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For the first time, this paper offers the Bayesian and E-Bayesian estimation methods using the spacing function (SF) instead of the
classical likelihood function. The inverse Lindley distribution, including its parameter and reliability measures, is discussed in this
study through the mentioned methods, along with some other classical approaches. Six-point and six-interval estimations based on
an adaptive Type-I progressively censored sample are considered. The likelihood and product of spacing methods are used in
classical inferential setups. The approximate confidence intervals are discussed using both classical approaches. For various
parameters, the Bayesian methodology is studied by taking both likelihood and SFs as observed data sources to derive the posterior
distributions. Moreover, the E-Bayesian estimation method is considered by using the same data sources in the usual Bayesian
approach. The Bayes and E-Bayes credible intervals using both likelihood and SFs are also taken into consideration. Several Monte
Carlo experiments are carried out to assess the performance of the acquired estimators, depending on different accuracy criteria
and experimental scenarios. Finally, two data sets from the engineering and physics sectors are analyzed to demonstrate the
superiority and practicality of the suggested approaches.

1. Introduction

In life testing and reliability studies, implementing research
with complete data still takes a significant investment of time,
money, and human resources. However, due to the limited
timeframes for product development, life testing studies have
to be completed under strict time limits. Because Type-I and
Type-II censoring plans are obvious to carry out, they have
been widely used in survival analysis and industry life tests,
among the many other censoring plans designed to get
around this problem. These censoring methods are referred
to as one-stage censoring plans, in addition to hybrid Type-I
and hybrid Type-II censoring plans, because they prevent the
removal of living units for the experiment at any time before
the end of the test. See for more details, Epstein [1] and Childs

et al. [2]. This leads to the proposal of numerous multistage
censoring plans in the literature, which enables the researcher
to remove certain still-living units following a predefined pat-
tern. The most popular multistage censoring plan is progres-
sive Type-II censoring (T-IIPC). It works as follows: assume
that Si; i¼ 1; 2;…;m are nonnegative integers such that
∑m

i¼1Si ¼ n−m, where n is the total number of items on the
test. At each ith failure, Zi:m:n, for i¼ 1; 2;…;m, Si items are at
random eliminated from the remaining survival items. See
Balakrishnan and Cramer [3] for more additional details
about the T-IIPC. The Type-I progressive hybrid censoring
(T-IPHC) plan, which Kundu and Joarder [4] investigated,
combines the T-IIPC and hybrid censoring schemes. It per-
forms similarly to the T-IIPC scheme, but the test is ended at
time T∗ ¼minðZm:m:n; τÞ :, where τ is a prefixed threshold.
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Recently, two new adaptive censoring schemes have been
founded. They are called adaptive Type-II progressive censor-
ing (AT-IIPC) and adaptive Type-I progressive censoring
(AT-IPC), proposed by Ng et al. [5] and Lin and Huang
[6], respectively. As in the case of the T-IPHC plan, the AT-
IIPC scheme ends the test at Zm:m:n if Zm:m:n<τ. Conversely, as
soon as the experimental time reaches time τ, no additional
items will be discarded from the test. All of the remaining
Sm ¼ n− S1 −⋯− Sk −m units are removed from the experi-
ment immediately following the mth failure, where k is the
observed number of failures before time τ. When compared to
the AT-IIPC scheme, Lin and Huang [6] demonstrated that
the AT-IPC plan offers a higher estimation accuracy. The AT-
IPC assures the termination of the experiment at a prefixed
time τ. Similar to the case of the T-IPHC plan, the test ends at
time τ if τ<Zm:m:n and all the remaining items are removed at
this point. On the other hand, the lifespan experiment will
keep running to monitor failures without removing living
items until τ, if the failure time Zm:m:n is reached before τ.
Then, at time τ, all the remaining items are removed, given
by S∗ ¼ n− k−∑m−1

i¼1 Si. Adaptive censoring plans, particu-
larly the AT-IIPC scheme, have received a lot of attention
in recent years. See the work of Elshahhat and Nassar [7],
Alrumayh et al. [8], Qin and Gui [9], and Alam et al. [10],
among others. Conversely, the AT-IIPC design has received
little attention despite being useful for statistical inference.
Some studies, including but not limited to Lin et al. [11],
Nassar and Dobbah [12], Okasha et al. [13], and Alam et al.
[14], among others, examined some estimation challenges
from some lifetime models in the presence of AT-IIPC data.
For more details about other adaptive progressive censoring
plans, one can refer to Ye et al. [15], Sewailem et al. [16],
Panahi and Moradi [17], and Asadi et al. [18].

In order to improve the ability of conventional models to
suit different kinds of data, numerous lifetime distributions have
been made available recently for modeling lifetime data. The
inverse Lindley (IL) distribution, which features an upside-
downbathtub-shaped hazard rate function (HRF), was proposed
by Sharma et al. [19] as an inverted version of the classical
Lindley distribution. Assume that Z>0 is a random variable
following the IL distribution, consider ILðθÞ : as its abbreviation,
and θ be a scale parameter. Then, the probability density func-
tion (PDF), reliability function (RF), and HRF, that align with Z,
with θ̄ ¼ θ=ð1þ θÞ :, can have the following forms:

g z; θð Þ ¼ θθ̄e−
θ
z 1þ zð Þ
z3

; z>0; θ>0; ð1Þ

R z; θð Þ ¼ 1 − 1þ θ̄
z

� �
e−

θ
z; ð2Þ

and

h z; θð Þ ¼
θ
z

À Á
2 1þ zð Þ

z 1þ θð Þ e
θ
z − 1

� �
− θ

h i : ð3Þ

Numerous authors examined several estimation pro-
blems using different censoring strategies when the IL distri-
bution served as the parent distribution because of how
straightforward the IL distribution is. Some of its estimation
issues were investigated by Basu et al. [20] using a Type-I
censored sample. Using binomial removals and the T-IPHC
strategy, Basu et al. [21] assessed the IL model. Basu et al.
[22] examined the maximum likelihood (ML), maximum
product of spacing (MPS), and Bayesian estimations for the
IL distribution using hybrid censored data. Hassan et al. [23]
examined the calculation of the reliability parameter for the IL
distribution employing ranked set sampling. Asgharzadeh
et al. [24] addressed the PDF and CDF estimation problem
for the IL distribution. In their study, Alotaibi et al. [25]
examined the estimation of some specific life parameters of
the IL distribution via the AT-IIPC data.

Researchers considered both classical and nonclassical
approaches, such as ML and Bayesian estimation methods,
when estimating lifetime models for a while. In recent years,
many studies have appeared to show the superiority of some
other techniques rather than the mentioned methods. For
example, from the classical point of view, the MPS estimation
introduced by Cheng and Amin [26] can provide better esti-
mates when compared with the ML method, especially when
the sample size is small or for heavy-tailed distributions. See
Ng et al. [27], Basu et al. [22], and Nassar et al. [28] for
more details. Furthermore, obtaining more accurate esti-
mates via Bayesian estimation may result from utilizing
the spacing function (SF) rather than the likelihood func-
tion (LF) to determine the posterior distribution, as shown
in Dey et al. [29]. In the context of Bayesian estimation,
Han [30] was motivated to suggest the E-Bayesian estima-
tion approach, which treats the hyperparameters as random
variables with probabilistic models in response to the chal-
lenge of identifying their values. Many studies considered
the E-Bayesian methodology; see, for example, Jaheen and
Okasha [31], Okasha [32], Algarni et al. [33], Han [34], and
Iqbal and Yousuf [35], among others. It is evident that all
studies that took into account the E-Bayesian estimation
approach used the LF as the source of observed data to
derive the posterior distribution of the parameters vector.
As a result, we are motivated in this work to study the E-
Bayesian estimation method when the posterior distribution
is obtained using the SF. It is important to mention here
that it is the first time to investigate the E-Bayesian estima-
tions using the SF. Another important motivation for this
work is the flexibility of the IL distribution in analyzing real
data sets. One can see the superiority of the IL distribution
in modeling real data sets when compared with some other
distributions later in the real data section. Furthermore, this
is the first time that six-point and six-interval estimates for
the parameters, including the reliability metrics, of the IL
distribution have been compared using the AT-IPC, which
we believe is significant for practitioners and reliability
experts. The objectives of this study can be listed as given
below:
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(1) Deriving the ML estimates (MLEs) of θ, RF, and HRF
for the IL distribution using AT-IIPC data. The approx-
imate confidence intervals (ACIs) are also acquired.

(2) Investigating the MPS estimates (MPSEs) along with
the ACIs of the different parameters.

(3) Studying the Bayesian estimation for the IL distribu-
tion under the squared error (SE) loss function. The
Bayes estimates are computed using both LF and SF,
denoted by Bayes-LF and Bayes-SF, respectively. The
Bayes credible intervals (BCIs) are also acquired
using both LF and SF, denoted by BCIs-LF and
BCIs-SF, respectively.

(4) Exploring the E-Bayesian estimation for various param-
eters using both LF and SF, denoted by E-Bayes-LF and
E-Bayes-SF, respectively. Also, the E-BCIs are obtained
based on LF and SF, denoted by E-BCIs-LF and E-BCIs-
SF, respectively. Since all theoretical solutions of θ devel-
oped by the proposed estimation approaches cannot be
represented in closed expressions, thus we shall use two
well-known packages, called “maxLik” (by Henningsen
and Toomet [36]) and “coda” (by Plummer et al. [37])
in R software to obtain the required estimates.

(5) Using a variety of scenarios and simulation research,
compare the six-point and six-interval estimations
according to a set of precise standards.

(6) Demonstrating the viability of the suggested techni-
ques by exploring two applications from the domains
of engineering and physics.

This is how the remainder of the paper is organized.
Section 2 examines the MLEs and ACIs for the IL distribu-
tion that use the LF, indicated by ACIs-LF. In Section 3, the
MPSEs and the ACIs employing the SF, designated as ACIs-
SF, are studied. Section 4 addresses the Bayes-LF, Bayes-SF,
BCIs-LF, and BCIs-SF using the Markov chain Monte Carlo
(MCMC) method. The E-Bayes-LF, E-Bayes-SF, E-BCIs-LF,
and E-BCIs-SF of the various parameters are looked at in
Section 5. The hype-parameters selection problem is covered
in Section 6. A comprehensive Monte Carlo simulation will
be run in Section 7 to examine the performance of each
estimate that was taken into consideration. Two real-world
data sets are presented in Section 8. A few observations will
be covered in Section 9.

