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ABSTRACT

Background: Colorectal cancer (CRC) prognosis is determined by the disease stage with low survival rates for advanced stages. Cur-
rent CRC screening programs are mainly using colonoscopy, limited by its invasiveness and high cost. Therefore, non-invasive, cost-effec-
tive, and accurate alternatives are urgently needed.

Objective and design: This retrospective multi-center plasma proteomics study was performed to identify potential blood-based bio-
markers in 36 CRC patients and 26 healthy volunteers by high-resolution mass spectrometry proteomics followed by the validation in an 
independent CRC cohort (60 CRC patients and 44 healthy subjects) of identified selected biomarkers.

Results: Among the 322 identified plasma proteins, 37 were changed between CRC patients and healthy volunteers and were associated 
with the complement cascade, cholesterol metabolism, and SERPIN family members. Increased levels in CRC patients of the complement 
proteins C1QB, C4B, and C5 as well as pro-inflammatory proteins, lipopolysaccharide-binding protein (LBP) and serum amyloid A4, consti-
tutive (SAA4) were revealed for first time. Importantly, increased level of C5 was verified in an independent validation CRC cohort. Increased 
C4B and C8A levels were correlated with cancer-associated inflammation and CRC progression, while cancer-associated inflammation was 
linked to the acute-phase reactant leucine-rich alpha-2-glycoprotein 1 (LRG1) and ceruloplasmin. Moreover, a 4-protein signature including 
C4B, C8A, apolipoprotein C2 (APO) C2, and immunoglobulin heavy constant gamma 2 was changed between early and late CRC stages.

Conclusion: Our results suggest that C5 could be a potential biomarker for CRC diagnosis. Further validation studies will aid the appli-
cation of these new potential biomarkers to improve CRC diagnosis and patient care.
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Introduction
Colorectal cancer (CRC) is the third most incident malignancy 
and the second most deadly cancer worldwide.1 Despite the 
great advances in CRC treatment with recently developed 
immunotherapies, about 20% to 25% of diagnosed CRC 
patients present advanced cancer stages and metastasis that is 
linked to a 5 year survival rate lower than 10% and low thera-
peutic response.2,3 In contrast, diagnosis at early stages leads to 
reduced tumor-related mortality and a 90% 5 year survival rate 
after radical surgical resection.4 Apart from the disease stage at 
diagnosis, CRC prognosis depends on multiple factors such as 
location, genetic factors, molecular expression profiles, tumor 
immune infiltration, and inflammation.3 The low therapeutic 
response to immunotherapies such as immune checkpoint 
inhibitors may be caused by the influence of other non-tar-
geted inflammatory and immunosuppressive mechanisms.5 
Notably, cancer-associated inflammation is considered a well-
established hallmark of cancer, especially in CRC.6 
Inflammatory modulators including chemokines, cytokines, 
and growth factors influence the interactions between cancer 
cells and the tumor microenvironment driving tumor progres-
sion and the immune response.7 Moreover, CRC progression 
can promote systemic inflammation impacting other organs 
and facilitating metastasis.6

Currently, the gold standard for CRC prevention is colo-
noscopy complemented with fecal occult blood tests.8 However, 
colonoscopy is expensive and has poor patient compliance, due 
to its invasiveness and risks, while stool-based tests have low 
sensitivity and specificity.4,9 Therefore, alternative, non-inva-
sive, cost-effective, and easily measurable CRC screening strat-
egies are urgently needed. Mass spectrometry (MS)-based 
proteomics approaches have been successfully applied to deter-
mine blood-based biomarkers of CRC development and pro-
gression.4 MS-based proteomics characterization of 
low-abundance proteins in serum/plasma is limited by the high 
dynamic range of protein concentrations over 9 orders of mag-
nitude with 99% of the total protein content from only 20 
abundant proteins.10 However, the technological evolution of 
high-resolution MS instruments such as time-of-flight (TOF) 
or Orbitrap provides the possibility to discover blood-based 
biomarkers with high sensitivity and specificity.11

Nowadays, the most common blood protein biomarker used 
in clinical CRC diagnosis is carcinoembryonic antigen (CEA), 
but its accuracy requires improvement.12 Interestingly, untar-
geted tandem MS coupled with liquid chromatography 

