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Introduction
Breast cancer remains a formidable global health concern, with 
its incidence rate predicted to rise by over 40% by the year 
2040.1 Female breast cancer accounted for 685 000 deaths 
globally in 2020 making it the fifth leading cause of cancer 
mortality worldwide.2 Although it is the most commonly diag-
nosed cancer in women globally, the burden of the disease is 
disproportionately felt in developing countries.3,4 In 2020, over 
half of the estimated 2.26 million breast cancer diagnoses were 
recorded in low- to moderate-income countries.3,4 A rapid 
increase in breast cancer diagnosis across Africa has been 
observed. South Africa experienced a 3% to 4% increase in 
breast cancer per year between the mid-1990s and mid-2010s.2 
According to the national cancer registry breast cancer has a 
lifetime risk of 1 in 30 in South Africa (NICD, 2023). In South 
Africa, breast cancer has a 5-year survival rate of less than 50% 
and it is the second leading cause of cancer-related deaths in 
women.3,4 This indicates that, despite the ongoing advances in 
detection and treatment of breast cancer, further research into 
novel diagnostic and prognostic biomarkers is necessary to 
improve therapeutic strategies and better disease outcome, par-
ticularly in developing countries.5

Breast Cancer Complexity
Classif ication

Breast cancer is a highly heterogeneous disease that encom-
passes a multitude of tumors with distinct morphological and 
molecular manifestations.6,7 Breast cancer affects various areas 
in the breast including the lobules, ducts, and connective tissue 

and shows distinct physiological properties and clinical out-
comes.8 The mammary gland mainly consists of a lobular 
region and ducts, the mammary epithelium is composed of 
luminal cells, responsible for milk production and basal cells 
which facilitate milk secretion through muscular contraction.9 
Protein expression varies between luminal and basal cells, with 
luminal cells expressing estrogen receptor (ER), progesterone 
receptor (PR) or prolactin receptors, cytokeratins (CK) CK7,10 
CK8, CK18,11,12 and epithelial cell adhesion molecule 
(EpCAM).13,14 Basal cells express CK5 and CK1411 and 
CK6,10 P-cadherin, desmosomal cadherins, and smooth mus-
cle markers.9 These protein biomarkers are characteristic of 
distinct tumor phenotypes that affect their biology and tumor 
progression. As such, the classification of the breast tumors 
into various subtypes aims in guiding treatment strategies to 
improve disease outcome.15

Traditionally, breast cancer has been classified into two 
broad types according to its histopathological presentation: 
carcinomas and sarcomas.7,15 The majority of breast tumors are 
carcinomas that arise from the ductal or lobular epithelium of 
the breast which, depending on the proliferative capacity of the 
neoplasia, can further be subdivided into carcinoma in situ or 
invasive carcinoma.15,16 Ductal carcinoma is diagnosed in ~75% 
of patients, making it the most common type of breast cancer. 
Lobular carcinoma is prevalent in 10% to 15% of patients and 
a small percentage of cases present with mixed ductal/lobular 
carcinoma.9 Invasive breast cancer consists of specific and non-
specific subtypes, which are graded by means of various histo-
pathological parameters.15,16 Although effective in providing a 
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broad categorization of breast cancer, tumors within the same 
histological presentation can have vast differences in their bio-
logical behavior.15,17 Thus, assessment of these parameters 
alone may be insufficient in predicting the true pathophysiol-
ogy of the breast tumor and many studies have shifted their 
focus toward assessing the molecular patterns of the 
disease.15,16

Currently, the classification of breast cancer into distinct 
molecular subtypes is determined by the expression of ER, PR, 
human epidermal growth factor receptor 2 (HER2), and the 
cell proliferation regulator Ki67.18,19 The immunohistochemi-
cal analysis of these four biomarkers have proven to be efficient 
in the stratification of the different types of breast tumors, par-
ticularly when used with other pathological and clinical param-
eters, and has aided in the development of targeted treatment 
strategies; however, drug resistance and tumor recurrence 
remain prevalent.18,19