2. Likelihood Approach

In this part, the ML method is considered to get the MLEs
and ACI-LF of θ, RF, and HRF of the IL distribution using
AT-IPC data. Suppose that we have z¼ðzi; i¼ 1;…; kÞ: as an
AT-IPC sample, where zi ¼ zi:m:n for simplicity, with progres-
sive censoring pattern S¼ðS1;…; Sm−1;…; SkÞ :, where Sm ¼
…; Sk ¼ 0. Then, the LF of the observed data, for k≥ 1, takes
the form as follows:

L θ zjð Þ ¼ C∏
k

i¼1
g zi:m:nð ÞRSi zi:m:nð Þf g RS∗ τð Þ; ð4Þ

where C is the normalized constant. When the AT-IPC sam-
ple is gathered from the IL population, the LF in Equation (4)
using the PDF and RF given by Equations (1) and (2), respec-
tively, can be given by the following:

L θ xjð Þ ¼ θθ̄
À Á

ke−θQ∏
k

i¼1
eθxi − 1þ θ̄xi

À ÁÂ Ã
Si eθT − 1þ θ̄T

À ÁÂ Ã
S∗ ;

ð5Þ

where xi ¼ z−1i , x¼ðxi; i¼ 1;…; kÞ:, T ¼ τ−1, and Q¼
∑k

i¼1ð1þ SiÞ :xi þ S∗T . The log-LF is as follows:

l θ xjð Þ ¼ k log θð Þ þ k log θ̄
À Á

− θQ

þ ∑
k

i¼1
Si log eθxi − 1þ θ̄xi

À ÁÂ Ã
þ S∗ log eθT − 1þ θ̄T

À ÁÂ Ã
:

ð6Þ

Accordingly, the MLE of θ, symbolized by bθ is the solu-
tion of the next equation as follows:

dl θ xjð Þ
dθ

¼ k
θ
þ k
θ 1þ θð Þ − Qþ ∑

k

i¼1
Sixiψ xi; θð Þ

þ S∗Tψ T ; θð Þ ¼ 0;
ð7Þ

where ψðxi; θÞ: ¼ ´̄θ−eθxi
1þθ̄xi−eθxi

and ´̄θ ¼ 1=ð1þ θÞ2. As there is no
direct formula for bθ , one has to employ any numerical

approach to find it. After finding bθ , the MLEs of the RF and
HRF at time t, can be produced via the plug-in property from
Equations (2) and (3), respectively, as outlined below:

bR tð Þ ¼ 1 − 1þ
b̄θ
t

 !
e−
bθ
t ð8Þ

and

bh tð Þ ¼
bθ
t

À Á
2 1þ tð Þ

t 1þ bθ� �
e
bθ
t − 1

� �
− bθh i : ð9Þ

The exact distribution of bθ is difficult to determine,
which makes creating the interval estimation difficult. There-
fore, we used the large sample theory to compute the
required interval ranges. Via the asymptotic traits of the
MLE, the ACI-LF of θ can be obtained as follows:

bθ Æ zα=2 
ffiffiffiffiffiffibV θ

q
; ð10Þ

where zα=2 is the upper ðα=2Þ :th percentile point of the stan-
dard normal distribution, and
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bV θ ¼ −
d2l θ xjð Þ
dθ2

� �
−1
����
θ¼bθ ; ð11Þ

with

d2l θ xjð Þ
dθ2

¼ −
2k
θ2

þ k
1þ θð Þ2 − ∑

k

i¼1
Sixiψ́ xi; θð Þ − S∗Tψ́ T ; θð Þ;

ð12Þ

where

ψ́ xi; θð Þ ¼
´̄́
θ − xieθxi

1þ θ̄xi − eθxi
−

xi eθxi − ´̄θ
� �

2

1þ θ̄xi − eθxi
À Á

2 ;   

´̄́
θ ¼ −

2
1þ θð Þ3 :

ð13Þ

The ACIs-LF corresponding to RðtÞ: and hðtÞ : can be
readily calculated by approximating the estimated variances

of bRðtÞ : and bhðtÞ : with the delta approach, presented as fol-
lows:

bR tð Þ Æ zα=2 
ffiffiffiffiffiffiffibVR

q
;   and  bh tð Þ Æ zα=2 

ffiffiffiffiffiffibVh

q
; ð14Þ

where bVR ¼ ½bRθ
bV θ
bR>
θ �:, bVh ¼ ½bhθ bV θ

bh>θ � :, and

bRθ ¼
b̄θ e−bθt ς 1þ bθ� �

þ t
h i
t2 1þ bθ� � ð15Þ

and

bhθ ¼ bθς e−
bθ
t 2t þ bθ θ þ ςð Þ
h i

− 2t þ bθς� �n o
t2 bθ þ t 1þ bθ� �

1 − e−
bθ
t

� �h i
2 ; ð16Þ

where ς¼ 1þ t:

3. Product of Spacing Approach

The MPSEs and ACIs-SF of θ, RF, and HRF for the IL dis-
tribution are studied in this section. Many authors investi-
gated the theoretical properties of the MPS method,
including invariance and asymptotic properties, see Anato-
lyev and Kosenok [38] and Ghosh and Jammalamadaka [39].
Based on an observed AT-IPC sample z¼ðzi; i¼ 1;…; kÞ :,
with progressive censoring pattern S¼ðS1;…; Sm−1;…; SkÞ :,
where Sm ¼…; Sk ¼ 0. Then, the SF of the observed data, for
k≥ 1, can be expressed as follows:

P θ zjð Þ ¼ C∏
kþ1

i¼1
Di∏

k

i¼1
RSi zi:k:nð Þ RS∗ τð Þ; ð17Þ

where Di ¼ FðziÞ : − Fðzi−1Þ :, Fð:Þ: ¼ 1−Rð:Þ :. For the IL distri-
bution, we can joint the SF from Equations (1), (2), and (17)
as follows:

P θ xjð Þ ¼ e−θQ
∗ ∏
kþ1

i¼1
D xi; θð Þ∏

k

i¼1
eθxi − 1þ θ̄xi

À ÁÂ Ã
Si

eθT − 1þ θ̄T
À ÁÂ Ã

S∗ ;

ð18Þ

where Q∗ ¼∑k
i¼1Sixi þ S∗T and

D xi; θð Þ ¼ 1þ θ̄xi
À Á

e−θxi − 1þ θ̄xi−1
À Á

e−θxi−1 : ð19Þ

The natural logarithm of Equations (18) is as follows:

p θ xjð Þ ¼ − θQ∗ þ ∑
kþ1

i¼1
log D xi; θð Þ½ �

þ ∑
k

i¼1
Si log eθxi − 1þ θ̄xi

À ÁÂ Ã
þ S∗ log eθT − 1þ θ̄T

À ÁÂ Ã
:

ð20Þ

Therefore, the MPSE of θ, say θ̃ , is the solution of the
next equation as follows:

dp θ xjð Þ
dθ

¼−Q∗ þ ∑
kþ1

i¼1

D́ xi; θð Þ
D xi; θð Þ þ ∑

k

i¼1
Sixiψ xi; θð Þ

þ S∗Tψ T ; θð Þ ¼ 0

ð21Þ

where D́ðxi; θÞ: ¼ ϑðxi; θÞ: − ϑðxi−1; θÞ:, and ϑðxi; θÞ: ¼
θ̄xie−θxi ð2þθð1þxiÞþxiÞ

1þθ . The MPSE θ̃ is the numerical solution
of Equations (21), which cannot be obtained in explicit form.
Utilizing the invariance trait of the MPSE, the MPSEs of RF
and HRF can be calculated, respectively, as

eR tð Þ ¼ 1 − 1þ
ēθ
t

 !
e−

θ̃
t ð22Þ

and

eh tð Þ ¼
θ̃
t

� �
2
1þ tð Þ

t 1þ eθ� �
e
θ̃
t − 1

� �
− eθh i : ð23Þ

Likewise to the ML methodology, the exact distribution
of θ̃ is challenging to identify, which complicates the building
of the interval estimation. In this case, the ACI-SF of θ can be
acquired by utilizing the asymptotic properties of the MPSE
as follows:
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eθ Æ zα=2 
ffiffiffiffiffiffieV θ

q
; ð24Þ

where Ṽ θ ¼ ½− d2pðθjxÞ
dθ2 �−1j θ¼θ̃ , where

d2p θ xjð Þ
dθ2

¼ ∑
kþ1

i¼1

D∗ xi; θð Þ
D2 xi; θð Þ − ∑

kþ1

i¼1

D́ xi; θð Þ
D xi; θð Þ − ∑

k

i¼1
Sixiψ́ xi; θð Þ

− S∗Tψ́ T ; θð Þ;
ð25Þ

where D∗ðxi; θÞ: ¼Dðxi; θÞ:

´́Dðxi; θÞ: − D́2ðxi; θÞ: and

´́D xi; θð Þ ¼ xie−θxi θxi 1þ xið Þ θ2 þ 1ð Þ þ θ2xi 2xi þ 3ð Þ − xi − 2½ �
θ þ 1ð Þ3 :

ð26Þ

The ACIs-SF associated with RF and HRF can be
acquired as follows:

eR tð Þ Æ zα=2 
ffiffiffiffiffiffiffieVR

q
;   and  eh tð Þ Æ zα=2 

ffiffiffiffiffiehRq
; ð27Þ

where Ṽ R and Ṽ h are approximated using the delta method
as mentioned in the previous section.