(LC-MS/MS) proteomics strategies could discover novel 
potential CRC biomarkers that can be validated by using tar-
geted MS techniques as well as antibody-based assays.4 For 
instance, proteomics analysis discovered that several SERPIN 
family members are altered in patients with CRC and adeno-
matous polyps which were validated as potential diagnostic 
biomarkers by ELISA.13 Moreover, plasma proteomics analysis 
combined with neural network classification identified 5 can-
didate biomarkers to distinguish between CRC stages.14 
Another glycoproteomics study detected novel diagnostic bio-
markers including elevated levels of complement C9 and 
fibronectin improved the diagnostic performance of a commer-
cial CEA CRC biomarker.15 In addition, targeted proteomics 
analysis in a non-metastatic CRC cohort determined a 5 pro-
tein signature with efficient discrimination of CRC cases from 
healthy subjects.16 However, despite advances in CRC bio-
marker discovery and validation by proteomics, further studies 
are needed in larger cohorts to implement reliable biomarkers 
in clinical practice.

The aim of this study was to discover novel plasma protein 
signatures involved in CRC development and progression by 
untargeted LC-MS/MS proteomics analysis. Importantly, we 
identified significant changes in plasma protein levels associ-
ated with cholesterol metabolism, members of the SERPIN 
family as well as increased levels of complement cascade pro-
teins in CRC patients versus healthy subjects. Furthermore, 
high complement C5 levels were confirmed in the validation 
cohort, being a potential diagnostic CRC biomarker. Plasma 
protein levels of 11 proteins, including complement C8A and 
serpin family A member 4 (SERPINA4) were linked to can-
cer-associated inflammation, while 4 proteins, including C8A 
and C4B, distinguished early from advanced CRC stages.

Materials and Methods
Study cohorts and design

This multi-center retrospective study included 36 patients with 
CRC surgery (age mean: 66.1 ± 11.6 years; 44.4% male) from 
June 2019 to April 2021 and 26 healthy subjects (age mean: 
61.1 ± 10.5 years; 42.3% male) in the discovery cohort. 
Included patients were with positive colonoscopy and patholo-
gist-confirmed malignant neoplasm. Patients with prior neo-
adjuvant therapy administration were excluded from the 
analysis. 69.4% (25 of 36) of diagnosed patients were with 
advanced CRC stages (III-IV) according to the Union for 
International Control of Cancer TNM classification and 
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30.5% (11 of 36) presented cancer-associated inflammation 
post-operatively assessed by pathologists. Blood samples of 
healthy subjects and CRC patients were obtained from Biobank 
HARC, Medical University of Łódź and the 3P–Medicine 
Laboratory, Medical University of Gdańsk.17 The independent 
validation cohort included 60 CRC patients (age mean: 
61.8 ± 11.4 years; 51.7% male) without neoadjuvant therapy 
and 44 sex-and-age-matched healthy subjects. Serum samples 
were obtained from the Leipzig Medical Biobank, Germany 
and the Bank of Biological Material at Masaryk Memorial 
Cancer Institute, Czech Republic. The collection of whole 
blood samples was with sterile BD Vacutainer® K2EDTA tubes 
or Sarstedt S-Monovette® 2.7 mL, K3 EDTA (LMB) before 
the CRC resection followed by centrifugation, aliquoting, and 
storage at -80°C until use.