The majority of breast cancers present with a luminal phe-
notype, which is characterized by the overexpression of the 
hormone-receptors.15,17 The immunohistochemical profile for 
the luminal A subtype is typically characterized as: ER+ 
(⩾1%), PR+ (⩾20%), HER2− (⩽10%), and low expression of 
Ki-67 (<14%).15,20 This subtype is correlated with a highly 
favorable response to targeted hormone therapy and a good 
disease prognosis.15 The luminal B subtype is associated with 
approximately 20% to 30% of invasive breast cancer cases.15 
This subtype can be divided immunophenotypically into 
Luminal B (HER−): ER+ (⩾1%), PR+/−, HER2− (⩽10%), and 
high levels of Ki-67 expression (⩾20%); or Luminal B 
(HER2+): ER+ (⩾1%), HER2+ (>10%), and any level of PR 
and Ki-67 expression.15,18,20 The prognosis for luminal B 
tumors is intermediate, with treatment being targeted hormone 
therapy and additional chemotherapy.15 Although both lumi-
nal subtypes are characterized by the overexpression of ERs 
and are generally associated with a better prognosis than the 
HER2-enriched and Triple Negative Breast Cancer (TNBC) 
subtypes; luminal B tumors are more aggressive due to their 
increased expression of proliferation-associated genes.6,19,21 
This is indicative of the great diagnostic and prognostic value 
held by the analysis of gene expression profiles in breast cancer; 
however, this method of classification is hindered by a more 
complex heterogeneity observed between cells within a singu-
lar tumor mass.17,22 Further metagene analyses have indicated 
that luminal tumors exhibit significant genomic instability, 
with individual cells portraying different mutational land-
scapes.17,22,23 This intratumoral heterogeneity acts as a major 
limiting factor to treatment efficacy. Thus, the development of 
many multigenic assays such as Prosigna PAM50, Mammaprint, 
and Oncotype DX has provided crucial information into the 
differential gene expression profiles responsible for the expres-
sion of the aforementioned biomarkers.2,22 This has led to 
breast cancer being classified into four distinct molecular sub-
types: Luminal A (ER+/PR+), Luminal B (ER+/PR+/

HER2+/−), HER2-enriched (HER2+), and Triple Negative 
(ER−/PR−/HER2−); each with their own therapeutic and prog-
nostic implications.2,22

Treatment

Treatment for breast cancer consists of local therapies: surgery, 
radiotherapy and systemic therapies including chemotherapy, 
hormonal therapy, and targeted therapy.24 Of particular interest 
to this study is the luminal phenotype breast tumors which, 
because of positive status of hormone receptors, can be treated 
with hormone therapies including selective estrogen receptor 
modulators (SERM) that act to limit the signaling capacity of 
the ER, selective estrogen receptor degraders/downregulators 
(SERD) which degrade the ER via proteosomes, thereby pre-
venting its signaling activity25 and aromatase inhibitors (AI) 
which limit the availability of estrogen.15,26 Tamoxifen is a tri-
phenylethylene derivative SERM which acts by binding to the 
ER and inhibiting the proliferative action of estrogen on mam-
mary epithelium.26,27 It is the most commonly used hormone 
therapy for ER-positive breast cancers in both pre- and post-
menopausal women; however, a significant number of patients 
either present with Tamoxifen-resistant tumors or acquire 
resistance to the drug during the course of treatment.27,28 Most 
patients that relapse on tamoxifen treatment respond to other 
therapies including ER downregulators/ER antagonists or 
AIs.27,28 AIs can be subdivided based on their nature and 
mechanism of action with type I AIs being steroidal com-
pounds such as exemestane whereas type II inhibitors are non-
steroidal such as anastrozole and letrozole.28 Anastrozole is the 
most commonly used AI and inhibits the aromatase enzyme 
via competitive inhibition thereby preventing the production of 
estrogen.29 In postmenopausal women, aromatase inhibitors 
are vital in ER-positive breast cancer therapy and are effective 
drugs post-surgery in advanced breast cancer patients30; how-
ever, tumor cells are still able to adapt and alter their ability to 
respond to the therapy leading to relapse and recurrence.

Fulvestrant is the only clinically approved SERD and is 
administered intramuscularly, with novel orally administered 
drugs of this class being at different stages of development. 
Fulvestrant was associated with greater progression free sur-
vival (PFS) when clinically administered alone at 500 mg or in 
combination with other endocrine therapies (including anas-
trozole) at 250 mg.31 Furthermore, fulvestrant improved PFS 
in metastatic breast cancer without prior use of endocrine ther-
apy32; however, PFS was improved more so when fulvestrant 
was combined with other targeted therapies including cyclin 
dependent kinase (CDK) 4/6 inhibitor (alpelisib) and mTOR 
inhibitor (everolimus).33,34

Novel anti-estrogen therapies are designed to overcome 
drug resistance and address certain deficiencies of existing 
endocrine therapy drugs which include acquired ESR1 muta-
tions which is one of the factors that mediate drug resistance.33 



Altriche et al	 3

A detailed analysis of these novel therapies has been reviewed 
by Patel et al,35 this review briefly introduces these novel drug 
classes. Proteolysis targeting chimerics (PROTACS), the most 
developed drug being ARV-471, binds to a specific region in a 
protein and simultaneously to an E3 ubiquitin ligase in order to 
facilitate the degradation of the target protein through the 
ubiquitin-proteosome system. Complete estrogen receptor 
antagonists (CERANS), OP-1250 being the prototype, target 
transcriptional activators AF1 and AF2 domains in the ER, 
thus, preventing multiple pathways from promoting the tran-
scriptional activity of ERs.33 Selective estrogen receptor cova-
lent antagonists (SERCAs), of which HRB-6545 is the first 
drug of this class, bind a cysteine residue unique to ER in order 
to mediate ER-degradation.33 The drive to find new treatment 
methods highlights the impact of tumor heterogeneity on 
tumor cell adaptation during tumor progression. This review 
aims to give an overview of the potential prognostic value of 
tumor heterogeneity characterized by stemness in relation to 
estrogen signaling in mediating tumor processes in luminal 
breast cancer.