4. Bayesian Approach

This section focuses on estimating θ and RF from a Bayesian
perspective using the AT-IPC sample, taking into account
the SE loss function. In this case, we treat the parameter θ as
a random variable that has a prior distribution to reflect the
available knowledge about it. We assume that the parameter
θ has gamma prior distribution with hyperparameters a;
b>0. We use both LF and SF as sources of observed data
to derive the posterior distribution of θ. The posterior dis-
tributions using LF and SF can be written, respectively, as
given below:

H1 θ xjð Þ ¼ θkþa−1θ̄ke−θ Qþbð Þ

A1
∏
k

i¼1
eθxi − 1þ θ̄xi

À ÁÂ Ã
Si

eθT − 1þ θ̄T
À ÁÂ Ã

S∗

ð28Þ

and

H2 θ xjð Þ ¼ θa−1e−θ Q∗þbð Þ

A2
∏
kþ1

i¼1
D xi; θð Þ∏

k

i¼1
eθxi − 1þ θ̄xi

À ÁÂ Ã
Si

eθT − 1þ θ̄T
À ÁÂ Ã

S∗ ;

ð29Þ

where A1 and A2 are the normalized constants given, respec-
tively, by the following:

A1 ¼
Z 1

0
θkþa−1θ̄k e−θ Qþbð Þ∏

k

i¼1

eθxi − 1þ θ̄xi
À ÁÂ Ã

Si eθT − 1þ θ̄T
À ÁÂ Ã

S∗dθ

ð30Þ

and

A2 ¼
Z 1

0
θa−1e−θ Q∗þbð Þ∏

kþ1

i¼1
D xi; θð Þ∏

k

i¼1

eθxi − 1þ θ̄xi
À ÁÂ Ã

Si eθT − 1þ θ̄T
À ÁÂ Ã

S∗dθ:

ð31Þ

LetϖðθÞ : is any function of the unknown parameter θ, and
we need to find its Bayes-LF and Bayes-SF using the SE loss
function from the posterior distributions in Equations (28) and
(29), denoted by bϖBLðθÞ : and bϖBSðθÞ :, respectively. In this situ-
ation, the Bayes estimators are obtained by finding the expec-
tation of the posterior distributions, respectively, as follows:

bϖBL θð Þ ¼
Z 1

0
ϖ θð ÞH1 θ xjð Þdθ ð32Þ

and

bϖBS θð Þ ¼
Z 1

0
ϖ θð ÞH2 θ xjð Þdθ: ð33Þ

Because the integrals in Equations (32) and (33) are quite
difficult, the Bayes estimators cannot be obtained explicitly. For
computing the Bayes estimates as well as the BCIs, we imple-
ment the MCMC approach with the Metropolis–Hastings
(M–H) process. The computation operations are described in
Algorithm 1 to obtain the Bayes-LF.

Using Algorithm 1, but by replacing the MPSE as a start-
ing value instead of MLE and employing the posterior distri-
bution in Equation (29), one can obtain the Bayes-SF and

BCIs-SF of θ, RðtÞ:, and hðtÞ :, presented by bθBS, bhBSðtÞ :, andbhBSðtÞ :, respectively, of the IL distribution using AT-IPC data.

5. E-Bayesian Approach

In standard Bayesian estimation, the values of the hyperpara-
meters are defined either arbitrarily by the investigator or
based on experience. These values are treated as constants.
Conversely, these hyperparameters are viewed by the E-
Bayesian method of estimation as random variables with
determined probability distributions. As an outcome, the
main benefit of E-Bayesian estimation is that it employs
the expectation of the regular Bayes estimators to take into
consideration all potential values of the hyperparameters. Let
ϖðθÞ : be an unknown parameter, and its Bayes estimator is
determined as bϖðθÞ :. Also, assume that hða; bÞ : is the joint
prior distribution for the hyperparameters a and b. Then, as
indicated by Han [30], the E-Bayes estimator of ϖðθÞ : can
therefore be obtained as shown below:
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eϖ θð Þ ¼
Z Z

Ω
bϖ θð Þh a; bð Þ da da; ð34Þ

where Ω is the domain of a and b. As pointed out by Han
[30], the hyperparameter prior distributions have to be
established to make sure that the prior distribution of the
unknown parameter θ is a decreasing function in θ. One can
easily see that when 0<a<1 and b>0, the gamma distribu-
tion can accomplish this attribute. As a result, we select the
prior distribution of the hyperparameter a to be the beta
distribution. On the other hand, the prior distribution of
the hyperparameter b is selected to be a uniform distribution
on the interval ð0; cÞ :. Then, the joint prior distribution of the
hyperparameters can be obtained as follows:

h a; bð Þ ¼ aɛ1−1 1 − að Þɛ2−1
cB ɛ1; ɛ2ð Þ ; 0<a<1; 0<b<c; ɛ1; ɛ2>0:

ð35Þ

Using the aforementioned assumptions, the E-Bayes estima-
tors ofϖðθÞ : usingbothBayes-LFandBayes-SF inEquations (32)

and (33), which use the LF and SF approaches, respectively, can
be expressed as follows:

eϖBL θð Þ ¼
Z

c

0

Z
1

0
bϖBL θð Þ h a; bð Þda db ð36Þ

and

eϖBS θð Þ ¼
Z

c

0

Z
1

0
bϖBS θð Þh a; bð Þ da db: ð37Þ

Due to the complex nature of the original Bayes estima-
tors, it is not as simple to obtain the E-Bayes estimators, as
expected. As a result, we generate samples from the joint
prior distribution of the hyperparameters in Equation (35)
and then use them to get samples from the target posterior
distributions using the M–H algorithm. The steps listed in
Algorithm 2 show how to collect samples and subsequently
get the required E-Bayes-LF.

The same steps in Algorithm 2 can be used to get the
E-Bayes-SF and E-BCIs-SF of the unknown parameters using
the SF. In this case, the MPSE is used as starting values and

Step 1. Put j¼ 1 and θð0Þ ¼ bθ as an initial guess.

Step 2. Get θðjÞ from Equation (28) using the M–H algorithm with normal proposal distribution Nðbθ; bV θÞ:.

Step 3. Replace j by jþ 1.

Step 4. Repeat Steps 2 and 3 M times to get θðjÞ, j¼ 1; 2;…;M.

Step 5. Calculate RðjÞðtÞ : and hðjÞðtÞ: using Equations (2) and (3), respectively.

Step 6. After a burn-in period G, obtain the Bayes-LF of θ, RðtÞ: and hðtÞ: as follows:bθBL ¼ ∑M
j¼Gþ1θ

ðjÞ

M̄ ; bRBLðtÞ: ¼ ∑M
j¼Gþ1R

ðjÞðtÞ
M̄ ; and bhBLðtÞ: ¼ ∑M

j¼Gþ1h
ðjÞðtÞ

M̄ ; M̄ ¼M −G.
Step 7. To get the BCIs-LF of θ, RðtÞ: and ht Þ:, do the following:

a) Sort the MCMC sample to get θ½i�;R½i� and h½i�; i¼Gþ 1;…;M.

b) The BCIs-LF of θ, RðtÞ : and hðtÞ: are given, respectively, by the following:

fθ½αM̄=2�;  θ½ð1−α=2ÞM̄ �g:, fR½αM̄=2�;  R½ð1−α=2ÞM̄ �g:; and fh½αM̄=2�;  h½ð1−α=2ÞM̄ �g:

ALGORITHM 1: Steps to Generate and Compute Bayes Estimates.

Step 1. Set j¼ 1 and θð0Þ ¼ bθ .
Step 2. Set the values of ɛ1; ɛ2 and c.

Step 3. Generate aðjÞ from beta distribution, i.e., Betaðɛ1; ɛ2Þ:.

Step 4. Generate bðjÞ from uniform distribution, i.e., Uniformð0; cÞ:.

Step 5. Obtain θðjÞ from Equation (28) via the M–H algorithm with Nðbθ; bV θÞ:.

Step 6. Alter j by jþ 1.

Step 7. Redo Steps 3–6, M times to compute θðjÞ, j¼ 1; 2;…;M.

Step 8. Calculate RðjÞðtÞ : and hðjÞðtÞ:.

Step 9. The E-Bayes-LF estimates of θ, RðtÞ:, and hðtÞ :, are as follows:

θ̃BL ¼
∑M
j¼Gþ1θ

ðjÞ

M̄ ; and R̃BLðtÞ: ¼ ∑M
j¼Gþ1R

ðjÞðtÞ
M̄ and h̃BLðtÞ: ¼ ∑M

j¼Gþ1h
ðjÞðtÞ

M̄ :
Step 10. The E-BCIs-LF are obtained using the same procedure in step 7 in Algorithm 1.

ALGORITHM 2: Steps to Generate and Compute E-bayes Estimates.

6 Applied Bionics and Biomechanics



the M–H algorithm is acquired to get samples from the
posterior distribution in Equation (29).

6. Hyperparameter Selection

Figuring out the appropriate hyperparameter value is the
main difficulty in Bayesian analysis, particularly in the con-
text of an informative prior for the density parameter. Addi-
tionally, the values of hyperparameters are chosen for the
unknown parameters based on two types of information:
the average expected value and the uncertainty of the
unknown parameter in the model we are thinking about.
Here are the steps we suggest for figuring out the values of
hyperparameters a and b using previous samples, such as

Step 1: Put the true value of θ.
Step 2: Simulate a random sample of size n from ILðθÞ :.
Step 3: Calculate the MLE bθ of θ.
Step 4: Redo Steps 2 and 3G times to acquire bθ i; i¼ 1; 2;

…;G.
Step 5: Assign the gamma density prior’s mean and var-

iance to the sample mean and sample variance ofbθ i, respectively, as
E bθ j� �

≡ E π θð Þð Þ →
1
B
∑G

i¼1
bθ i ¼ a

b
ð38Þ

and

Var bθ j� �
≡ Var π θð Þð Þ →

1
G − 1

∑G
i¼1

bθ i −G−1∑G
i¼1
bθ i� �

2

¼ a
b2

;

ð39Þ

where G is the number of generated samples
from the IL distribution.

Step 6: The estimated hyperparameters ă and b̆ of a and
b can be found directly by solving Equations (38)
and (39) simultaneously, as

ă ¼
1
G∑

G
i¼1
bθ i� �

2

1
G−1∑

G
i¼1

bθ i −G−1∑G
i¼1
bθ i� �

2  and 

b̆ ¼
1
G∑

G
i¼1
bθ i

1
G−1∑

G
i¼1

bθ i −G−1∑G
i¼1
bθ i� �

2 ;

ð40Þ

respectively.
Step 7: Redo Steps 3–6 to get the values of a and b by the

MPSE θ̃ of θ.