Sample preparation for mass spectrometry

Proteins were extracted from plasma samples with lysis buffer 
(1% SDS, 50 mM DTT, 100 mM Tris-HCl pH 8.0) (Merck 
KGaA, Darmstadt, Germany) containing phosphatase and 
protease inhibitors (Thermo Fisher Scientific, Waltham, MA, 
USA) followed by an incubation at 95°C for 10 minutes. 
Protein concentrations were determined at 280 nm in a μDrop 
plate with a Multiskan Thermo Nanodrop. Then, 100 μg of 
proteins were transferred to Microcon 10 kDa filters (Merck 
KGaA) and were processed based on the Filter Aided Sample 
Preparation (FASP) protocol.18 Briefly, 3 washes with 200 µl of 
urea buffer (8 M urea,100 mM Tris-HCl pH 8.5) at 10 000 rcf 
for 20 minutes at room temperature (RT) were applied to the 
protein mixtures. Free cysteines were alkylated by incubation in 
the darkness for 20 minutes at RT with 55 mM iodoacetamide 
(100 µl) in urea buffer (Merck KGaA). Samples were centri-
fuged at 10 000 rcf for 15 minutes and washed 3 times with 
urea (100 µl) and 2 times with digestion buffer (50 mM Tris-
HCl pH 8.0). Afterward, the filters were transferred into new 
tubes and proteins were digested by incubation at 37°C with 
1 μg of Sequencing Grade Modified Trypsin (Promega, 
Madison, WI, USA) in 60 µl of digestion buffer overnight. 
Then, the elution of peptides was performed with the same 
centrifugation conditions and washed 2 times with 125 and 
100 µl digestion buffer. Next, 0.1% trifluoroacetic acid quenched 
trypsin activity. Peptide concentrations were measured as pre-
viously and 20 μg of peptides were desalted with STop And Go 
Extraction (STAGE) Tips19 in Empore C18 extraction disks 
(3M, Neuss, Germany). Peptides were eluted with 60% ace-
tonitrile and 1% acetic acid. Desalted peptides were dried in a 
SpeedVac at 45°C and samples were in storage at −20°C until 
analysis.

LC-MS/MS analysis

LC-MS/MS analysis of prepared samples was performed with 
a TripleTOF 5600+ mass spectrometer (SCIEX, Framingham, 

MA, USA) and with an EkspertMicroLC 200 Plus System 
(Eksigent, Redwood City, CA, USA). AB SCIEX Analyst TF 
1.6 software was used to control the LC-MS/MS system. 
Samples were run in triplicates with 1.5 µg injected peptides in 
each technical replicate. Analyses were in a ChromXP C18CL 
column (3 μm, 120 Å, 150 mm × 0.3 mm) at 5 µl/minute and 
35°C, for 60 minutes with an 11% to 35%. acetonitrile gradient 
in 0.1% formic acid. TripleTOF 5600+ was set in data-
dependent acquisition mode and the m/z range of the TOF 
MS survey scan was at 400 to 1200 Da with an accumulation 
time of 250 ms. The selection for collision-induced dissociation 
(CID) fragmentation was set to a maximum of top 20 precur-
sor ions with +2 to +5 charges. The exclusion of precursor 
ions from reselection was for 5 seconds after 2 occurrences. 
Product ions spectra were acquired between 100 and 1800 Da 
with 50 ms accumulation time.

MS data analysis

Acquired raw SCIEX files were converted to mzML format 
with MSConvertGUI 3.0 and analyzed using PeaksStudio 
Xpro 10.6 software (Bioinformatics Solutions, Waterloo, ON, 
Canada). Peptide sequence search was against the Homo sapiens 
UniProtKB/Swiss-Prot database (release 2022_03) for trypsin 
digested peptides with maximum 3 missed cleavages per pep-
tide. Carbamidomethylation was as fixed post-translational 
modification (PTM), whereas N-terminal acetylation and 
methionine oxidation as variable PTMs. Peptide and protein 
identification was with a <1% false discovery rate (FDR). 
Label-free quantification was performed based on the integra-
tion of the peptide areas under the curve (AUC).

Complement C5 validation

Complement C5 serum concentrations were quantified in the 
validation cohort by an ELISA kit with a coated antibody to 
human C5 (Abcam ab125963, Cambridge, UK) commercially 
available, following manufacturer’s instructions.