Tumor heterogeneity

Tumor heterogeneity defines the vast landscape of cells with 
varying genomic characteristics within the tumor. It is charac-
terized by various subpopulations with different genotypes and 
phenotypes. It is present in several tumor types including lung, 
breast, ovarian, and prostate cancer.36 There are two types of 
heterogeneity, identified as intertumoral heterogeneity and 
intratumoral heterogeneity.37 Intertumoral heterogeneity 
defines differences amongst tumors in different patients or 
within the same patient with diverse tumor deposits.37 
Intratumoral heterogeneity is the presence of distinct cellular 
populations with specific genetic, epigenetic, and phenotypic 
features within the same tumor.36 In addition, intratumoral 
heterogeneity can lead to poor prognosis of the disease as the 
prescribed treatment may not effectively target all cell popula-
tions within the tumor, thus leading to disease relapse.38,39 
Tumor heterogeneity is seen as a challenge in characterizing 
cancer as it does not accurately characterize the full genomic 
landscape of a patient’s cancer.38,39 Clonal variation and micro-
environmental factors promote intratumoral heterogeneity 
which suggests that tumor heterogeneity is influenced by a 
myriad of attributes.40 Intratumoral heterogeneity has been 
identified as a key factor mediating cell plasticity, it equips can-
cer cells to be more effective in reprogramming gene expression 
and thus regulates the ability of cancer cells to adapt and mod-
ify their behavior in response to microenvironmental cues.9 
Next generation sequencing which has been widely used to 
detect mutations in tumors, has paved the way for the develop-
ment of single cell ribonucleic acid sequencing (scRNA-seq) 
technologies.41,42 scRNA-seq studies have enabled better char-
acterization of intratumoral heterogeneity by identifying 

mutations in single cells within a tumor mass which allows for 
characterization of transcriptional and functional molecular 
signatures in single cells and rare cell populations.41,42 This 
application has been used in disease management for diagnosis, 
prognosis, and treatment strategies (especially precision-based 
medicines).41,42

Tumor evolution and stemness

Intratumoral heterogeneity is underwritten by Darwinian evo-
lution. Cell populations present genotypic and epigenetic vari-
ation that provide a foundation upon which natural selection 
may act, enhancing fitness strategies that are themselves “fit for 
purpose.” In this review, we suggest that cell populations may 
employ evolutionary strategies to facilitate tumor progression 
at different stages.43-45 Transformed epithelial cells facilitate 
loss of cellular apposition via downregulation of adhesion mol-
ecules (E-cadherins) and upregulation of genes associated with 
enhanced migratory profiles; vimentin (VIM), N-cadherin 
(CDH2), and fibronectin 1 (FN1).46 For example, in luminal 
phenotype breast cancer, the “switch” from ductal carcinoma in 
situ to infiltrating ductal carcinoma, is predicated on the acqui-
sition of a more aggressive characteristics, but subject to selec-
tive pressures of the surrounding microenvironment.47-50 This 
includes pressures at the tumor-stromal interface exerted by 
non-tumor cells including fibroblasts, immune cells, and adi-
pocytes that ultimately enhance cellular processes of migration 
and proliferation in tumor cells.51,52 While this permits the 
establishment of tumor masses, heterogeneity remains. This 
can be described by current dogma which includes the concept 
of “cancer stem cells” where the stem-phenotype is retained by 
a small proportion of tumor cells, with the remainder of the 
mass considered as transit amplifying cells and their progeny. 
However, it is also posited that tumor cells may show a contin-
uum of stemness, with subpopulations reflecting different fit-
ness strategies.43,53 These strategies could further be described 
in the setting of the tumor microenvironment (Figure 1). Cells 
at the migratory pole of tumor masses upregulate genes associ-
ated with migration and epithelial-to-mesenchymal transition 
(EMT); vimentin (VIM), N-cadherin (CDH2), epidermal 
growth factor receptor (EGFR) (ERbB2) and downregulate 
genes associated with cellular adhesion (E-cadherin, Ig-CAM, 
selectins), in contrast to other cells in the mass which rather 
may be primed for proliferation and maintenance of the 
mass.54,55 Another example reflects the selective pressure of 
hypoxia, wherein cells in the center of a larger tumor mass 
undergo programmed necrosis that together facilitate the 
upregulation of genes associated with angiogenesis; vascular 
endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), 
and angiopoietin-2 (Ang-2).56 Within this changing environ-
ment, it cannot be forgotten that tumor cells are also undergo-
ing immunoediting, with a changing profile that permits the 
induction of immune tolerance.57,58 Moreover, while the 
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immunogenicity of hormone-dependent breast cancers, may be 
regarded as low in comparison to the triple-negative breast 
cancers,59 that tumors are able to subvert immune cells to use 
secreted factors for tumor progression is of interest.57 Tumors 
can recruit a multitude of immune cells including myeloid-
derived suppressor cells (MDSCs), which retain the capacity to 
differentiate into macrophages, granulocytes, and dendritic 
cells for example.60 Secreted factors from MDSCs including 
interleukin (IL)-6, transforming growth factor beta (TGF-β), 
and matrix metalloproteinase 9 are implicated in promoting 
tumor cell growth, invasion, and angiogenesis.60,61 MDSCs 
also induce immune suppression by facilitating tolerance in 
cytotoxic T cells via nitration or nitrosylation of the T cell 
receptor or secreted nitric oxide, which prevents the natural 
killer (NK) cell-FcR mediated activity.60,61 Cytotoxic function 
by T cells and NK cells are also controlled by T regulatory cells, 
which can be subverted by tumor cells to elicit pro-tumor 
responses.62 Tumor cells also use additional strategies to ensure 