7. Numerical Evaluations

To examine the actual behavior of the acquired estimators of
θ, RðtÞ :, and hðtÞ : derived via ML and MPS approaches as well

as their extensions in Bayesian and E-Bayesian inferential
approaches, extensive Monte Carlo simulations are con-
ducted based on large 1,000 AT-IPC samples drawn from
the IL (0.5) distribution. With time t¼ 0:1, the actual values
of RðtÞ : and hðtÞ : are utilized as (0.9708,1.2724). Taking τð¼
0:5; 1:5Þ : and nð¼ 40; 80Þ :, various scenarios of k (effective
censored-sample size) and Si; i¼ 1; 2;…; k, (progressive
design) are reported in Table 1. In this table, the censoring
S : ð0; 0; 0; 1; 1; 1Þ: (for instance) is symbolized by ð03; 13Þ : for
simplicity. For specification, each value of k is considered as a
failure percentage of each n as k

n × 100%¼ 50 and 75%.
In a Bayesian setup, picking the hyperparameter values is

the main problem. For this purpose, we will choose values for
the hyperparameters a and b through the method of past
sample data described in Section 6. In this case, we create
2,000 past-complete samples (with n¼ 50) from IL (0.5). So,
the values of (a, b) are taken as (93.15613, 184.0805) by the
LF method as well as (93.47667, 189.0999) by the SF method.
Additionally, to see how the affect of the hyperparameters c
and ɛi; i¼ 1; 2; on the E-Bayes’ calculations, we generate
numbers for parameters ɛi; i¼ 1; 2; from the beta distribu-
tion. As a result, for fixed c¼ 0:5, the values of (ɛ1; ɛ2) are
taken as (99.30387, 196.191) by the LF method as well as
(99.67437, 201.6223) by the SF method.

In order to apply the M–Hmethod, the first 2,000 (out of
10,000) MCMC iterations of each unknown quantity are
burned in. The resulting 95% BCIs and Bayes estimates for
θ, RðtÞ :, or hðtÞ : using the LF (or SF) approach are then
computed. To find a good representative iteration from the
objective posterior distributions from LF and SF approaches,
based on Test (1) when n¼ 40, three convergence tools are
used: (1) auto-correlation function (ACF), (2) trace, and (3)
Brooks–Gelman–Rubin (BGR) diagnostic; see Figures 1, 2,
and 3. As a consequence, for plots based on LF or SF, Figure 1
means that the relationship between data within each group
and the distribution of the results is strong and reliable;
Figure 2 shows that the simulated sequences of θ, RðtÞ :, or
hðtÞ: are well mixed, and Figure 3 shows that the variance
within the Markovian chains is about the same as the vari-
ance between them. Additionally, using the same sample

TABLE 1: Different simulation designs.

Test n k S

(1) 40 20 ð54; 016Þ:

(2) — — ð08; 54; 08Þ:

(3) — — ð016; 54Þ:

(4) — 30 ð52; 028Þ:

(5) — — ð014; 52; 014Þ:

(6) — — ð028; 52Þ:

(1) 80 40 ð104; 036Þ:

(2) — — ð018; 54; 018Þ:

(3) — — ð036; 54Þ:

(4) — 60 ð102; 058Þ:

(5) — — ð029; 52; 029Þ:

(6) — — ð058; 52Þ

Applied Bionics and Biomechanics 7
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FIGURE 1: The ACF diagnostics of θ, RðtÞ:, and hðtÞ : in Monte Carlo simulation: (a) Bayes-LF; (b) Bayes-SF; (c) E-Bayes-LF; (d) E-Bayes-SF.
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FIGURE 2: Trace diagnostics of θ, RðtÞ:, and hðtÞ : in Monte Carlo simulation: (a) Bayes-LF; (b) Bayes-SF; (c) E-Bayes-LF; (d) E-Bayes-SF.
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created by Test (1) when n¼ 40 (as an example), we shall
monitor the acceptance rate of the M–H algorithm devel-
oped by the normal distribution as a proposal in all proposed
estimation approaches. As a result, the acceptance rates of
Bayes-LF, Bayes-SF, E-Bayes-LF, and E-Bayes-SF are 93.48%,
94.37%, 94.43%, and 93.72%, respectively. Thus, we can
determine that the collected MCMC iterations give an
acceptable approximation of the posterior density, and thus,
the inferences derived are effective and reliable.

Specifically, the average estimate (Av.E) of θ (for
instance) is given by the following:

Av:E θð Þ ¼ 1
1; 000

∑
1;000

j¼1
θ̆

j½ �
; ð41Þ

where θ̆ ½j� is the estimate of θ at jth sample. The provided
estimates of θ are compared using their mean absolute biases
(MABs), root mean squared errors (RMSEs), and average
confidence lengths (ACLs) as

RMSE θ̆
À Á¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1; 000

∑1;000
j¼1 θ̆ j½ �

− θ
À Á2r

; ð42Þ
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FIGURE 3: The BGR diagnostics in Monte Carlo simulation: (a) Bayes-LF; (b) Bayes-SF; (c) E-Bayes-LF; (d) E-Bayes-SF.
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MAB θ̆
À Á¼ 1

1; 000
∑1;000

j¼1 θ̆ j½ �
− θ

�� ��; ð43Þ

and

ACL 1−αð Þ% θð Þ ¼ 1
1; 000

∑1;000
j¼1 Uθ̆

j½ �
−Lθ̆

j½ �À Á
; ð44Þ

respectively, where ðLð⋅Þ;Uð⋅ÞÞ : refers to the (lower, upper)
bounds of ð1− αÞ :% ACI (or BCI) estimate of θ.

Tables 2, 3, 4, 5, 6, 7, 8, 9, and 10 show the results of the
simulation. We report the following remarks based on the
lowest RMSE, MAB, and ACL values, based on Tables 2, 3, 4,
5, 6, 7, 8, 9, and 10:

(1) The suggested estimating approaches have produced
estimates of θ, RðtÞ:, or hðtÞ : that have all behaved
well. Here is our general remark.

(2) As n (or k) increases, all evaluations become even
better. A similar comment is also noted when
∑k

i¼1Si narrowed down.
(3) As τ increases, the simulated RMSE, MAB, and ACL

values of all estimates of θ, RðtÞ :, or hðtÞ : decreased.
(4) Comparing the proposed estimation procedures, it is

noted that

(i) All results derived from the Bayes (or E-Bayes)
methodology, due to the additional gamma
information, performed superior compared to
the frequentist estimates.

(ii) The MLE results of θ performed superior com-
pared to the MPSE results, whereas the MPSE
results of RðtÞ : and hðtÞ : performed superior
compared to the MLE results.

(iii) The Bayes-LF results of θ performed superior
compared to the Bayes-SF results, whereas the
Bayes-SF results ofRðtÞ : and hðtÞ : performed super-
ior compared to the Bayes-LF results. The same
observation is also reached when comparing the
Bayes and E-Bayesian inferential approaches.

(iv) The ACI-LF results of θ performed superior
compared to the ACI-SF results, whereas the
ACI-SF results of RðtÞ: and hðtÞ : performed
superior compared to the ACI-LF results.

(v) The Bayes-LF results of θ performed superior
compared to the Bayes-SF results, whereas the
Bayes-SF results of RðtÞ : and hðtÞ : performed
superior compared to the Bayes-LF results. The
same observation is also reached when compar-
ing the BCI and E-BCI inferential approaches.

TABLE 2: The Av.Es (1st Col.), RMSEs (2nd Col.), and MABs (3rd Col.) of θ when τ¼ 0:5.

n Test
MLE
MPSE

Bayes-LF
Bayes-SF

E-Bayes-LF
E-Bayes-SF

40

(1)
0.5042 0.0683 0.0532 0.5171 0.0570 0.0498 0.5213 0.0523 0.0456
0.4858 0.0671 0.0574 0.5056 0.0635 0.0540 0.4993 0.0584 0.0523

(2)
0.5036 0.0667 0.0518 0.5226 0.0553 0.0473 0.5256 0.0494 0.0396
0.4885 0.0646 0.0512 0.5116 0.0569 0.0432 0.5060 0.0486 0.0402

(3)
0.5080 0.0626 0.0487 0.5036 0.0533 0.0432 0.5075 0.0484 0.0391
0.4936 0.0626 0.0488 0.5073 0.0530 0.0418 0.4976 0.0471 0.0389

(4)
0.5077 0.0610 0.0475 0.4789 0.0485 0.0432 0.4844 0.0441 0.0352
0.4912 0.0596 0.0477 0.4656 0.0481 0.0411 0.4705 0.0445 0.0354

(5)
0.5066 0.0582 0.0447 0.4774 0.0452 0.0367 0.4838 0.0420 0.0343
0.4923 0.0585 0.0466 0.4668 0.0450 0.0402 0.4708 0.0421 0.0342

(6)
0.5080 0.0599 0.0467 0.4993 0.0437 0.0364 0.4977 0.0410 0.0325
0.4939 0.0548 0.0464 0.4897 0.0414 0.0376 0.4891 0.0396 0.0321

80

(1)
0.5030 0.0520 0.0440 0.5091 0.0420 0.0327 0.5056 0.0404 0.0310
0.4908 0.0501 0.0402 0.4937 0.0392 0.0371 0.4967 0.0372 0.0315

(2)
0.5026 0.0497 0.0414 0.5050 0.0401 0.0319 0.5024 0.0384 0.0296
0.4963 0.0484 0.0372 0.4917 0.0366 0.0349 0.4948 0.0353 0.0308

(3)
0.5059 0.0465 0.0376 0.4562 0.0372 0.0309 0.4553 0.0355 0.0272
0.5011 0.0450 0.0350 0.4439 0.0349 0.0332 0.4487 0.0334 0.0304

(4)
0.5039 0.0453 0.0364 0.5157 0.0363 0.0291 0.5191 0.0342 0.0255
0.4938 0.0433 0.0347 0.5072 0.0328 0.0316 0.5059 0.0323 0.0286

(5)
0.5035 0.0429 0.0338 0.5174 0.0335 0.0283 0.5205 0.0315 0.0253
0.4950 0.0423 0.0336 0.5098 0.0308 0.0314 0.5091 0.0285 0.0280

(6)
0.5034 0.0412 0.0330 0.4773 0.0322 0.0265 0.4785 0.0292 0.0230
0.4951 0.0397 0.0319 0.4703 0.0291 0.0286 0.4668 0.0263 0.0280

Applied Bionics and Biomechanics 11



TABLE 3: The Av.Es (1st Col.), RMSEs (2nd Col.), and MABs (3rd Col.) of θ when τ¼ 1:5.

n Test
MLE
MPSE

Bayes-LF
Bayes-SF

E-Bayes-LF
E-Bayes-SF

40

(1)
0.5037 0.0674 0.0528 0.5210 0.0559 0.0451 0.5265 0.0501 0.0405
0.4855 0.0664 0.0553 0.5096 0.0590 0.0526 0.5042 0.0538 0.0472

(2)
0.5035 0.0661 0.0514 0.5229 0.0535 0.0434 0.5263 0.0494 0.0392
0.4884 0.0641 0.0510 0.5121 0.0525 0.0428 0.5064 0.0484 0.0401

(3)
0.5159 0.0616 0.0479 0.5083 0.0499 0.0424 0.5114 0.0473 0.0381
0.5011 0.0616 0.0479 0.5110 0.0509 0.0416 0.5011 0.0470 0.0388

