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Abstract
Ecological resource availability is crucial for the persistence and survival of local desert animal communities. 
Dryland resources such as shrubs and burrows positively benefit animal species by mitigating harsh abiotic 
factors and providing habitat. Understanding the role of native shrubs, many of which serve as foundation species 
within desert regions, as well as the function of underground burrows as resources, provides insights into habitat 
utilization. In this study, we seek to better understand the co-occurrence of these two resources as a first step in 
quantifying key patterns locally and regionally in drylands. We tested whether the presence of burrows increased 
with the density of foundational shrubs near the burrows at two scales—within a 5 m radius of every burrow 
recorded and at the site level—defined as discrete ecological areas. We performed fieldwork across 31 sites within 
the arid and semiarid regions of Central California. We used a combination of burrow field surveys and satellite 
imagery to document both vertebrate animal burrow frequencies and shrub densities. Additionally, the accuracy 
of the shrub data was verified through ground truthing. Both fine-scale and site-level shrub densities positively 
predicted the relative likelihood of burrows and the frequency of burrows, respectively. The existence of two 
highly utilized dryland resources and the relationship between them signal that areas abundant in both resources 
will likely better support resident animal species. This finding underscores the significance of incorporating both 
shrub density and burrow frequency in studies of habitat interconnectivity and quality. The co-occurrence patterns 
of these resources will support novel habitat management and conservation strategies designed around both 
conservation and restoration efforts.
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Introduction
Global dryland ecosystems are fundamentally shaped by 
semifossorial herbivorous mammals, many of which are 
considered ecosystem engineers and have a variety of 
positive impacts on the surrounding arid region [1, 2]. 
These impacts that ecosystem engineers exert on their 
environment often have a disproportionate influence on 
the patterns of species diversity in their communities 
[3, 4]. Utilizing burrows is a common behavioral adap-
tation for animal species that occur in dryland regions 
across the globe, as it can provide animals with several 
benefits, including a sheltered microclimate, protection 
from predators, and access to food [5–8]. In dryland eco-
systems, these burrows provide many local species with 
a more favorable microclimate by buffering temperature 
extremes and increasing relative humidity, thus creating a 
more suitable microclimate [9–11]. Often found in large 
communal colonies, burrowing mammals can transform 
dryland regions through the creation of complex under-
ground burrows and feeding activity patterns [12–15]. 
These burrows range from microsite-level to extensive 
regional-level systems, resulting in major impacts on soil 
dynamics, vegetation patterns and animal community 
diversity, ultimately increasing heterogeneity across a 
region [1, 9, 10, 16, 17]. Within southern California, the 
giant kangaroo rat (Dipodomys ingens) is a state and fed-
erally endangered species of burrowing rodent [18]. The 
extensive network of burrows that giant kangaroo rats 
construct provides habitat for the federally endangered 
blunt-nosed leopard lizard (Gambelia sila) and the state-
threatened San Joaquin antelope squirrel (Ammosper-
mophilus nelsoni) [19–21]. Giant kangaroo rats are also 
the primary prey source for the endangered San Joaquin 
kit fox (Vulpes macroitis mutica) and thus play an inte-
gral role in the structure and function of the ecosystem 
[18].

Rodent burrows serve as pivotal hubs for their activi-
ties within the region. Essential for the survival of small 
vertebrate species that occur in harsh arid environments, 
these burrows serve as a crucial resource, providing ref-
uge from extreme temperatures and predators. As focal 
points for rodent activity, burrows influence the spatial 
distribution of vegetation, particularly in their immedi-
ate vicinity [3]. The relative frequency of rodent activity 
decreases with increasing distance from these burrows, 
leading to compositional heterogeneity in vegetation, 
which tends to increase closer to burrows [17]. This 
heightened diversity and variability in plant species abun-
dance and distribution are attributed to localized effects 
such as seed dispersal, soil disturbance, and nutrient 
cycling facilitated by rodent activity [15, 18]. Understand-
ing these spatial patterns of burrowing rodent activity 
and their interplay with other local landscape resources is 

crucial for elucidating the intricate dynamics within dry-
land regions.