evasion from cells of the innate and adaptive immune system; 
for example, downregulation of major histocompatibility com-
plex (MHC) molecules, blockade of activating receptors or 
shedding of NK activating receptor ligands, inducing T cell 
anergy, and promoting macrophage differentiation into a pro-
tumorigenic M2 phenotype.57,63,64

These immune cells, while dysfunctional in the classical 
sense, use cytokine-mediated crosstalk with tumor cells to 
facilitate tumor progression,65 with underlying stemness a fac-
tor for consideration. For example, MDSCs are emerging as 
major players in both the induction and maintenance of tumor 
stem-like phenotypes via IL-6 and nitric oxide engagement of 
signal transducer and activator of transcription 3 (STAT3) and 
Notch signaling pathways.61 Similarly, an in vitro study has 
shown that Notch signaling enhances stemness in breast tumor 
cells, as induced by direct interaction with endothelial cells, 
particularly under starvation.66 This highlights the plasticity of 
tumor cells, in changing their response to environmental cues. 

Figure 1.  Schematic representation of the role of stemness in breast tumor evolution. Tumor evolution relies on interactions between transformed cells 

and cells of the TME. From the onset, the heterogeneous population of transformed cells are exposed to a number of selective pressures exerted by 

non-tumor cells within the TME. Initially, macrophages, dendritic cells, natural killer cells, and cytotoxic T lymphocytes elicit an immune response against 

transformed cells in an attempt to inhibit tumor potentiation. Tumor cells that present with stem-like characteristics have a higher capacity to withstand 

anti-tumorigenic signals exerted by these immune cells. Through their secretion of various cytokines (TGF-β, IL-6), chemokines (CCL1), and their 

overexpression of PDL1, tumor cells facilitate the recruitment of myeloid-derived suppressor cells and regulatory T cells that inhibit anti-tumorigenic 

responses by cytotoxic T cells and natural killer cells thereby aiding in immune evasion. Using cytokines, stem-like tumor cells promote the polarization of 

macrophages into a pro-tumorigenic phenotype (TGF-β, MCSF-1) that stimulates angiogenesis (VEGF) and epithelial-to-mesenchymal transition (TGF-β, 

IL-10). The re-education of fibroblasts by tumor cells (TGF-β, bFGF, IL-6) to secrete pro-tumorigenic chemokines (CCL2) and matrix metalloproteinases 

that disrupt the ECM further aid in increasing the migratory capacity of tumor cells and the release of ECM-sequestered growth factors. Stem-like tumor 

cells display enhanced migratory capabilities. Upon the initiation of the invasion-metastasis cascade, tumor cells prepare the pre-metastatic niche and 

enter the lumen of surrounding vessels where they interact with endothelial cells and platelets to evade circulating immune cells. These circulating tumor 

cells extravasate at the secondary tumor site where they are able to adapt to the new microenvironment and colonize the tissue.
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Tumor cells themselves, in addition to circulating platelets, at 
the interface with the vasculature secrete factors to increase 
endothelial cell permeability, while simultaneously undergoing 
EMT to permit a more invasive phenotype.63 This ultimately 
leads to the acquisition of a metastatic profile that includes the 
capacity to prepare the pre-metastatic niche for coloniza-
tion.67,68 In this, tumor cells that intravasate need to be mark-
edly different to withstand the shear forces in the hostile 
environment of the blood stream. As such, subpopulations 
within the tumor mass are postulated to show phenotypic vari-
ance respective to their spatiotemporal role in maintaining and 
progressing the tumor as a whole. It is postulated that under-
standing intratumoral heterogeneity may thus lead to an 
understanding of how tumors evolve and respond to environ-
ment pressures, ultimately impacting treatment strategies.