(4)
0.5071 0.0604 0.0472 0.4790 0.0475 0.0397 0.4841 0.0427 0.0344
0.4909 0.0595 0.0473 0.4661 0.0462 0.0368 0.4707 0.0418 0.0343

(5)
0.5061 0.0560 0.0447 0.4778 0.0451 0.0366 0.4838 0.0413 0.0331
0.4920 0.0559 0.0447 0.4667 0.0399 0.0345 0.4710 0.0384 0.0327

(6)
0.5129 0.0560 0.0427 0.5012 0.0420 0.0351 0.5004 0.0409 0.0323
0.4987 0.0517 0.0425 0.4922 0.0395 0.0342 0.4917 0.0363 0.0314

80

(1)
0.5029 0.0506 0.0401 0.5107 0.0398 0.0323 0.5063 0.0395 0.0310
0.4909 0.0498 0.0400 0.4951 0.0369 0.0321 0.4979 0.0349 0.0301

(2)
0.5025 0.0475 0.0374 0.5067 0.0393 0.0305 0.5046 0.0383 0.0296
0.4962 0.0468 0.0369 0.4940 0.0339 0.0313 0.4966 0.0318 0.0288

(3)
0.5176 0.0453 0.0345 0.4623 0.0369 0.0303 0.4610 0.0352 0.0269
0.5126 0.0436 0.0348 0.4491 0.0319 0.0302 0.4545 0.0293 0.0277

(4)
0.5041 0.0430 0.0338 0.5211 0.0347 0.0288 0.5232 0.0328 0.0253
0.4941 0.0424 0.0336 0.5115 0.0284 0.0290 0.5097 0.0258 0.0265

(5)
0.5036 0.0419 0.0330 0.5199 0.0334 0.0270 0.5229 0.0306 0.0232
0.4951 0.0402 0.0331 0.5119 0.0268 0.0281 0.5120 0.0250 0.0245

(6)
0.5084 0.0401 0.0313 0.4809 0.0318 0.0260 0.4834 0.0279 0.0218
0.4997 0.0389 0.0313 0.4740 0.0236 0.0272 0.4708 0.0213 0.0230

TABLE 4: The Av.Es (1st Col.), RMSEs (2nd Col.), and MABs (3rd Col.) of RðtÞ : when τ¼ 0:5.

n Test
MLE
MPSE

Bayes-LF
Bayes-SF

E-Bayes-LF
E-Bayes-SF

40

(1)
0.9615 0.2409 0.2078 0.9706 0.2276 0.1849 0.9688 0.2164 0.1668
0.9669 0.1989 0.1632 0.9729 0.1820 0.1412 0.9736 0.1690 0.1262

(2)
0.9635 0.2098 0.1523 0.9722 0.1952 0.1482 0.9707 0.1757 0.1343
0.9678 0.1803 0.1345 0.9743 0.1518 0.1255 0.9747 0.1437 0.1140

(3)
0.9651 0.1917 0.1478 0.9711 0.1878 0.1374 0.9683 0.1684 0.1291
0.9691 0.1695 0.1245 0.9702 0.1410 0.1171 0.9711 0.1322 0.1038

(4)
0.9635 0.1891 0.1392 0.9579 0.1589 0.1229 0.9598 0.1417 0.1115
0.9681 0.1642 0.1243 0.9626 0.1342 0.1012 0.9645 0.1246 0.0994

(5)
0.9645 0.1812 0.1345 0.9585 0.1328 0.1019 0.9601 0.1182 0.0912
0.9685 0.1583 0.1209 0.9622 0.1206 0.0994 0.9645 0.1113 0.0929

(6)
0.9653 0.1767 0.1329 0.9663 0.1175 0.0929 0.9657 0.1141 0.0882
0.9691 0.1549 0.1160 0.9689 0.1147 0.0961 0.9686 0.1078 0.0883

80

(1)
0.9653 0.1563 0.1174 0.9673 0.1127 0.0856 0.9683 0.1110 0.0835
0.9688 0.1372 0.1057 0.9718 0.1083 0.0871 0.9710 0.1036 0.0813

(2)
0.9676 0.1405 0.1055 0.9670 0.1070 0.0836 0.9680 0.1034 0.0810
0.9694 0.1266 0.0974 0.9710 0.0988 0.0798 0.9703 0.0972 0.0778

(3)
0.9692 0.1325 0.0961 0.9503 0.1024 0.0794 0.9525 0.1003 0.0765
0.9705 0.1215 0.0902 0.9555 0.0953 0.0758 0.9550 0.0913 0.0747

(4)
0.9666 0.1244 0.0941 0.9709 0.1012 0.0771 0.9710 0.0961 0.0727
0.9694 0.1139 0.0880 0.9732 0.0901 0.0739 0.9742 0.0885 0.0722

(5)
0.9674 0.1207 0.0919 0.9718 0.0952 0.0753 0.9719 0.0919 0.0703
0.9697 0.1109 0.0866 0.9738 0.0883 0.0706 0.9746 0.0827 0.0697

(6)
0.9675 0.1104 0.0872 0.9607 0.0914 0.0725 0.9594 0.0827 0.0627
0.9698 0.1047 0.0831 0.9628 0.0845 0.0668 0.9632 0.0783 0.0654
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TABLE 5: The Av.Es (1st Col.), RMSEs (2nd Col.), and MABs (3rd Col.) of RðtÞ : when τ¼ 1:5.

n Test
MLE
MPSE

Bayes-LF
Bayes-SF

E-Bayes-LF
E-Bayes-SF

40

(1)
0.9615 0.2269 0.1866 0.9716 0.2197 0.1657 0.9702 0.1954 0.1564
0.9669 0.1895 0.1451 0.9738 0.1811 0.1357 0.9747 0.1676 0.1242

(2)
0.9635 0.2090 0.1520 0.9724 0.1922 0.1462 0.9708 0.1748 0.1337
0.9678 0.1797 0.1340 0.9744 0.1511 0.1152 0.9749 0.1435 0.1012

(3)
0.9672 0.1916 0.1430 0.9721 0.1848 0.1342 0.9693 0.1682 0.1288
0.9711 0.1644 0.1247 0.9714 0.1351 0.1144 0.9721 0.1272 0.0994

(4)
0.9634 0.1882 0.1383 0.9582 0.1456 0.1117 0.9599 0.1322 0.1021
0.9681 0.1641 0.1237 0.9626 0.1263 0.0993 0.9645 0.1205 0.0939

(5)
0.9645 0.1690 0.1267 0.9584 0.1292 0.0991 0.9602 0.1153 0.0895
0.9684 0.1507 0.1169 0.9623 0.1186 0.0960 0.9645 0.1106 0.0901

(6)
0.9668 0.1624 0.1241 0.9670 0.1148 0.0858 0.9665 0.1094 0.0864
0.9706 0.1456 0.1140 0.9695 0.1144 0.0920 0.9694 0.1070 0.0878

80

(1)
0.9654 0.1555 0.1168 0.9678 0.1107 0.0851 0.9686 0.1071 0.0821
0.9688 0.1366 0.1056 0.9722 0.1047 0.0832 0.9711 0.1023 0.0804

(2)
0.9676 0.1395 0.1046 0.9677 0.1060 0.0828 0.9685 0.1011 0.0803
0.9694 0.1260 0.0972 0.9714 0.0987 0.0798 0.9709 0.0958 0.0774

(3)
0.9721 0.1245 0.0959 0.9525 0.1007 0.0789 0.9548 0.0978 0.0758
0.9733 0.1184 0.0900 0.9579 0.0945 0.0757 0.9571 0.0895 0.0746

(4)
0.9667 0.1171 0.0941 0.9720 0.0988 0.0759 0.9720 0.0948 0.0717
0.9694 0.1121 0.0863 0.9744 0.0890 0.0738 0.9751 0.0833 0.0714

(5)
0.9674 0.1113 0.0860 0.9723 0.0894 0.0726 0.9727 0.0851 0.0671
0.9697 0.1082 0.0830 0.9744 0.0867 0.0703 0.9751 0.0815 0.0669

(6)
0.9690 0.1038 0.0836 0.9620 0.0862 0.0676 0.9608 0.0826 0.0614
0.9712 0.1017 0.0828 0.9639 0.0843 0.0656 0.9647 0.0783 0.0630

TABLE 6: The Av.Es (1st Col.), RMSEs (2nd Col.), and MABs (3rd Col.) of hðtÞ : when τ¼ 0:5.

n Test
MLE
MPSE

Bayes-LF
Bayes-SF

E-Bayes-LF
E-Bayes-SF

40

(1)
1.5239 0.7197 0.6311 1.2631 0.6762 0.5663 1.3206 0.6518 0.5218
1.3544 0.6001 0.4650 1.1802 0.5911 0.4489 1.1552 0.5756 0.4086

(2)
1.4728 0.6306 0.4819 1.2109 0.5843 0.4564 1.2592 0.5317 0.4176
1.3349 0.5666 0.4418 1.1331 0.4866 0.3865 1.1167 0.4225 0.3471

(3)
1.4226 0.5983 0.4654 1.2462 0.5639 0.4439 1.3369 0.5116 0.4024
1.2951 0.5243 0.4200 1.2769 0.4651 0.3671 1.2468 0.4135 0.3351

(4)
1.4649 0.5767 0.4445 1.6608 0.4835 0.3833 1.6047 0.4378 0.3509
1.3172 0.5201 0.4093 1.5181 0.4142 0.3423 1.4599 0.4105 0.3202

(5)
1.4391 0.5568 0.4315 1.6448 0.4162 0.3284 1.5972 0.3735 0.2956
1.3112 0.5071 0.4009 1.5322 0.4072 0.3285 1.4626 0.3816 0.3170

(6)
1.4179 0.5470 0.4274 1.4052 0.3719 0.2917 1.4192 0.3669 0.2873
1.2932 0.5001 0.3989 1.3186 0.3994 0.3173 1.3291 0.3734 0.3068

80

(1)
1.4239 0.4855 0.3776 1.3704 0.3611 0.2820 1.3403 0.3511 0.2794
1.3136 0.4417 0.3497 1.2251 0.3487 0.2777 1.2534 0.3373 0.2727

(2)
1.3573 0.4416 0.3424 1.3828 0.3446 0.2751 1.3528 0.3432 0.2714
1.2991 0.4103 0.3239 1.2554 0.3325 0.2695 1.2787 0.3276 0.2665