Proteomics data and statistical analysis

Statistical analysis was performed with R (version 4.0.3) (R 
Foundation for Statistical Computing, Vienna, Austria) in 
RStudio (version 1.3.1093) (RStudio, PBC, Boston, MA, 
USA). Data preprocessing was performed by summarization of 
technical replicates with medians and logarithmic transforma-
tion of relative abundances. Proteins with missing values in 
over 50% of patients and 50% of healthy controls were filtered. 
Random forest imputation was applied to the remaining miss-
ing values with the “missForest” R package (version 1.5) fol-
lowed by quantile normalization. Differences in protein levels 
between groups were analyzed by the general linear model 
regression approach with contrast analysis with the “emmeans” 
R package (version 1.6.2.1). First, for each protein, a general 
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linear model was generated to fit its expression to determine 
significant changes in CRC patients compared to healthy vol-
unteers including age as a confounding factor. Then, for each 
protein expression, a general linear model was generated 
including only CRC patients with the independent variables 
inflammation and tumor stage while sex was considered a con-
founding factor. FDR control was applied with the Benjamini 
& Hochberg correction. Significant changes were considered 
with FDR-adjusted P value < .05. Point-biserial correlation of 
protein abundance with inflammation status or tumor stage 
was calculated with the built-in R function cor.test and correla-
tion was significant with a P value < .05. Principal Component 
Analysis (PCA) was performed using prcomp built-in R func-
tion and PCA visualization using “factoextra” R package (ver-
sion 1.0.7). Functional annotation of biological process and 
cellular component GO terms was performed by a 2-sided 
hypergeometric test with FDR correction using the Cytoscape 
cluGO plugin (version 2.5.7). Pathway enrichment analysis of 
KEGG terms supported by active subnetworks was applied 
with the R package “pathfindR” (version 1.6.3) using the 
STRING database and FDR correction. The generation of 
graphics was with the R package “ggplot2” (version 3.3.5), with 
the exception of heatmaps generation by the R package 
“ComplexHeatmap” (version 2.6.2). The construction of the 
protein network was with Cytoscape (version 3.8.2) using the 
STRING database and a 0.7 confidence cut-off.

Results
Identif ication and quantif ication of the plasma 
proteome of CRC patients using LC-MS/MS

To study the protein profile changes in blood involved in CRC 
development, we applied LC-MS/MS proteomics analysis to 
plasma samples of 36 CRC patients and 26 healthy controls. 
As a result, 322 proteins were identified with at least 1 unique 
peptide with FDR <.01, from which the majority of proteins 
were identified in both groups (Figure 1A; Supplemental Table 
S1). Interestingly, IgGFc-binding protein (FCGBP), which is 
a mucin responsible for innate immune defense in the intestine 
and is associated with CRC metastasis by promoting cell adhe-
sion, was only identified in CRC patients.20

After filtering proteins with high % of missing values, 138 
protein groups were quantified. The relative protein abundance 
was reproducible along technical replicates with high Pearson’s 
correlation coefficients (Figure 1B). LC-MS/MS analysis 
quantified proteins in a high dynamic range of concentrations 
from high-abundance albumin in the range of mg/mL to 
chemokines such as C-X-C motif chemokine ligand 7 
(CXCL7) in the range of ng/mL (Figure 1C).

Functional annotation of the identified proteins determined 
that the majority were from the extracellular organelles, blood, 
and lipoprotein microparticles, as well as the vesicle/vacuolar 
lumen (Figure 2A). However, proteins from the plasma mem-
brane, cytoplasm, and nucleus, such as histone H4, were also 
detected that may circulate in the peripheral blood due to tissue 

damage and cell turnover. (Supplemental Table S2). Identified 
proteins were included in several biological processes such as 
blood coagulation, homeostasis, proteolysis, and several meta-
bolic processes including cholesterol and fatty acid metabolism, 
vesicle-mediated transport, cell death as well as humoral 
immune and inflammatory responses (Figure 2B). Interestingly, 
over-represented biological process GO terms were associated 
with different humoral immune and inflammatory responses 
due to the presence of immunoglobulins, complement proteins, 
and some chemokines such as CXCL7 (Figure 2C; Supplemental 
Table S2). Overall, our proteomics analysis identified plasma 
proteins associated with different biological processes including 
immune responses and quantified 138 proteins in a high 
dynamic range of concentrations with high reproducibility.