Breast cancer stem cells

Cancer stem cells (CSCs) are thought to contain most of a 
cancer’s tumor-initiating and metastatic ability.38 In breast 
cancer, specific cancer cell subpopulations have been found in 
individual cancers that are characterized by variations in tumo-
rigenicity, induction of senescence, activation of signaling path-
ways, migration, angiogenesis capacity, and response to 
anticancer drugs.69 It was observed that a small subpopulation 
of breast cancer cells, had the capacity to develop tumors when 
transplanted into a mouse model, showing plasticity reminis-
cent of stem cells.70 Breast cancer stem cells (BCSCs) consti-
tute a small percentage of the tumor and have been associated 
with resistance to various breast cancer therapies, including 
endocrine therapy, chemotherapy, and targeted therapy.71 
BCSCs are identified by the expression of cluster of differen-
tiation (CD) surface markers, CD44 and CD133, and low or 
no expression of surface marker CD24. In addition, they have 
high aldehyde dehydrogenase I activity.72,73

CD44 a common marker for stem cells, is a glycoprotein 
found on the cell surface and binds to hyaluronic acid thereby 
mediating communication between cells and the extracellular 
matrix (ECM) and facilitates interaction with ECM proteins 
such as matrix metalloprotease (MMP) and osteopontin 
(OPN).74,75 It also plays a role in many cellular functions such 
as cellular adhesion, proliferation, survival, and differentiation, 
with a prime role in tumor cell migration and extravasation 
(Figure 2).76 BCSCs exhibit a high expression of CD44 which 
maintains the multipotency of the BCSC population, thus 
increased levels of CD44 is a primary target of breast cancer 
stem cell therapies.76 CD133, a cell surface glycoprotein that 
localizes to microvilli and the apical surface of some epithelial 
cells,76 is vital for cellular processes such as glucose and trans-
ferrin uptake, autophagy, membrane-membrane interaction, 
and matrix metalloproteinase functions.77 CD133+ cells are 
associated with stemness properties, and are linked to tumor 
metastasis, chemotherapy-, or- radiotherapy resistance.77,78 
Conversely, low expression of CD24, a sialoprotein facilitating 

cellular adhesion, is associated with stem cells.76 CD24 is 
expressed on the cell surface and antagonizes the function of 
chemokine receptor 4 (CXCR4), thereby mediating metastasis 
and proliferation in BCSCs.79

An additional marker of stemness, aldehyde dehydrogenase 
(ALDH), is vital in the biosynthesis of molecules that regulate 
cellular homeostasis including retinoic acid (RA), γ-
aminobutyric acid, and betaine.80 ALDH superfamily consists 
of various enzymes including ALDH1A1, it is associated with 
alcohol metabolism, retinoic acid (RA) metabolism, and protec-
tion from reactive oxygen species by reducing metabolic stress.80 
Studies have revealed that small subpopulations of cells that 
overexpress CD44 and ALDH (CD44high/CD24−/low/
ALDHbr) may be strong initiators of breast tumorigenesis.81 
ALDH1A1 is highly active in cancer stem cells, therefore, it is 
used as one of the markers for stemness.82 ALDH1A1 iso-
enzymes converts retinaldehyde to retinoic acid (RA) which is a 
transcription regulator which has been shown to regulate tumor 
growth and metastasis in breast cancer cell lines.83 In MCF7 
cells higher levels of ALDH1A1 mRNA were detected, and 
when ALDH1A1 was overexpressed, this was associated with 
an increase in CD133 and Krüppel-like factor 4 (KLF4) in 
tumor spheres suggesting a role in increasing stemness.82 
Furthermore, mRNA and protein levels of VEGF were high in 
MCF7 cells which had high expression of ALDH1A1,82 high-
lighting the association between stemness and angiogenesis. 
When MCF7 cells with high ALDH1A1 activity were trans-
planted in mice, they were associated with tumor formation and 
a high Ki-67 index (~70%), increased mRNA levels of Sox 2 
and octamer 4 (OCT4), and protein levels of CD133, SOX2, 
KLF4 were high.82 These findings highlight the role of stemness 
in promoting tumor progression in mice.

BCSCs also express EpCAM (also known as CD326), epi-
thelial-specific antigen (ESA), and E-cadherin.84,85 EpCAM 
promotes cell adhesion, proliferation, and invasion in BCSCs 
through diverse signaling pathways.86 Other breast cancer stem 
cell markers identified include CD47, CD166, CD61, ATP-
binding cassette super-family G member 2 (ABCG2), and 
leucine-rich repeat-containing G-protein coupled receptor 5 
(Lgr5).87 This shows the heterogeneous landscape in breast 
cancer and thus attributing the complex changes seen to a dis-
tinct breast cancer population (CD44+CD133+CD24−) 
becomes questionable, but rather suggests the existence of a 
vast array of cells displaying heterogeneous features of stemness. 
These cells may describe the heterogeneity seen within the 
tumor microenvironment and the association with the various 
signaling pathways is involved in mediating tumorigenesis, 
tumor growth, and survival of breast cancer stem cells, includ-
ing wnt/β-catenin, NFkB, BMP2, Notch, STAT3, Hedgehog.8 
Some studies have shown that CD44 may not be a suitable 
marker for characterizing BCSCs in luminal cancers, but this 
may be a factor of the vast stemness landscape.81

Malignant cells exhibit characteristics of stemness defined as 
the ability of a cell to expand its lineage, give rise to differentiated 
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cells, and interact with its environment to sustain a balance 
between quiescence, proliferation, and regeneration.88 Cells dis-
playing stemness have an aberrant cell cycle which is prolonged, 
and cells divide asymmetrically.89 Cells displaying stemness also 
show an ability to seed into new tumors as shown by their growth 
properties which form tumor spheres/spheroids and the ability of 
stem cells seeded in mice to form tumors.81 These findings point 
to the role of stemness in mediating tumorigenesis, in addition to 
mediating progression, metastasis, and recurrence.

