceptable safety profile is
conclusively promising for miR-16’s clinical use, which
has also shown effects in the attenuation of lung inflam-
mation and the reduction of lung injury in mice, when
targetly delivered via ADSC-derived exosomes [206].
Moreover, a phase 1 clinical trial was also conducted on
MRG-201, a synthetic drug designed to mimic the bioac-
tivity of miR-29 (NCT02603224). In total 54 healthy vol-
unteers were enrolled to the study and assigned to either
intact or incised skin groups. Volunteers received intra-
dermal injections of either a single or multiple doses of
MRG-201, considered safe and well-tolerated at all levels,
with a total of 139 doses given to 47 subjects. Collectively,
it was shown that MRG-201 treatment decreased wound
fibroplasia with no evidence of wound dehiscence [207].
Efficacy and tolerance of MRG-201 permits significant
credibility to the clinical potential of miR-29-engineered-
EVs, which have recently shown promising results as a
strategic effort in tendon regeneration [177].

To date, miR-34a delivered intravenously to patients
with solid tumors refractory to standard treatment
has been investigated within two phase 1 clinical trials
(NCT01829971 and NCT02862145). The first trial aimed
to establish and optimize miR-34a dosing associated with
its acceptable safety. One patient with HCC evidenced
the confirmation of a prolonged response (at minimum
a 30% decrease in the longest diameter sum of the target
lesions), while four others experienced the persistence of
stable disease (neither sufficient shrinkage, nor sufficient
increase in the longest diameter sum) [208]. The second
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trial was abruptly closed early due to serious immune-
mediated adverse events within four patients, yet demon-
strated a manageable toxicity profile in the majority [209].
These studies corroborate the proof-of-concept required
in establishing miR-34a therapeutics, while engineered-
EV treatments have been recently studied in light of
breast [119], and colorectal [122] cancer suppression.
Alas, a phase Ila clinical trial has also been conducted
on ABX464, an orally administered small molecule that
induces the splicing of miR-124 (NCT03093259). A total
of 32 participants with moderate to severe ulcerative coli-
tis were recruited to the study and enrolled in an 8-week
induction phase, followed by an optional long-term
extension phase. ABX464 was shown to be safe and well-
tolerated, while also greatly increasing both the clinical
remission and response amid the treatment group over
the initial 8-week period. During the extension phase, a
high maintenance of remission rates persisted, with the
majority of patients remaining in clinical remission to the
12 and 24-month time points. Currently, the safety and
efficacy of ABX464 is ongoing and being further investi-
gated within a phase IIb clinical trial, with 254 recruited
participants (NCTO03760003). Preliminary results aid
in the promising perspective for miR-124-engineered-EV
therapeutics, which have duly recently been investigated
in glioblastomas [124, 147], colorectal cancer [210], and
spinal cord ischemia—reperfusion injury [211] treatment.
Taken together, the clinical evaluation of miRNA-engi-
neered EV therapies is still in its relative infancy. How-
ever, with one therapy under clinical trial thus far, and
multiple successful proposed examples of miRNA-loaded
EV strategies published, it is highly likely that the number
of proposed miRNA-engineered EVs for therapeutic use
will steadily rise within the next decade.

miRNA loaded EVs: limitations hindering clinical
progression in nanomedicine

Outlined in Fig. 4, the premise to move miRNA-engi-
neered EV therapeutics from benchtop and small animal
models, to clinical trials is a time and resource-inten-
sive process. In order to produce a potential therapeu-
tic treatment for clinical testing, standards in EV purity
must be met. In addition, such therapeutics require the
isolation of a large number of EVs, underscoring the
need for reproducible and scalable methods. To meet
purity standards set forth for EV-based treatments, sev-
eral methodologies have been developed to meet Good
Manufacturing Practices (GMP), a system of process-
ing, standardized procedures, and documentation that
establishes quality standards. This includes GMP strate-
gies for the production and isolation of EVs from MSCs
[212-214], HEK293 human embryonic kidney cells
[215], and cardiac progenitor cells [216]. Established
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methodologies have helped to lay the groundwork for
EV-based therapeutics in achieving GMP standards, not
only in terms of isolation and purification, but duly in
their scale-up production. To further scale-up the pro-
duction of EVs in a controlled manner, a number of bio-
reactor systems have been developed [217-219], which
have resulted in high-yields of EVs, while also serving
as a platform to mechanically or chemically stimulate
cells, as a means to augment the cargo of EVs. A full
review was recently published focusing on large-scale
cell culture platforms to increase EV yields, which fur-
ther details the use of scale-up strategies currently being
implemented in clinical trials [220].