Vegetation is an important part of any region because 
it can not only influence local vertebrate and invertebrate 
communities but also shape the structure of an ecosys-
tem [22, 23]. Positive interactions associated with local 
vegetation are incredibly important in resource-limited 
environments, such as those found in dryland regions 
[24]. Dominant shrub species in arid environments are 
often beneficial to a wide range of animal and plant spe-
cies, resulting in frequent positive interactions [24, 25]. 
In dryland regions, facilitation often occurs when cer-
tain shrubs create microclimates that provide shade, trap 
moisture, and offer protection, thus promoting the sur-
vival and growth of neighboring plant and animal species 
[22, 26]. This mutualistic interaction is beneficial for the 
environment because it enhances biodiversity, stabilizes 
ecosystems, and contributes to the overall resilience of 
desert regions by fostering conditions conducive to plant 
and animal life despite the challenging arid environment 
[16, 22, 27, 28]. In dryland regions, it has been shown that 
heterogeneous shrub density can benefit local vertebrate 
and invertebrate species, thus increasing habitat hetero-
geneity across arid regions [20, 24, 29]. The increase in 
shrub availability has the potential to provide more pos-
sible interactions for local species, thus increasing the 
frequency of facilitative interactions [8, 30]. A better 
understanding of how both burrows created by local ver-
tebrates and naturally occurring foundational shrub spe-
cies are spatially related will provide meaningful insight 
into how local animal communities utilize regional 
resources to persist in harsh arid environments.

The benefits associated with foundational shrub species 
within dryland ecosystems can promote the association 
of burrowing vertebrate species [24, 31]. These associa-
tion can drive an increase in the abundance of burrows 
around shrub individuals [32]. In addition, these bur-
rowing vertebrate species can disperse seeds throughout 
the landscape, promoting shrub growth at burrow areas 
[33]. This suggests that there should be an association 
between shrub densities and burrow abundance within 
dryland ecosystems. As these dryland ecosystems expe-
rience drier and higher temperatures associated with 
increasing aridity, the dependency on these foundational 
shrub species can potentially increase [30]. The benefits 
through shading and the microclimate produced from 
these shrubs can ameliorate these increasingly arid con-
ditions [30, 31].

While previous studies have examined the indepen-
dent utilization of burrows and foundation shrubs by 
local desert animal communities, there remains a gap 
in understanding the spatial association between these 
resources at both fine and site-level scales [24, 34, 35]. 
Here, we tested the hypothesis that there is a relationship 
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between the fine-scale and site-level density estimates of 
the foundational shrub species E. californica and L. tri-
dentata and the presence and relative frequencies of bur-
rows formed by vertebrate animal species.

We tested the following predictions:

 	• The relative frequency of burrows will increase total 
shrub density at each site.

 	• Increasing relative aridity will increase the effects of 
shrub density on the total burrows per site.

 	• The likelihood of burrow presence increases with 
fine-scale shrub density (i.e., within a 5 m radius, as 
tested here).

Methods
Species and Study sites
A total of 30 sites were established across southern Cali-
fornia on an east-to-west gradient (Fig. 1; Supplementary 
Table S1) [36]. Key variables describing sites included 

Fig. 1  Geographical representation of all study sites within southern California, U.S.A. A total of 30 unique sites were utilized for burrow and shrub data 
collection through the 2023 field season. All sampled sites are indicated with black circles. Random samples of burrows were taken at all 30 sites where 
the presence and density of shrubs were recorded via satellite imagery. The map was created through R version 4.3.1

 



Page 4 of 9Owen et al. BMC Ecology and Evolution           (2024) 24:68 

foundational shrub species, geographic location, mean 
annual temperature (MAT), mean annual precipitation 
(MAP), and estimated shrub density (Supplementary 
Table S1). These variables were used to select and dif-
ferentiate sites used within this study. A total of 30 sites 
were used to encompass a gradient of climate and shrub 
densities ranging from 0 to 166 shrubs per site (Supple-
mentary Table S1). All sites were dominated by either the 
woody shrub species Ephedra californica or Larrea tri-
dentata (Supplementary Figure S1 & S2) [8, 37, 38]. Both 
shrub species function as ecological foundational species 
for both plant [26, 38, 39] and animal communities by 
increasing species abundance and richness of many taxa 
[20, 24, 40]. These species include small to medium-sized 
vertebrates, including antelope squirrels (Ammosper-
mophilus sp.) kangaroo rats (Dipodomys sp.), blunt-nosed 
leopard lizards (Gambelia sila), and black-tailed jack rab-
bits (Lepus californicus) [24, 41–51]. Gradients of these 
foundational shrubs across California influence the asso-
ciations of local animal community distributions and 
composition [24, 30, 46].