Stemness as a Driver for Novel Biomarkers in luminal 
breast Cancer
Estrogen signaling

Estrogen signaling plays an essential role in the growth and 
progression of luminal breast cancers, the most common breast 
cancer subtype constituting over 75% of all diagnosed breast 
cancers.90-92 Estradiol (E2) binding to its receptors which 
include ERα, ERβ, and the membrane G-protein coupled 
estrogen receptors (GPER, also called GPR30) mediates 

signaling through genomic and non-genomic pathways.90-92 
Genomic signaling is initiated via ligand binding to the estro-
gen receptors, subsequent translocation of the complex to the 
nucleus, and direct interaction with estrogen response elements 
(EREs) within the promoter region of target genes. Alternatively 
in genes which lack ERE, activated ERα binds to activator pro-
tein 1 (AP1) and specific protein 1 (SP1) through serum 
response elements (SREs).9,92 ERβ has a similar structure to 
ERα and is activated by the same ligands but it has a different 
binding affinity for E2.9 ERβ shows opposing functions to 
ERα such as proliferation inhibition and apoptosis induction 
depending on the tissue and cell type, transcriptional coactiva-
tors, and ERα coexpression.9 Non-genomic signaling involves 
the indirect regulation of gene expression through interaction 
with various intracellular signaling pathways such as PI3K/
AKT or Ras/MAPK pathway and amplification of cAMP pro-
duction.90-92 Estrogen binding to GPER increases the concen-
tration of cAMP and intracellular calcium levels, thus activating 
PI3K/AKT and Ras/MAPK signaling pathway, thereby regu-
lating the transcription of c-fos, cyclins (D, B, and A) involved 

Figure 2.  Diagram illustrating the transient expression of cluster of differentiation (CD) surface markers during stem-like tumor cell migration. The 

metastatic capacity of stem-like tumor cells is dependent on their molecular and phenotypic plasticity. The adaptive response of these cells to signals 

from the tumor microenvironment is a key mechanism in promoting breast tumor progression. As the primary tumor outgrows its blood supply, the 

activation of HIF-1 directly upregulates the expression of CD44 and CD133 surface markers in stem-like tumor cells. Activation of CD44 through its 

binding to hyaluronic acid (HA) is a key mediator of breast tumor metastasis. Initially, the CD44-HA complex facilitates EMT in tumor cells by promoting 

the upregulation of TGF-β signaling. This results in the acquisition of a mesenchymal-like morphology. Thereafter, CD133 works in concert with CD44-HA 

to promote the secretion of MMPs to enable migration through the ECM. Alongside the increased expression of CD44 and CD133, stem-like cells present 

with low levels of CD24. This exposes CXCR4 on tumor cells which enables its binding to CCL12. This activation of CXCR4 is further increased via its 

interaction with CD133 which aids in guiding migratory tumor cells through the vascular system. At the sites of intra- and extravasation, tumor cells attach 

to endothelial cells through the binding of CD24 to E-selectin. This adhesion is strengthened by the increased expression of CD166, which binds CD6 on 

endothelial cells. Entry to and exit from the blood vessel lumen is facilitated by the interactions of CD44-HA and CD133 with VEGFR on endothelial cells. 

Circulating tumor cells continuously adapt to evade immune attack. The upregulation of CD61 expression promotes rapid platelet activation. Activated 

platelets express P-selectin, which binds CD24 on tumor cells thereby shielding them from immune attack. Additionally, the interaction of CD24 with 

Siglec-10 on macrophages acts to inhibit tumor cell phagocytosis. Other molecular mechanisms of immune evasion include the upregulated expression of 

CD47 and PD-L1, which is facilitated by CD44-HA. These stem-like tumor cells are guided to secondary sites in response to the chemoattractant gradient 

generated by stromal cells at the pre-metastatic niche.
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in the cell cycle, and proliferation.9,93 Nongenomic actions of 
ERα were associated with endocrine therapy resistance and 
poor prognosis.94 A monomeric state of ERα was shown to 
promote its non-genomic signaling.95 Therefore, tumor pro-
gression may continue independent of genomic signaling and 
thus suggesting the role of stemness in mediating these changes.