CRC development causes protein plasma changes 
associated with the complement cascade and 
cholesterol metabolism

To determine whether the plasma levels of quantified proteins 
differs in CRC patients versus healthy volunteers, PCA was per-
formed. PCA showed a clear separation of plasma from CRC 
patients and healthy subjects, indicating that CRC development 
affects the protein plasma profiles in examined patients (Figure 
3A). To unveil these protein changes, differential protein expres-
sion analysis was applied, resulting in 17 proteins with enhanced 
levels and 20 decreased proteins in CRC patients versus healthy 
volunteers (Figure 3B, Supplemental Table S3). Among the dif-
ferentially expressed proteins (DEPs), inter-alpha-trypsin inhib-
itor heavy chain (ITIH)3, leucine-rich alpha-2-glycoprotein 
(A2GL), C9, and lipopolysaccharide-binding protein (LBP) 
showed the highest levels in CRC patients, while apolipoprotein 
(APO) A4, acid labile subunit (ALS), and kallikrein B1 (KLKB1) 
showed the lowest levels compared to healthy controls. ITIH3, a 
hyaluronan essential for multiple cellular processes, which trans-
ports and regulates hyaluronan turnover in the blood circulation, 
was found with the highest fold change. Unsupervised hierarchi-
cal clustering showed that these 37 DEPs separated CRC from 
control samples (Supplemental Figure S1).

Pathway enrichment analysis of KEGG terms by active 
subnetworks revealed that complement and coagulation path-
ways were activated with elevated protein levels (C4B, C5, 
C1QB, and C9) in CRC patients (Figure 3C, Supplemental 
Table S4). Moreover, cholesterol metabolism, vitamin diges-
tion, and adsorption were down-regulated in CRC patients, 
involving 2 apolipoproteins, APOA2 and APOA4 (Figure 3B 
and C). Both APOA2 and APOA4 are associated with obesity 
and hypercholesterolemia that are independent risk factors for 
CRC development.21,22 Similarly, the STRING protein-pro-
tein interaction network showed the interaction between the 
complement proteins with elevated levels (Figure 3D). In addi-
tion, SERPINC1 was the most interconnected node linking 
complement proteins to other DEPs in the network. 
SERPINC1, also called antithrombin III, is the main inhibitor 
of blood coagulation which can attenuate inflammatory 
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responses.23 Collectively, our analysis indicates that develop-
ment of CRC causes plasma protein changes which are associ-
ated with complement cascade and cholesterol metabolism.

Plasma protein changes linked to cancer-associated 
inflammation in CRC patients
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Figure 2.  Functional annotation of the identified plasma proteins. (A) Interaction network of over-represented cellular component Gene Ontology (GO) 

terms with an organic l1ayout. (B) Interaction network of over-represented GO terms of biological processes with an organic layout. (C) Amplification of the 

subnetwork of GO terms from immune and defense responses with a tree layout.
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Figure 3.  Colorectal cancer (CRC) development causes plasma protein changes involved in complement cascades and cholesterol metabolism. (A) 

Principal Component Analysis of CRC patients and healthy subjects using the relative abundances of all quantified proteins. (B) Volcano plot of statistical 

significance against fold-change of proteins between CRC patients and healthy individuals. Colored dots indicate statistically differentially expressed 

proteins (DEPs) calculated by the general linear model approach. (C) Dot plot of KEGG pathway enrichment combined with STRING protein-protein 

interaction network analysis from DEPs between CRC patients and healthy subjects. (D) Protein-protein interaction network of DEPs between CRC 

patients and healthy individuals from STRING database query with a 0.7 confidence cut-off. The size of nodes indicates the degree of connectivity of the 

nodes. The red and blue dots/nodes represent up-regulation and down-regulation in CRC patients, respectively. FC, Fold Change; p, p-value; PC, 

Principal Component.
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was evaluated by linear regression analysis. This analysis 
resulted in 11 DEPs that were previously identified with sig-
nificant correlation (Figure 4B, Supplemental Table S6). Some 
downregulated proteins were SERPIN family members, for 
example, SERPINA4 (KAIN) and SERPIND1 (HEP2). 
Noteworthy, SERPINA4 is an anti-angiogenic and anti-
inflammatory agent that was decreased in CRC patients versus 
healthy volunteers and its downregulation was common in 
inflammatory processes as well as in cancer.24 Additionally, 
C8A and immunoglobulin heavy constant gamma 2 (IGHG2) 
may be related to cancer-associated inflammation thus 

promoting an exacerbated immune response in these patients. 
Collectively, this analysis determined plasma protein signatures 
in CRC patients linked to cancer-associated inflammation.