Site-level shrub density effects on total burrows
The annual aridity of each site was determined using the 
De Martonne aridity index equation AI = P/(MAT + 10) 
where P represents the annual precipitation in mm 
within 20 years and MAT represents the mean annual 
temperature (°C) within 20 years [52]. These climate data 
were retrieved from the WorldClim version 2.1 database 
at a 1 km spatial resolution [52, 53]. Shrub density esti-
mates for each of the 30 sites were derived from remotely 
sensed imagery. Specifically, Ephedra californica and 
Larrea tridentata density were estimated using Google 
Earth composite satellite images [8]. The base layer of 
these maps retrieved by google were sourced by the Air-
bus Earth Observation Satellite Imagery Services with 
a spatial resolution of 30  cm [54]. All individual shrubs 
at each site were geolocated and given a unique identi-
fier. Once all E. californica and L. tridentata individuals 
were identified, a series of keyhole markup language files 
(KMLs) were extracted. The latitude and longitude coor-
dinates for each shrub were reported [55, 56]. A total of 
200 random points were ground-truthed at one of the 
thirty sites to confirm the accuracy of the satellite-based 
shrub density measures within a 5-meter plot in field 
[57]. Total burrows per site were then calculated for site 
level density effects using the detailed field survey proto-
col described below.

Fine-scale analysis of shrub density effects on burrows
Burrow surveys were done at the same 30 sites from 
May to June of 2023. A single 25 m x 25 m quadrat was 
randomly established at each site. The quadrat was 
used to visually count burrows created by vertebrates. 

Coordinates (decimal degrees) were collected at each 
independent burrow opening using a handheld GPS 
(Garmin-GPSMAP65). Shrub density within a 5 m radius 
was estimated for each burrow within the 25 m x 25 m 
quadrate by combining in field burrow observations with 
the satellite shrub data. Although the resolution of bur-
row points and shrubs can vary between 3  m and 5  m, 
potentially leading to false positive associations [8], our 
analysis explored associations within various radii includ-
ing 5 m, 10 m, and 20 m. We tested theses associations at 
5 m, 10 m, and 20 m radii for all 30 sites. The observed 
patterns remain robust across these different spatial 
scales. Pseudoabsence points were spatially generated 
using a random sampling approach using the R package sf 
[58]. Field observations were then used to ensure burrow 
openings were correctly attributed to vertebrates (Sup-
plementary Figure S4 & S5). Vertebrate burrows typically 
display visible tracks or nearby feces, that the current 
pattern use from invertebrate burrows (Supplementary 
Figures S3, S4, & S5). To further eliminate the possible 
misclassification during burrow surveys, instances where 
burrows exhibited clear indications of frequent or recent 
rodent activity were recorded along with detailed char-
acteristics [59]. These data are published alongside all 
other attributes recorded [59]. Burrow diameters were 
measured and ranged from 4.4  cm to 11.2  cm. Verte-
brate animal responsible for burrow formations were not 
identified.

Statistical analysis
Site-level shrub density effects on total burrows
A second-order polynomial regression model was used 
to test the effect of site-level shrub density on the total 
number of burrows recorded per site [60]. Total number 
of burrows per site was the response variable, and total 
shrub density per site was the main factor. Aridity was 
also examined as a factor. All assumptions of regression 
were tested for the site-level analysis including multicol-
linearity using the R package ‘performance’ [61].