ERα acts as a transcription factor which regulates cell cycle, 
proliferation, and apoptosis genes.9 The expression of MYC, 
cyclin D1, forkhead box protein M1 (FOXM1), growth regula-
tion by estrogen in breast cancer 1 (GREB1), B-cell lymphoma 
2 (Bcl2), or amphiregulin, IGF1 and CXCL12 is induced by 
ERα activation, these factors promote cell proliferation and ele-
vate DNA damage risk, thereby increasing genomic instability 
and providing a basis for natural selection. The activity of ERα 
is also regulated by post-translational modifications (PTMs), 
independent of ligand binding.9 These PTMs influence ERα 
stability, dimerization, subcellular localization, deoxyribonucleic 
acid (DNA) binding, and interaction with cofactors.96 The acti-
vation of certain intracellular kinases following growth factor 
stimulation, can lead to phosphorylation of ERα,97,98 similarly 
when serine residues 118 (S118), S167, S305, and tyrosine 537 
(Tyr 537) were phosphorylated, ERα activity was increased 
through coactivators.99-102 Acetylation also leads to ligand inde-
pendent activation of ERα, acetylation of lysine 266/268 acti-
vates transcription whereas acetylation of lysine 302/303 inhibits 
ERα activity.102 Further PTMs, palmitoylation of cysteine 447 
in ERα was shown to increase its hydrophobicity and anchored 
it to caveolae in the plasma membrane.103 Methylation of argi-
nine 260 on ERα by protein arginine methyltransferase 
(PRMT1) is required for Src and P85 pathways.94,96,104

Estrogen plays a diverse role in mediating stemness.73,105 
Estrogen was shown to promote CSC properties in ER+ 
breast cancer cell lines through inducing transcription of Gli1 
despite the downregulation of ER,73,105,106 suggesting non-ER 
mediated effects. Estrogen was also shown to increase the 
expression of vimentin, a mesenchymal cell marker and 
decreased the expression of E-cadherin thus possibly mediat-
ing EMT and promoting stemness.107 BCSCs have also been 
shown to be enriched following administration of endocrine 
therapy and are implicated in mediating resistance.108 
Endocrine resistance occurs in at least two thirds of patients 
with ER+ breast cancer patients. Tamoxifen-resistance and 
poor prognosis was indicated by P21-activated kinase 4 (PAK4) 
in breast cancer tumors, inhibition of PAK4 reduced cancer 
stem cell activity and restored sensitivity to endocrine treat-
ment.109 Further highlighting the role of stemness in facilitat-
ing endocrine resistance.

Reciprocal interactions between estrogen signaling 
and stemness

The cyclin-dependent kinase (CDK) 4/6 pathway was targeted 
for therapy in a clinical trial (PALOMA-1/TRIO-18) of 
advanced luminal breast cancer using a CDK 4/6 inhibitor 

(Palbociclib) combined with an aromatase inhibitor 
(Letrozole),110,111 due to the role of CDK 4/6 in facilitating cell 
proliferation, migration, and angiogenesis.112 This study 
(PALOMA-1/TRIO) found that the drug combination 
improved disease-free survival.110 An in vitro study showed 
that a luminal breast cancer cell line (MCF7) acquired stemness 
features shown by elevated gene and protein expression of 
ALDH1, OCT4, CD24−, and CD44+ phenotype.113 This 
stemness facilitated resistance to CDK4/6 inhibitors 
(Palbociclib). However, improved sensitivity to Palbociclib 
could be accomplished by silencing 6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase 4 (PFKB4) which mediates meta-
bolic rewiring by regulating enzymes involved in glycolysis and 
glucose metabolic reprogramming.113 Metabolic rewiring is a 
hallmark of cancer that facilitates how cells use energy.114 
Despite the clinical benefit of targeting CDK 4/6 pathway in 
luminal tumors, presentation of stemness as the tumor pro-
gresses could limit the efficacy of CDK 4/6 inhibitors. These 
findings suggest that stemness may mediate resistance to vari-
ous targets within the tumor and highlights the utility of a 
multi-target approach in treatment strategies.

Estrogen was shown to promote the development of stem 
cells indirectly, mediated through paracrine signaling.115,116 
17-β-estradiol treatment of MCF7 and T47D cell lines increased 
the proportion of cancer-stem like cells which expressed 
CD44+CD24-ESA+.73 In this subpopulation in MCF7 cells, 
~70% of cells expressed ERα receptors with 20% to 25% show-
ing nuclear ERα staining; however, reduced receptor expression 
levels were noted compared to parent population.73 Conditioned 
media from MCF7 cells was shown to increase the proportion of 
stem cells expressing CD44+CD24-ESA+ in ER− breast cancer 
cell lines (SUM149, SUM159, BT-20).73 This conditioned 
media contained elevated levels of fibroblast growth factors 
(FGF2/bFGF, FGF4, FGF6, FGF7, FGF9).73 Estrogen and 
FGF were thus shown to have a synergistic effect. This was fur-
ther highlighted by inhibition of FGF signaling using PD173074 
which impeded the ability of MCF7 cells pre-treated with 17-β-
Estradiol to initiate tumors when injected into mice.73 Similar 
findings were shown in primary cultures from breast cancer 
patients whereby sphere formation was reduced following inhi-
bition of FGF.73 Tbx3, which mediates FGF and Wnt signaling, 
increased in response to estrogen treatment in MCF7 cells and 
reduced in response to FGF-inhibition. Silencing of Tbx3 in 
MCF7 cells resulted in a decrease in sphere formation and stem 
cells expressing CD44+CD24- and epithelial specific antigen 
(ESA), suggesting that Tbx3 is involved in maintaining stemness. 
Corresponding clinical data showed that Tbx3 was upregulated 
in breast cancer compared to normal tissue, and associated with 
ER expression. This association was further identified with 
metastasis occurrence at 3 and 5 years.117,118 These findings 
highlight the relationship between mediators of stemness and 
estrogen signaling.