Evaluation of plasma protein signatures linked to 
CRC stages

The main complication of CRC development is tumor progres-
sion and metastasis, resulting in increased CRC mortality. 
Therefore, CRC prognostic biomarkers are urgently needed. 
Plasma protein changes linked to CRC progression were 

Figure 4.  Plasma protein changes induced by cancer-associated inflammation in CRC patients. (A) Heatmap of proteins with significant correlation with 

inflammatory status. Protein expression is transformed with a z-score by row normalization and distributed by hierarchical clustering. The correlation 

coefficients (right) indicate a positive/negative correlation for each protein. (B) Volcano plot of statistical significance against fold-change of proteins 

between CRC patients with inflammation and without inflammation. Dots indicate individual proteins and the red and blue dots represent significant 

up-regulation and down-regulation in CRC patients with inflammation, respectively.
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determined by comparing protein levels in early-stage patients (I 
and II) versus late-patients (III and IV). Correlation analysis 
indicated that 5 proteins were correlated positively, while 6 pro-
teins were correlated negatively (Figure 5A, Supplemental Table 
S7). Among them, enhanced fibrinogen alpha chain (FIBA) lev-
els in late CRC stages and their association with distant metas-
tasis were previously reported.25 Also, increased alpha-1-acid 
glycoprotein 2 (A1AG2) was linked to shorter survival rates in a 
CRC cohort.26 Similar to the previous comparison, the regres-
sion analysis showed that only were 4 DEPs (Figure 5B, 
Supplemental Table S8). Among them, C8A and C4B may play 
a relevant role in CRC progression, while the immunoglobulin 
IGHG2 may be associated with the immune response in CRC 
early stages by promoting inflammation as enhanced levels were 
linked to cancer-associated inflammation. Taken together, we 

found 4 potential biomarkers that can potentially discriminate 
early from late CRC stages.

Complement protein C5 plasma levels are enhanced 
in CRC patients

Among the complement proteins, we found elevated C5 levels 
in plasma of CRC patients versus healthy volunteers by 
LC-MS/MS analysis (Figures 2B and 6A). To validate this 
finding, C5 concentrations were measured by ELISA in an 
independent validation cohort, including 60 CRC patients and 
44 healthy subjects (Figure 6B). ELISA results confirmed 
LC-MS/MS findings. In fact, C5 proteolytic degradation pro-
motes the release of the anaphylatoxin C5a that is an inflam-
matory mediator.27 Noteworthy, a peptide from C5a was also 

Figure 5.  Plasma protein expression differences between early and late stages of CRC. (A) Heatmap of proteins with significant correlation with tumor 

stage. Protein expression is transformed with a z-score by row normalization and distributed by hierarchical clustering. The correlation coefficients (right) 

indicate a positive/negative correlation for each protein. (B) Volcano plot of statistical significance against fold-change of proteins between CRC patients 

with early tumor stage and with late tumor stage. Dots indicate individual proteins and the red and blue dots represent significant up-regulation and 

down-regulation in CRC patients with late tumor stage, respectively.
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enhanced in CRC patient’s plasma (Figure 6C). Collectively, 
the enhanced plasma level of complement C5 is a novel prom-
ising biomarker for CRC diagnosis and may promote release of 
the pro-inflammatory C5a.

Discussion
In this study, we performed LC-MS/MS analysis to character-
ize the protein changes in plasma involved in CRC develop-
ment by unbiased proteomics characterization of CRC patients 
and healthy individuals. Not only secreted proteins were 
detected but also released intracellular proteins from damaged 
tissues and cell turnover. Moreover, we quantified 138 proteins 
with high reproducibility and a high dynamic range of concen-
trations from ng/mL to mg/mL.