Fine-scale analysis of shrub density effects on burrow
The relative importance of shrub density on predicted 
presence of burrows at fine-scales, i.e. within a 5 m radius 
of each burrow, was tested with a general linear mixed 
model with binary data - otherwise known as a logistic 
regression [62]. Since the response variable within the 
models was represented by binary data, the presence or 
absence of a shrub, a logistic regression best estimates 
the probability of the observations belonging to one of 
the two categories [62]. The presence-absence of burrows 
was the response variable while shrub density within 5 m 
of each burrow was the factor, nested within sites. This 
presence-absence data were modelled as binomial [63]. 
The package ‘aod’ was used [64] to calculate the predicted 
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probabilities of burrows at the range of shrub densities 
calculated. The null likelihood and full model with shrub 
density effects at probability of burrows were contrasted 
using the ‘performance’ R package function test_perfor-
mance [65, 66]. The probability of burrow presences and 
absence range based on certainty and do not necessarily 
assume up to 1 or 100% [67]. All statistical analyses and 
models were done in R version 4.3.1 [68].

Results
Site-level shrub density effects on total burrows
There were no statistically significant differences between 
the geolocated shrub density estimates and the ground-
truthed, field shrub density counts (Supplement Table 
S2; paired t-test, t = -0.05, df = 389.41, p = 0.96). Total 
shrub density per site significantly predicted the total 
number of burrows (Fig.  2; regression, R2 = 0.28, df = 26, 
p-value = 0.03). Increasing aridity decreased the total 
number of burrows per site (estimate 21.1, df = 27, 
p-value = 0.001), but aridity across sites did not signifi-
cantly influence the positive effects of shrub density on 
burrows (estimate = 8.09, df = 26, p-value = 0.15). Regres-
sions to explore shrub densities within 10 m and 20 m of 
burrows per site expressed similar trends (Supplement 
Table S3).

Fine-scale analysis of shrub density effects on burrows
The probability of burrow presence significantly 
increased with increasing shrub density within a 5  m 
radius of each observed instance (Fig.  3; GLMM, esti-
mate = 161.46, df = 26, p value = 0.001). The predictive 
model nested by site performed significantly better than 
the non-nested model (GLM; ω2 = 0.04, LR = 161.46, 
p-value < 0.001).

Discussion
Exploring the co-occurrence patterns between burrow 
abundance and shrub density can reveal some of the 
key forms of heterogeneity in resources within dryland 
regions. Here, we tested whether there is a relationship 
between the density of foundational shrub species and 
the presence of burrows across various regions within 
Central California. We found evidence supporting the 
hypothesis that sites with foundational shrubs exhibit a 
significantly high number of burrows. Shrub density was 
greater around burrows than in areas where burrows 
were absent, and increasing shrub density significantly 
predicted a greater probability of burrow presence.

Physical structure can influence ecological processes 
in a variety of complex ways, influencing how local spe-
cies communities form, function, and persist [69, 70]. 
Burrow systems are more than just ‘holes in the ground’; 
they are a critical resource for many species [18, 21, 71]. 
Burrowing mammals generally have a positive impact on 
species richness at the regional level by increasing habitat 
diversity [10, 71]. The potential consequences of losing 
burrowing mammals in desert regions extend beyond a 
mere disruption of biodiversity; they may have a dispro-
portional impact on the distribution of other organisms 
and the overall functioning of desert ecosystems. In par-
ticular, the absence of burrow systems could exacerbate 
temperature extremes and sun exposure in arid envi-
ronments, creating unfavorable conditions for various 

Fig. 3  The predicted probabilities of burrows with increasing shrub den-
sity within a 5 m radius. The presence of a burrow is shown in dark blue (1), 
and the absence of a burrow is shown in light blue (0). Shaded areas show 
the 95% confidence intervals for each line of best fit

 

Fig. 2  The effect of shrub density on the total number of burrows across 
Central California desert sites. The total count of burrows observed in the 
field surveys was regressed against the total shrub density per site from 
satellite imagery data (r2 = 0.28, p value = 0.03)
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species [1, 19, 30]. Moreover, the combined threats of 
wildfires, desertification, a decline in shrub health, and 
the negative stigma of shrub encroachment pose addi-
tional risks to the vertebrate populations inhabiting these 
regions [72–74]. These challenges will lead to disruptions 
in behavioral patterns, migration routes, and reproduc-
tive success, ultimately posing a threat to the ecological 
balance of these ecosystems [2, 10]. Understanding the 
multifaceted role of burrow systems is therefore essen-
tial for comprehending their broader implications for 
regional dynamics and biodiversity conservation.