ERα signaling also indirectly activates integrin β4 signal-
ing,119,120 which mediates various signaling pathways involved 
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in cancer progression.121 The binding of integrin β4 to laminin 
activates (PI3K) AKT pathway which leads to cell prolifera-
tion, survival, and invasiveness.121 Integrin β4 transcription can 
be mediated by delta Np63,121 the expression of which is high 
in breast cancer and correlated with poor prognosis.122,123 In 
addition to promoting tumor progression, delta Np63 mediates 
Notch signaling, a commonly upregulated pathway in stem 
cells.121 The impact of estrogen signaling on these parameters 
has been demonstrated in vitro, where estrogen treatment in 
MCF7 increased the delta Np63 mRNA and protein, this was 
associated with cell viability and motility.121 Subsequent 
knockdown of delta Np63 decreased cell migration suggesting 
it may play a role in facilitating tumor dissemination. These 
findings also suggest that delta Np63 may be involved in pro-
moting endocrine therapy resistance, which was shown to 
occur without the loss or changes in the expression of ER.124

Myc, a transcription regulator dysregulated in 30% to 50% of 
advanced breast cancers shows different alterations in breast 
cancer subtypes,125 it is increased in TNBC; however, in luminal 
breast cancer while not high, Myc nevertheless influences estro-
gen and progesterone signaling as shown via the KEGG data-
base analysis.126 Using the TCGA database, Myc was shown to 
play a role in mediating stemness through correlation with 
CD44, CD133, CD29, ALDH, and EpCAM.126 Through 
interaction with cancer-associated fibroblasts within the TME, 
Myc also participates in tumor initiation, releasing factors such 
as IGF and insulin-like growth factors binding protein-6 
(IGFBP-6).127 As a transcription regulator, Myc mediates 
DNA synthesis and genomic instability acting on cyclin D1, 
cyclin A, cyclin E, and cdc25A which phosphorylate CDK2/4.126 
Furthermore, Myc was shown to increase stemness and facili-
tate EMT by activating SNAIL, ZEB1, ZEB2 and promoting 
epigenetic regulation of lysine-7q (methylation) and H3 (acety-
lation) through its interaction with DOTIL and P300.128

Angiogenesis is essential for tumor survival, growth dis-
semination, and formation of the pre-metastatic niche.82 
During angiogenesis in the TME new aberrant blood vessels 
are formed through the growth of endothelial cells,114 and stro-
mal cells in response to the secretion of angiogenic factors 
(such as VEGF, IL8) by endothelial cells, tumor cells, and 
CSCs.82 Hypoxia is associated with tumors and stemness and 
acts as a signal to initiate angiogenesis.82

Discussion
In our efforts to continually improve diagnosis and treatment 
strategies in cancer, it is becoming increasingly important to 
consider that tumors are subject to evolutionary forces which 
are the underlying factors that drive intratumoral heterogene-
ity characterized by stemness. This may help to better predict 
tumor behavior and response to therapy at different stages of 
the diseases. There is a need to identify novel biomarkers in 
luminal breast cancer which may improve treatment outcomes 
and reduce endocrine resistance. A better and in-depth 

understanding of the intersection and reciprocal interactions 
between estrogen signaling and other signaling pathways acti-
vated in cells displaying stemness will contribute to the identi-
fication of these novel markers. Thus far, studies point to the 
involvement of cell cycle regulators and the non-genomic sign-
aling effects of ERα, which enables it to be involved with vari-
ous signaling pathways mediating cell survival. The tumor 
microenvironment is also important to consider because of its 
role in mediating EMT, tumor progression, and stemness of 
subpopulations of tumor cells. In addition to the hormone 
receptors that define the luminal phenotype, the identification 
of diverse biomarkers which target different aspects of the 
tumor, including intrinsic cell factors (e.g., cell cycle compo-
nents, transcription factors, receptors which are targets for 
non-genomic signaling, etc.) and microenvironmental factors 
may better predict tumor prognosis. Identification of such bio-
markers and the tracking of clinical outcomes may lead to the 
development of more targeted treatment strategies. The scope 
of this review briefly discussed the intersection between 
stemness markers and tumor signaling pathways, as such, a fur-
ther in-depth analysis is warranted to describe the mechanism 
of these interactions in more detail.

Conclusion
The studies reviewed in this paper indicate that the presenta-
tion of stemness was not associated with loss of the luminal 
phenotype, and that non-genomic effects of estrogen may 
mediate or form a bridge between the luminal phenotype and 
stemness induction which promotes EMT, tumor dissemina-
tion, treatment resistance, and tumor relapse. Endocrine ther-
apy remains an important and relevant treatment strategy, but 
there is an opportunity to limit endocrine therapy resistance 
and tumor recurrence, which typically present much later in 
luminal subtypes than more aggressive breast cancer subtypes. 
Further studies are needed to investigate multi-treatment 
approaches involving endocrine drugs and targets of stemness.
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