Several plasma proteins were identified with significant 
changes in CRC patients compared to healthy individuals. 
These findings were consistent with previously published data 
performed with LC-MS/MS as well as antibody-based tech-
niques including ELISA and Western blot.13–16,28–30 For 
instance, ITIH3, the DEP with the highest fold change, was 
reported as increased in CRC patients’ serum and serum of a 
CRC mice model,14,16,31 while another study showed opposite 
results.28 Despite the role of ITIH3 in CRC development has 
not been determined yet, ITIH4 was found upregulated in 
CRC tissue versus normal-matched tissue and seems to be 
involved in the extracellular matrix remodeling and the sys-
temic inflammatory response during CRC development.28 
Moreover, an increased level of several SERPIN family mem-
bers was observed in the examined CRC cohort, which is con-
sistent with previously reported data.13,29 Among them, 

SERPINC1 might play a central role in the systemic response 
to CRC as it is the most interconnected node in the protein-
protein interaction network. Moreover, SERPINC1 downreg-
ulation may avoid its suppressive tumor activity and inhibit 
tumor angiogenesis and proliferation.13 Interestingly, another 
family member, SERPINF1 also revealed a link to cancer-
associated inflammation. It was reported that this antiangio-
genic protein was downregulated in CRC tissue and sera and 
its low levels were associated with a poor survival prognosis.30

Importantly, in this study, the increased level of the comple-
ment cascade and its components were found in CRC patients. 
This indicates that these proteins might play a relevant role in 
CRC development. Enhanced level of the complement pro-
teins such as C9,15 complement component 4 binding protein 
alpha and beta (C4BPA and C4BPB)13,32 was previously 
reported in CRC patients while increased C1QB is novel. 
C1QB was found upregulated in tumor tissue versus normal-
matched tissue but not in CRC patients’ plasma.33 Another 
novel complement protein with enhanced plasma level is C4B, 
which is a non-enzymatic component of C3/C5 convertases 
and was reported as upregulated in the serum of ApcMin/+ CRC 
mice versus wild-type mice.31 In our study, increased C4B was 
found in advanced-stage CRC patients, suggesting that this 
complement protein might play a key role in the disease pro-
gression. In addition to C4B, another member of the comple-
ment cascade, C8A, was also enhanced in the advanced stages 
of CRC patients. C8A is a key constituent of the membrane 
attack complex that regulates the pore formation in target cells 
and regulates the underlying innate and adaptive immune 
responses.27 The high C8a expression was previously reported 

Figure 6.  Complement protein C5 is a potential diagnostic biomarker for CRC. Box and whisker plots of (A) log-transformed areas of C5 in the discovery 

cohort calculated the significance by general linear model approach, (B) C5 concentrations measured by ELISA in the validation cohort calculated by 

Student t-test, and (C) log-transformed areas of a quantified peptide from C5a with the sequence AFTECCVVASQLR in the discovery cohort for CRC 

patients and healthy subjects calculated by Student t-test. * indicates statistical significance with a P value < .05, and *** indicates a P value < .001.
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in CRC metastasis compared to the primary tumor which sup-
ports its potential role in CRC progression.34 Moreover, the 
C8A level was also enhanced in patients with cancer-associ-
ated inflammation, suggesting that this complement protein is 
linked to the systemic inflammation promoted by CRC to 
facilitate metastasis from the primary tumor. More importantly, 
enhanced C5 was found in CRC patients’ plasma, which was 
confirmed in the validation cohort. Increased C5 expression in 
colon tissue versus normal-matched tissue and its association 
with metastasis was recently reported in another study.34 
Proteomics analysis also revealed an enhanced level of a pep-
tide corresponding to the C5A anaphylatoxin in examined 
CRC patients. Although there were no previous reports associ-
ating C5A with CRC, another complement anaphylatoxin, 
C3A, was proposed as a potential CRC diagnostic biomarker.35 
Moreover, several studies suggest that C5A may promote CRC 
tumorigenesis, metastasis, and immunosuppressive microenvi-
ronment within the tumor.35–37 However, further validation 
studies are needed to confirm the association between C5A 
plasma levels and CRC. Another enriched pathway in CRC 
patients was cholesterol metabolism, with 2 downregulated 
apolipoproteins APOA2 and APOA4, that were previously 
reported.38 It was found that APOA2 polymorphisms were 
associated with CRC prognosis and might play a relevant role 
in disease development and progression.39 These proteins were 
also related to metabolic syndrome which is a well-established 
CRC risk factor.40