(3)
1.3084 0.3997 0.3150 1.8934 0.3337 0.2660 1.8310 0.3326 0.2596
1.2658 0.3762 0.3005 1.7428 0.3218 0.2651 1.7573 0.3199 0.2570

(4)
1.3877 0.3955 0.3094 1.2515 0.3287 0.2630 1.2530 0.3232 0.2560
1.2970 0.3720 0.2934 1.1764 0.3115 0.2590 1.1453 0.3091 0.2565

(5)
1.3658 0.3831 0.3002 1.2252 0.3222 0.2601 1.2228 0.2979 0.2405
1.2900 0.3614 0.2884 1.1582 0.2975 0.2407 1.1317 0.2922 0.2345

(6)
1.3619 0.3615 0.2901 1.5855 0.3193 0.2557 1.6258 0.2826 0.2319
1.2879 0.3487 0.2798 1.5192 0.2831 0.2231 1.5073 0.2771 0.2122
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TABLE 7: The Av.Es (1st Col.), RMSEs (2nd Col.), and MABs (3rd Col.) of hðtÞ : when τ¼ 1:5.

n Test
MLE
MPSE

Bayes-LF
Bayes-SF

E-Bayes-LF
E-Bayes-SF

40

(1)
1.5247 0.6735 0.5705 1.2286 0.6604 0.5181 1.2770 0.5926 0.5042
1.3563 0.5887 0.4597 1.1488 0.5489 0.4240 1.1144 0.5124 0.3618

(2)
1.4732 0.6283 0.4809 1.2054 0.5763 0.4512 1.2552 0.5292 0.4161
1.3355 0.5644 0.4400 1.1302 0.4677 0.3649 1.1108 0.4189 0.3429

(3)
1.3546 0.5830 0.4542 1.2152 0.5465 0.4401 1.3056 0.5110 0.4015
1.2290 0.5216 0.4099 1.2373 0.4647 0.3623 1.2134 0.4121 0.3235

(4)
1.4666 0.5737 0.4413 1.6541 0.4460 0.3506 1.6021 0.4095 0.3225
1.3208 0.5120 0.4077 1.5180 0.4115 0.3230 1.4617 0.3911 0.3123

(5)
1.4406 0.5289 0.4133 1.6463 0.4071 0.3210 1.5956 0.3670 0.2918
1.3138 0.4944 0.3948 1.5284 0.3991 0.3167 1.4622 0.3790 0.3058

(6)
1.3707 0.5159 0.4039 1.3832 0.3650 0.2846 1.3951 0.3557 0.2827
1.2482 0.4790 0.3839 1.3014 0.3765 0.2988 1.3057 0.3572 0.2947

80

(1)
1.4225 0.4832 0.3755 1.3567 0.3495 0.2796 1.3289 0.3411 0.2762
1.3135 0.4400 0.3492 1.2113 0.3410 0.2754 1.2484 0.3324 0.2677

(2)
1.3577 0.4387 0.3396 1.3610 0.3426 0.2743 1.3351 0.3341 0.2648
1.2996 0.4085 0.3231 1.2414 0.3292 0.2660 1.2587 0.3238 0.2628

(3)
1.2118 0.3980 0.3145 1.8296 0.3323 0.2651 1.7631 0.3288 0.2564
1.1701 0.3744 0.2996 1.6729 0.3198 0.2590 1.6930 0.3119 0.2551

(4)
1.3842 0.3896 0.3073 1.2154 0.3216 0.2603 1.2197 0.3193 0.2544
1.2948 0.3702 0.2904 1.1337 0.3079 0.2515 1.1129 0.3041 0.2453

(5)
1.3649 0.3592 0.2860 1.2074 0.3187 0.2569 1.1985 0.2925 0.2393
1.2897 0.3522 0.2869 1.1379 0.2947 0.2330 1.1124 0.2895 0.2239

(6)
1.3155 0.3453 0.2814 1.5473 0.3183 0.2516 1.5827 0.2806 0.2286
1.2429 0.3462 0.2795 1.4832 0.2786 0.2217 1.4591 0.2758 0.2081

TABLE 8: The ACLs for 95% interval estimates of θ.

n Test ACI-LF BCI-LF E-BCI-LF ACI-SF BCI-SF E-BCI-SF

τ¼ 0:5

40

(1) 0.270 0.185 0.179 0.257 0.179 0.165
(2) 0.254 0.174 0.168 0.244 0.169 0.158
(3) 0.244 0.169 0.154 0.232 0.153 0.151
(4) 0.241 0.165 0.149 0.227 0.150 0.148
(5) 0.232 0.160 0.142 0.222 0.149 0.146
(6) 0.221 0.155 0.139 0.214 0.148 0.140

80

(1) 0.199 0.146 0.138 0.193 0.146 0.139
(2) 0.181 0.139 0.135 0.176 0.145 0.136
(3) 0.172 0.135 0.132 0.167 0.142 0.131
(4) 0.168 0.129 0.127 0.163 0.141 0.128
(5) 0.163 0.125 0.120 0.161 0.137 0.115
(6) 0.160 0.120 0.113 0.159 0.131 0.111

τ¼ 1:5

40

(1) 0.267 0.184 0.174 0.256 0.166 0.159
(2) 0.251 0.171 0.162 0.242 0.167 0.153
(3) 0.241 0.165 0.154 0.230 0.152 0.150
(4) 0.238 0.164 0.145 0.225 0.150 0.147
(5) 0.223 0.150 0.140 0.192 0.146 0.138
(6) 0.213 0.146 0.138 0.175 0.141 0.136

80

(1) 0.198 0.145 0.137 0.167 0.139 0.131
(2) 0.179 0.138 0.133 0.158 0.132 0.125
(3) 0.170 0.133 0.131 0.150 0.130 0.120
(4) 0.167 0.128 0.125 0.144 0.128 0.117
(5) 0.161 0.123 0.119 0.136 0.118 0.114
(6) 0.156 0.119 0.111 0.130 0.113 0.108
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TABLE 9: The ACLs for 95% interval estimates of RðtÞ:.

n Test ACI-LF BCI-LF E-BCI-LF ACI-SF BCI-SF E-BCI-SF

τ¼ 0:5

40

(1) 0.081 0.057 0.052 0.074 0.052 0.049
(2) 0.074 0.055 0.050 0.067 0.051 0.047
(3) 0.071 0.050 0.048 0.065 0.048 0.045
(4) 0.069 0.045 0.044 0.062 0.045 0.044
(5) 0.067 0.043 0.042 0.061 0.043 0.040
(6) 0.065 0.042 0.041 0.060 0.040 0.038

80

(1) 0.057 0.041 0.039 0.053 0.039 0.037
(2) 0.054 0.040 0.038 0.048 0.038 0.035
(3) 0.051 0.039 0.038 0.045 0.036 0.034
(4) 0.047 0.037 0.036 0.043 0.033 0.032
(5) 0.045 0.036 0.032 0.042 0.033 0.029
(6) 0.044 0.034 0.031 0.040 0.031 0.027

τ¼ 1:5

40

(1) 0.078 0.057 0.051 0.071 0.052 0.048
(2) 0.073 0.055 0.049 0.067 0.049 0.046
(3) 0.071 0.048 0.046 0.061 0.047 0.045
(4) 0.068 0.044 0.041 0.058 0.045 0.043
(5) 0.065 0.042 0.038 0.056 0.042 0.040
(6) 0.063 0.041 0.035 0.055 0.040 0.038

80

(1) 0.057 0.040 0.031 0.053 0.037 0.034
(2) 0.050 0.039 0.029 0.047 0.035 0.031
(3) 0.047 0.038 0.027 0.045 0.034 0.028
(4) 0.045 0.037 0.025 0.043 0.033 0.026
(5) 0.043 0.035 0.023 0.041 0.032 0.024
(6) 0.040 0.033 0.022 0.039 0.030 0.023

TABLE 10: The ACLs for 95% interval estimates of hðtÞ :.

n Test ACI-LF BCI-LF E-BCI-LF ACI-SF BCI-SF E-BCI-SF

τ¼ 0:5

40

(1) 2.497 1.707 1.579 2.355 1.615 1.508
(2) 2.291 1.667 1.496 2.162 1.599 1.479
(3) 2.214 1.466 1.449 2.100 1.453 1.397
(4) 2.110 1.426 1.408 2.002 1.387 1.325
(5) 2.100 1.410 1.374 1.991 1.353 1.309
(6) 2.070 1.331 1.305 1.913 1.306 1.297

80

(1) 1.810 1.327 1.286 1.739 1.273 1.267
(2) 1.625 1.300 1.268 1.566 1.257 1.248
(3) 1.519 1.243 1.225 1.484 1.218 1.153
(4) 1.471 1.238 1.214 1.425 1.123 1.107
(5) 1.452 1.224 1.157 1.418 1.115 1.096
(6) 1.434 1.174 1.070 1.406 1.077 1.046

τ¼ 1:5

40

(1) 2.487 1.694 1.572 2.347 1.613 1.453
(2) 2.277 1.647 1.491 2.152 1.592 1.430
(3) 2.102 1.451 1.423 1.996 1.400 1.377
(4) 2.036 1.396 1.377 1.926 1.385 1.300
(5) 2.036 1.353 1.337 1.926 1.295 1.284
(6) 2.009 1.318 1.297 1.896 1.268 1.254
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(5) Comparing the proposed schemes reported in
Table 1, it is noted that all estimates of θ, RðtÞ :, or
hðtÞ : provide better results based on right-censoring
utilized in Tests (3) and (6) for each n than others.

(6) As a summary, using the investigated censored data,
the E-Bayes’ methodology via SF-based is recom-
mended to explore the reliability features of the IL
model.

8. Real-Life Applications

In this section, we deliver two actual sets of data from the
domains of engineering and physics in order to illustrate how
flexible and adaptable the suggested approaches are to real-
world occurrences.

8.1. Engineering Data Analysis. Actual data collection was
examined by this application, which first came to light by
Murthy et al. [40]. Table 11 displays the times between failures
for 30 repairable mechanical equipment (RME) components
in this data collection. First, we must determine whether or
not the suggested ILðθÞ : model fits the entire set of RME data.