Several groups have also attempted to generate clinically
relevant numbers of EVs through the isolation of common
biologics such as blood and milk. These methods drastically
reduce the amount of time needed to obtain large amounts
of EVs, removing the production time necessary to expand
large quantities of cells in vitro. In addition, this method also
avoids the need in standardizing cell culture strategies, by
instead utilizing pre-existing GMP protocols for the stand-
ardized collection of biologics. Large-scale EV isolation from
blood has been developed by several groups, either through
the isolation of large quantities of cells to rapidly farm EVs
or through direct isolation of the EVs themselves. A novel
method developed to induce rapid EV production over a
48-h window has duly been established via isolating natural
killer cells from 30-50 mL of donor blood [221]. Alternatively,
direct isolation of EVs from blood plasma has equitably dem-
onstrated high EV yields and purities [222]. Moreover, timely
isolation methods also exist that were originally designed for
the rapid and efficient isolation of EVs for proteomic analysis,
which yield~1*10" EVs per milliliter of serum in 15 min, a
promising method to generate clinically relevant numbers of
EVs to be successfully scaled-up or scaled-out [223]. Combin-
ing established large-scale EV isolation methods from blood
with the partnerships of blood banks and hospitals, further
the applicability of such methods in collecting large quantities
of GMP-grade EVs in the advancement of future clinical tri-
als. On the other hand, milk-derived exosomes are even more
readily available offering an alternative promising source
of GMP-grade EVs for clinical trials. Marsh et al. developed
protocols for the scalable production of EVs from bovine
milk, creating ultra-dense isolates of sEVs that accounted
for 10-15% of the total starting milk volume, resulting in
incredibly high concentrations of EVs isolatable from an
additional common biologic [224]. The use of milk-derived
EVs for miRNA delivery have also recently been investigated,
finding that hsa-miR148a-3p, can be successfully loaded into
raw bovine milk derived-exosomes with confirmed uptake
by hepatic and interstitial cell lines [225]. Although miRNA
loading into milk-derived EVs has not yet been widely
investigated, such studies effectively outline an additional,
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potentially promising, strategy to propagate miRNA-loaded
EV therapies on a large scale that caters to satisfactory purities
and reproducibility standards. Albeit therapeutically promis-
ing studies exist and in part, some of the prominent hurdles
are currently being overcome, plausible concern still remains
regarding the efficacy/dose optimization, biodistribution,
and the target site bioavailability and engagement, which all
require an increased and more developed understanding of
EV biology prior to wide-scale clinical implementation.

Concluding remarks and future perspectives

Over the past decade compounding knowledge of the
structure of EVs, as well as their biogenesis and function,
have catapulted advancements for their novel potential in

pharmaceuticals as a next-generation drug delivery system.
Functional studies denoting the roles of EV-coupled miR-
NAs continue to accumulate aiding in their incorporation
in preclinical and clinical settings alike. Given the complex
effects of miRNAs in post-transcriptional gene regulation,
in combination with the additonal ambiguities that under-
mine their precise functions, a need to further elucidate
such systems both in vitro and in vivo still persist. More-
over, predetermined mechanistic approaches to modify
EVs for the incorporation of therapeutic miRNAs requires
further technical optimization in managing dosage and
other pharmacokinetic factors, prior to their large-scale
distribution as a new frontier drug delivery platform. Fur-
ther advancements in EV biology and the mechanistic
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approaches to effectively modify EVs with repeatability will
favor the clinical translation of miRNA-engineered EVs
for precise therapeutic application in treating a number of
disease pathologies, continuing to push their implementa-
tion as novel payers on the forefront of nanomedicine.
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