Increasing annual temperatures during summer are a 
major issue for vertebrates in desert regions [75]. When 
faced with continuous solar radiation and high tem-
peratures, some species of mammals visit cooler micro-
climates to reduce their overall exposure [74.75]. The 
dehydration effect of dry desert air on life forms is a 
second significant barrier to survival in desert and arid 
regions [6]. The microclimate of subterranean rodent 
burrows has been shown to be much more favorable 
than that on the surface because the relative humidity 
inside burrows is near saturation [6, 12, 71]. Ecosystem 
engineers that construct these site-level burrows can 
directly influence plant communities through a variety 
of mechanisms and thus play integral roles in shaping 
the surrounding vegetation and ecosystem dynamics [1, 
13, 75]. Dipodomys sp. in California maintain circles of 
bare ground around their burrows, creating open spaces 
lacking annual plants [18, 71, 76]. They have also been 
known to inadvertently transport seeds within their fur 
or bury them in caches near their burrows, facilitating 
the dispersal and germination of plant species across 
the region [75, 77, 78]. The intricate design and network 
of these burrows exert substantial influence on the sur-
rounding environment, shaping both direct and indirect 
impacts on local animal and plant communities [75, 77]. 
On a regional scale, the presence of burrowing animals 
and burrows can promote biodiversity by providing hab-
itat and resources for a wide range of plant and animal 
species. Additionally, the ecosystem engineering effects 
of burrowing animals contribute to nutrient cycling, soil 
aeration, and water infiltration, thereby influencing the 
resilience and functioning of dryland regions [71, 79]. 
Foundational shrubs typically benefit animal communi-
ties in dryland regions through a variety of mechanisms, 
including providing a refuge from harsh temperatures, 
serving as a food source for some small animals, and pre-
venting predation [8, 22, 80]. Zuliani et al. [24] reported 
greater numbers of burrowing mammals, such as 
Dipodomys sp. and Ammospermophilus sp., in areas with 
greater shrub densities, supporting the idea that smaller 
vertebrate species are reliant on the positive effects of 
foundational shrubs.

Although not explicitly examined in this research, one 
of the primary functions of burrows and shrubs is to pro-
vide shelter from intense temperatures for various animal 
species [20, 30]. Several studies have reported greater 
associations of animals near shrubs during peak times of 
the day, suggesting that thermal amelioration is a direct 
benefit to these species [22, 30, 81]. This positive associa-
tion of animal species with shrubs can help us explain the 
greater probability of burrows being observed, as several 
burrowing species are more frequently observed in these 
areas. This further supports our findings that increas-
ing shrub density can predict the probability of bur-
rows being present. Having a burrow within proximity 
to a shrub allows for many benefits, such as acting as a 
refuge from predation [30, 48]. In the event of a preda-
tion attempt, the presence of both a burrow and shrub 
can allow for either resource to be utilized as a means of 
escape [21, 25, 40]. It also allows for closer proximity to a 
food source and the ability to spend time above or below 
ground while still being proximal to one’s home [71]. 
The intricate relationships between foundational shrubs, 
burrowing species, and their surrounding environment 
highlight the significance of structural landscape features 
in shaping species associations and interactions in arid 
regions [82]. Understanding the multifaceted benefits, 
ranging from thermal amelioration to refuge from preda-
tion, underscores the pivotal role that increasing shrub 
density plays in predicting the presence of burrows.

The presence of two key desert habitat resources, 
shrubs and burrows, shows that both can potentially ben-
efit local animal species [83–85] provided that we deepen 
our understanding and empirical knowledge of co-occur-
rence patterns. These data will inform habitat conserva-
tion and restoration efforts. With desertification affecting 
at-risk and endangered species, these findings could help 
guide conservation efforts by emphasizing the impor-
tance of animal burrows and the facilitative interactions 
between foundational shrubs and target animal species 
[57, 86]. As these arid regions continue to deteriorate 
overall ecosystem health, it is critical to investigate and 
include other regional resources that influence the asso-
ciations between plant and animal communities. These 
discoveries may offer valuable perspectives on safeguard-
ing critical habitats in ecosystems that are essential for 
endangered species. This insight can facilitate targeted 
species rehabilitation with minimal human intervention, 
as land managers and restoration biologists can leverage 
these findings to enhance the habitat association of the 
targeted species.
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