Therefore, we first calculate the Kolmogorov–Smirnov (K–S)
distance and its p-value using theMLE. Consequently, we find
that θ has an MLE (Std.Er) of 1.1604 (0.1619) and a K–S
(p-value) of 0.1412 (0.5881), where Std.Er refers to the stan-
dard error. Consequently, we may conclude that the IL distri-
bution is a good model to suitably fit the RME data. We also
examine three goodness-of-fit visualizations in Figure 4: (i)
plotting RME’s histograms with fitted IL density line, (ii)
fitted/empirical reliability lines, and (iii) log-likelihood. It
validates the same fitting outcome.

Briefly, To demonstrate the usefulness and superiority of
the proposed IL model, we compare its fit with the other six
distributions in the literature as competitors, namely:

(1) Inverted Weibull (IW (γ; θ)) proposed by Keller et al.
[41],

(2) Inverted Lomax (ILomax (γ; θ)) proposed by Kleiber
and Kotz [42],

(3) Inverted Chen (IChen (γ; θ)) proposed by Srivastava
and Srivastava [43],

(4) Inverted exponentiated Rayleigh (IER (γ; θ)) pro-
posed by Ghitany et al. [44],

TABLE 10: Continued.

n Test ACI-LF BCI-LF E-BCI-LF ACI-SF BCI-SF E-BCI-SF

80

(1) 1.799 1.290 1.270 1.730 1.255 1.225
(2) 1.611 1.275 1.258 1.553 1.248 1.209
(3) 1.515 1.224 1.220 1.480 1.175 1.148
(4) 1.463 1.208 1.193 1.418 1.108 1.093
(5) 1.414 1.184 1.096 1.369 1.084 1.082
(6) 1.367 1.171 1.059 1.339 1.073 1.030

TABLE 11: Thirty failure times of repairable mechanical equipment.

0.11 0.30 0.40 0.45 0.59 0.63 0.70 0.71 0.74 0.77
0.94 1.06 1.17 1.23 1.23 1.24 1.43 1.46 1.49 1.74
1.82 1.86 1.97 2.23 2.37 2.46 2.63 3.46 4.36 4.73
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FIGURE 4: Graphics for goodness-of-fit of IL model using RME data.
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(5) Inverted Nadarajah–Haghighi (INH (γ; θ)) proposed
by Tahir et al. [45],

(6) Alpha power inverted exponential (APIE (γ; θ)) pro-
posed by Ceren et al. [46].

Besides the K–S (p-value), this comparison is made based
on several metrics of model selection, namely: Akaike (A),
(2) Bayesian (B), consistent Akaike (CA), Hannan–Quinn
(HQ); see Table 12. These criteria will be evaluated through

the MLEs bγ and bθ. The results reported in Table 12 show that
the IL distribution has the lowest fitted values of A, B, CA,
and HQ, except for the highest CP values. This fact shows
that the IL lifetime model is generally better compared to
other models.

Three AT-IPC samples (with m¼ 15) are constructed
from the whole RME data listed in Table 11, based on various
options of τ and S; see Table 13. Table 14 lists the point
estimates (along their Std.Ers) and 95% interval estimates
(along their widths) of θ, RðtÞ:, and hðtÞ : (at t¼ 0:5) for each
sample in Table 13 using the LF, SF, Bayes-LF, Bayes-SF, E-
Bayes-LF, and E-Bayes-SF approaches. The noninformative
prior, or a¼ b¼ 0; i¼ 1; 2, is used as the prior knowledge
regarding the IL parameter is unavailable. In addition, we set
c¼ 1 and ɛi ¼ 0:75 for i¼ 1; 2 in order to construct the E-
Bayes inferences (using both LF and SF methods). In order to
assess the Bayes and E-Bayes estimates derived from the LF
and SF methods presented in Sections 4 and 5, we eliminate
the first 5,000 iterations of 30,000 MCMC samples for each
unknown quantity, assuming that the start value of θ repre-
sents its frequentist value. Because we did not know the true
parameter value and used the frequentist estimate as the
initial value, we used a large number of iterations to get a
stable chain and discarded the first 5,000 iterations as the
burn-in period to remove the impact of the initial values and
to guarantee the convergence of the chains. Burn-in is meant
to give the Markovian chain time to achieve its posterior

distribution, especially if it started with a bad guess point.
To “burn-in” a chain, we simply discard the first samples with
an appropriate size before making inferences; see Gelman
et al. [47]. According to the results shown in Table 14, the point
and interval estimates of θ, RðtÞ :, or hðtÞ : that were produced
using the LF/SF approaches are extremely similar to those that
were created using the Bayes/E-Bayes approaches. Additionally,
it is noted that the 95%ACI estimation limits that were produced
using the BCI/E-BCI techniques and the LF/SF procedures are
relatively similar.

In order to investigate the existence and uniqueness
characteristics of the proposed frequentist estimates of θ,
the log-LF and log-SF curves of θ are shown in Figure 5.
Based on all the samples listed in Table 13, it shows that
the MLE or MPSE of θ might exist and are unique. Figure 6
shows the density and trace plots of θ, RðtÞ :, and hðtÞ : to
illustrate the convergence of the MCMC. The dashed and
solid lines, respectively, show the interval and point estimates
for differentiation. Based on the remaining 25,000 MCMC
iterations of each parameter, Figure 6 shows that the MCMC
technique based on LF, SF, Bayes-LF, Bayes-SF, E-Bayes-LF,
and E-Bayes-SF converges effectively using the data set of S1
(as an example) and that the burn-in phase is successful in
mitigating the consequences of the specified initial values. All
the MCMC iterations of θ are reasonably symmetrical, as
seen in Figure 6, whereas those of RðtÞ : and hðtÞ : are nega-
tively and positively skewed, respectively.

8.2. Physics Data Analysis. The airborne communication
transceiver is an ultra-high frequency transceiver that is
intended for use in air traffic control communication as well
as intercom communication between aircraft. We will be using
a data set in this application that was reported by Jorgensen
[48] and reanalyzed by Alotaibi et al. [25]. Table 15 shows 40
observations of the active repair times for an aerial communi-
cation transceiver (ART-ACT). Based on the entire ART-ACT
data, the MLE (Std.Er) of θ and K–S (p-value) are 2.0542

TABLE 12: Fitting outputs of the IL and its competitors from RME data.

Model
bγ bθ

A B CA HQ K–S(p-Value)
Est. Std.Er Est. Std.Er

IL — — 1.160 0.162 95.866 97.267 96.009 96.314 0.141 (0.588)
IW 1.073 0.131 0.752 0.157 96.751 99.554 97.196 97.648 0.144 (0.585)
ILomax 7.667 8.887 0.120 0.155 96.027 98.829 96.471 96.923 0.190 (0.231)
IChen 0.446 0.092 0.488 0.045 109.42 112.22 109.86 110.31 0.234 (0.075)
IER 0.364 0.078 0.102 0.035 109.77 112.57 110.21 110.67 0.260 (0.035)
INH 0.852 0.235 1.035 0.513 96.740 99.543 97.185 97.637 0.179 (0.294)
APIE 0.751 1.757 0.858 0.559 97.053 99.856 97.498 97.950 0.150 (0.506)

TABLE 13: Three AT-IPC samples from RME data.

Sample Scheme τðkÞ : S∗ Data

S1 ð35; 010Þ: 1.5 (10) 5 0.11, 0.30, 0.45, 0.59, 0.74, 0.77, 1.06, 1.17, 1.23, 1.46
S2 ð05; 35; 05Þ: 1.8 (12) 3 0.11, 0.30, 0.40, 0.45, 0.59, 0.63, 0.71, 0.74, 0.94, 1.17, 1.49, 1.74
S3 ð010; 35Þ: 2.1 (17) 1 0.11, 0.30, 0.40, 0.45, 0.59, 0.63, 0.70, 0.71, 0.74, 0.77, 0.94, 1.06, 1.24, 1.46, 1.74, 1.86, 1.97
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TABLE 14: Estimates of θ, RðtÞ :, and hðtÞ: from RME data.

Sample Par.

MLE
Bayes-LF
E-Bayes-LF

MPSE
Bayes-SF
E-Bayes-SF

95% ACI-LF
95% BCI-LF
95% E-BCI-LF

95% ACI-SF
95% BCI-SF
95% E-BCI-SF

Est. Std.Er Est. Std.Er Low. Upp. Width Low. Upp. Width

S1

θ

1.1756 0.1855 1.1047 0.1739 0.8120 1.5391 0.7271 0.7639 1.4455 0.6817
1.1908 0.1502 0.9293 0.2146 0.9110 1.4983 0.5873 0.7027 1.1825 0.4798
1.2830 0.1857 1.0015 0.1521 0.9807 1.6121 0.6314 0.7542 1.2773 0.5231

Rð0:5Þ:

0.8018 0.0661 0.7750 0.0696 0.6723 0.9313 0.2590 0.6385 0.9115 0.2730
0.8007 0.0527 0.6879 0.1089 0.6841 0.8901 0.2060 0.5523 0.8043 0.2519
0.8302 0.0573 0.7234 0.0729 0.7201 0.9111 0.1910 0.5885 0.8351 0.2466

hð0:5Þ:

0.9056 0.2020 0.9855 0.2024 0.5097 1.3016 0.7918 0.5887 1.3823 0.7936
0.9006 0.1598 1.2155 0.2845 0.6050 1.2318 0.6268 0.8981 1.5453 0.6472
0.8071 0.1835 1.1216 0.1946 0.5213 1.1382 0.6169 0.8001 1.4630 0.6629

S2

θ

1.2294 0.1778 1.1635 0.1683 0.8810 1.5778 0.6968 0.8335 1.4934 0.6599
1.2433 0.1463 0.9894 0.2134 0.9703 1.5397 0.5694 0.7633 1.2483 0.4850
1.3397 0.1842 1.0689 0.1540 1.0455 1.6590 0.6135 0.8202 1.3419 0.5217

Rð0:5Þ:

0.8201 0.0578 0.7974 0.0612 0.7068 0.9335 0.2267 0.6775 0.9173 0.2398
0.8189 0.0472 0.7186 0.0986 0.7149 0.8983 0.1833 0.5946 0.8262 0.2315
0.8471 0.0518 0.7542 0.0667 0.7501 0.9186 0.1684 0.6313 0.8534 0.2221

hð0:5Þ:

0.8485 0.1838 0.9189 0.1855 0.4883 1.2086 0.7204 0.5554 1.2824 0.7270
0.8448 0.1484 1.1356 0.2683 0.5735 1.1518 0.5784 0.8291 1.4488 0.6196
0.7521 0.1724 1.0375 0.1859 0.4898 1.0562 0.5664 0.7385 1.3621 0.6237

S3

θ

1.2068 0.1709 1.1451 0.1624 0.8719 1.5418 0.6698 0.8268 1.4634 0.6366
1.2198 0.1424 0.9811 0.2038 0.9538 1.5091 0.5553 0.7543 1.2293 0.4750
1.3144 0.1796 1.0572 0.1509 1.0277 1.6260 0.5983 0.8127 1.3245 0.5118

Rð0:5Þ:

0.8126 0.0578 0.7907 0.0608 0.6995 0.9258 0.2264 0.6714 0.9099 0.2385
0.8114 0.0477 0.7148 0.0963 0.7066 0.8923 0.1857 0.5885 0.8201 0.2316
0.8402 0.0526 0.7494 0.0666 0.7422 0.9134 0.1712 0.6267 0.8487 0.2220

hð0:5Þ:

0.8721 0.1806 0.9393 0.1821 0.5182 1.2260 0.7079 0.5825 1.2962 0.7137
0.8686 0.1477 1.1460 0.2595 0.5966 1.1737 0.5771 0.8486 1.4629 0.6143
0.7754 0.1725 1.0513 0.1842 0.5117 1.0783 0.5666 0.7546 1.3732 0.6186
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FIGURE 5: The log-LF (a: a1—S1, a2—S2, a3—S3) and log-SF (b: b1—S1, b2—S2, b3—S3) of θ, RðtÞ:, and hðtÞ : from RME data.
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(0.2609) and 0.0855 (0.9313), respectively. According to this
finding, the ART-ACT data is fairly well-fitted by the IL distri-
bution. The fitting plots in Figure 7 support our conclusion.