Interestingly, our analysis reported novel plasma protein 
changes associated with CRC development. For instance, 
serum amyloid A4 (SAA4), one of the major acute-phase reac-
tants, was enhanced in CRC patients versus healthy individu-
als. The increased circulating levels of SAA have been linked to 
several inflammatory conditions including neoplasia.41 SAA4 
was only detected in CRC tissue but not in normal tissue, sug-
gesting a potential role in tumorigenesis.42 Another enhanced 
acute-phase response protein was LBP, which promotes 
cytokine release in response to bacterial lipopolysaccharide.43 
Noteworthy, our recently published study demonstrated the 
increased level of several pro-inflammatory cytokines in the 
same CRC cohort by proximity extension assay.44 It was previ-
ously found that LBP polymorphisms were associated with 
CRC susceptibility45 and high serum levels were associated 
with obesity.46

Our analysis identified novel links between plasma protein 
levels in CRC patients and cancer-associated inflammation. 
The secreted glycoprotein A2GL, also called LRG1, was 
upregulated in CRC patients with positive inflammatory status 
and overall CRC patients versus healthy individuals.13 LRG1 
was also overexpressed in CRC tissue where it induced cancer 
proliferation.47 Hence, it has been suggested that LRG1 plays 
an important role in CRC progression and may have an exac-
erbated pro-inflammatory effect in patients with cancer-asso-
ciated inflammation due to its link to the acute-phase 

response.48 Another enhanced protein in positive-inflamma-
tion CRC patients was CERU while higher levels in CRC 
patients versus healthy individuals were revealed in another 
study.49 The metalloprotein CERU binds copper in plasma and 
is associated with inflammatory responses by promoting nitric 
oxide synthase activity and cytokine secretion.50 On the con-
trary, this study found low levels of the retinol-binding protein 
4 (RBP4), which is related to cancer-associated inflammation. 
Downregulation of RBP4 in CRC patients versus healthy indi-
viduals in serum and tumor tissue was previously reported.51 
Other adipokines with antitumorigenic effects such as adi-
ponectin (APOD) was also reduced in cancer patients and 
RBP4 may play a role in the reduction of inflammation.52 A 
lower level of APOD, a protein associated with cancer-associ-
ated inflammation, was also observed in our cohort. This blood 
transporter was inversely correlated with CRC tumorigenesis 
and was associated with early stages of CRC, however, further 
functional studies are needed to elucidate its role in CRC 
development.53

A comparison early-stage and late-stage CRC patients 
revealed 4 potential biomarkers associated with cancer progres-
sion, including C4B, C8A, APOC2, and IGHG2. The lipo-
protein metabolism regulator, APOC2, was found elevated in 
advanced stages of cancer for the first time, while it was previ-
ously described as a potential biomarker of CRC develop-
ment.14 On the contrary, IGHG2 plasma levels were increased 
in CRC early stages and in patients with cancer-associated 
inflammation. The IGHG2 expression was previously detected 
enhanced in cancer tissues of CRC patients but not in plasma.54 
Further analysis in larger cohorts will validate our findings to 
determine the suitability of these potential biomarkers to pre-
dict the cancer stage and the association with inflammation.

By using LC-MS/MS proteomics analysis, we quantified 
138 plasma proteins in CRC patients and healthy subjects. 
However, the high dynamic range of proteins limited the quan-
tification of proteins with low abundance. Moreover, due to the 
relatively low number of patients in the discovery CRC cohort, 
further validation of the novel potential biomarkers in a larger 
validation cohort by targeted MS techniques or other quantita-
tive methods such as antibody-based strategies is required. The 
discovery cohort was also limited by the higher percentage of 
women, while CRC incidence is higher in men. Finally, CRC 
family history information and molecular expression profiles of 
the tumor were missing, which are relevant factors in CRC 
development and progression.

In this study, LC-MS/MS plasma proteomics application in 
CRC patients identified novel protein signatures compared to 
healthy subjects including complement proteins as well as pro-
teins such as SAA4 and LBP associated with pro-inflamma-
tory conditions. Importantly, we confirmed the enhanced levels 
of C5 in patients of a validation cohort as a potential diagnostic 
biomarker of CRC. Moreover, several proteins were linked to 
cancer-associated inflammation and tumor stages that may be 
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prognostic biomarkers after further validation in larger cohorts 
to apply them in clinics to improve patient care.
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