Again, to explain the usefulness of the proposed IL model
based on ART-ACT data, we recompare the IL with the same
six distributions mentioned in Subsection 8.1; see Table 16. It
supports the same fact reached in Table 12 and demonstrates
that the IL model is the better choice than others from ART-
ACT data.

From the full ART-ACT data, with m¼ 20, based on
different options of τ and S, three artificial AT-IPC are
acquired; see Table 17. Following the same MCMC settings
reported in Section 8.1, when c¼ 1 and ɛi ¼ 0:75 for i¼ 1; 2,
both Bayes and E-Bayes estimates developed by LF and SF
methods (developed in Sections 4 and 5) are obtained. From
Si for i¼ 1; 2; 3; in Table 17, all point and interval estimates
of θ, RðtÞ :, and hðtÞ : (at t¼ 1) developed by frequentist and

Bayes are computed; see Table 18. Results in Table 14
showed that the point estimates (including MLE, MPSE,
Bayes-LF, Bayes-SF, E-Bayes-LF, and E-Bayes-SF) as well
as the interval estimates (including ACI-LF, ACI-SF, BCI-
LF, BCI-SF, E-BCI-LF, and E-BCI-SF) of θ, RðtÞ :, and hðtÞ : are
quite close to each other. The log-LF and log-SF curves of θ
are shown in Figure 8 to verify the existence and uniqueness
of the MLE and MPSE of θ. It shows that the MLE or MPSE
of θ might exist and are unique based on the samples pre-
sented in Table 13. Based on S1 (for instance) from ART-
ACT, Figure 9 displays the same facts as shown in Figure 6.

In conclusion, we can infer from the results of the engi-
neering and physics evaluations that all of the inferential
procedures suggested here work effectively with real-world
data and offer a sufficient interpretation of the IL lifetime
model when the necessary sample is obtained using the sug-
gested censoring strategy.
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FIGURE 6: Two MCMC plots of θ, RðtÞ:, and hðtÞ: based on S1 from RME data: (a) Bayes-LF; (b) Bayes-SF; (c) E-Bayes-LF; (d) E-Bayes-SF.

TABLE 15: Forty records of ART-ACT.

0.50 0.60 0.60 0.70 0.70 0.70 0.80 0.80 1.00 1.00
1.00 1.00 1.10 1.30 1.50 1.50 1.50 1.50 2.00 2.00
2.20 2.50 2.70 3.00 3.00 3.30 4.00 4.00 4.50 4.70
5.00 5.40 5.40 7.00 7.50 8.80 9.00 10.2 22.0 24.50
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FIGURE 7: Graphics for goodness-of-fit of IL model using ART-ACT data.

TABLE 16: Fitting outputs of the IL and its competitors from ART-ACT data.

Model
bγ bθ

A B CA HQ K–S(p-value)
Est. Std.Er Est. Std.Er

IL 0.000 0.000 2.054 0.261 182.108 183.796 182.213 182.718 0.086 (0.931)
IW 1.208 0.152 1.569 0.248 182.898 186.276 183.222 184.119 0.095 (0.861)
ILomax 28.36 61.69 0.056 0.125 185.463 188.840 185.787 186.684 0.097 (0.849)
IChen 0.842 0.134 0.868 0.111 183.338 186.716 183.662 184.559 0.098 (0.836)
IER 0.472 0.087 0.847 0.220 183.198 186.576 183.522 184.419 0.104 (0.777)
INH 2.773 3.107 0.391 0.536 182.870 186.248 183.194 184.091 0.094 (0.868)
APIE 0.348 0.323 1.965 0.446 183.839 187.217 184.163 185.060 0.089 (0.908)

TABLE 17: Three AT-IPC samples from ART-ACT data.

Sample Scheme τðkÞ : S∗ Data

S1 ð54; 016Þ: 4.8 (15) 5
0.50, 0.60, 0.70, 0.80, 1.00, 1.00, 1.30, 1.50, 1.50, 2.00,
2.70, 3.00, 3.30, 4.00, 4.70

S2 ð08; 54; 08Þ: 3.4 (17) 3
0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00,
1.30, 1.50, 1.50, 2.00, 2.50, 2.70, 3.30

S3 ð016; 54Þ: 4.6 (24) 1
0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00,
1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 2.00, 2.20, 2.70,
3.00, 3.30, 4.00, 4.50

S∗ ¼ n− k−∑m−1
i¼1 Si.

TABLE 18: Estimates of θ, RðtÞ:, and hðtÞ: from ART-ACT data.

Sample Par.

MLE
Bayes-LF
E-Bayes-LF

MPSE
Bayes-SF
E-Bayes-SF

95% ACI-LF
95% BCI-LF
95% E-BCI-LF

95% ACI-SF
95% BCI-SF
95% E-BCI-SF

Est. Std.Er Est. Std.Er Low. Upp. Width Low. Upp. Width

S1

θ

2.3357 0.3500 2.2963 0.3535 1.6497 3.0216 1.3719 1.6034 2.9893 1.3858
2.3430 0.2049 1.9183 0.4197 1.9493 2.7566 0.8073 1.5790 2.2863 0.7073
2.5245 0.2858 2.0669 0.2464 2.1004 2.9702 0.8699 1.7014 2.4635 0.7621

R(1)
0.8355 0.0545 0.8293 0.0571 0.7287 0.9424 0.2137 0.7174 0.9412 0.2238
0.8337 0.0323 0.7533 0.0864 0.7635 0.8899 0.1264 0.6676 0.8276 0.1601
0.8596 0.0393 0.7847 0.0502 0.7947 0.9103 0.1157 0.7027 0.8543 0.1516

h(1)
0.3787 0.0835 0.3882 0.0861 0.2151 0.5424 0.3273 0.2195 0.5569 0.3374
0.3796 0.0488 0.4918 0.1165 0.2887 0.4804 0.1917 0.3906 0.5971 0.2065
0.3386 0.0630 0.4500 0.0679 0.2504 0.4383 0.1879 0.3492 0.5564 0.2072

S2 θ

2.1070 0.2805 2.4210 0.3635 1.5573 2.6567 1.0995 1.7085 3.1335 1.4250
2.1154 0.1872 2.0318 0.4305 1.7588 2.4938 0.7351 1.6917 2.4074 0.7157
2.2793 0.2598 2.1893 0.2533 1.8951 2.6871 0.7920 1.8228 2.5940 0.7712
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TABLE 18: Continued.

Sample Par.

MLE
Bayes-LF
E-Bayes-LF

MPSE
Bayes-SF
E-Bayes-SF

95% ACI-LF
95% BCI-LF
95% E-BCI-LF

95% ACI-SF
95% BCI-SF
95% E-BCI-SF

Est. Std.Er Est. Std.Er Low. Upp. Width Low. Upp. Width

R(1)
0.7959 0.0537 0.8483 0.0524 0.6907 0.9012 0.2105 0.7456 0.9510 0.2053

0.7946 0.0360 0.7780 0.0798 0.7179 0.8585 0.1405 0.7000 0.8463 0.1463
0.8235 0.0443 0.8080 0.0464 0.7513 0.8823 0.1310 0.7341 0.8713 0.1373

h(1)
0.4366 0.0751 0.3588 0.0830 0.2894 0.5838 0.2943 0.1962 0.5215 0.3252
0.4366 0.0499 0.4594 0.1127 0.3424 0.5380 0.1956 0.3619 0.5596 0.1976
0.3949 0.0648 0.4175 0.0658 0.3021 0.4963 0.1942 0.3211 0.5181 0.1970

S3

θ

2.0492 0.2638 2.4212 0.3632 1.5322 2.5662 1.0339 1.7094 3.1330 1.4236
2.0574 0.1820 2.0293 0.4334 1.7078 2.4237 0.7158 1.6918 2.4075 0.7157
2.2169 0.2526 2.1866 0.2540 1.8402 2.6115 0.7713 1.8229 2.5940 0.7711

R(1)
0.7846 0.0532 0.8483 0.0523 0.6804 0.8888 0.2084 0.7458 0.9509 0.2051
0.7833 0.0368 0.7775 0.0804 0.7044 0.8487 0.1443 0.7000 0.8463 0.1463
0.8130 0.0455 0.8075 0.0466 0.7383 0.8735 0.1351 0.7341 0.8714 0.1372

h(1)
0.4523 0.0726 0.3588 0.0829 0.3099 0.5947 0.2847 0.1963 0.5212 0.3249
0.4522 0.0499 0.4601 0.1135 0.3582 0.5543 0.1961 0.3619 0.5595 0.1976
0.4104 0.0650 0.4182 0.0660 0.3175 0.5128 0.1954 0.3211 0.5181 0.1970
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FIGURE 8: The log-LF (a: a1—S1, a2—S2, a3—S3) and log-SF (b: b1—S1, b2—S2, b3—S3) of θ, RðtÞ:, and hðtÞ : from ART-ACT data.
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9. Conclusions

In this research, based on adaptive Type-I progressive censor-
ing, we proposed many point and interval estimators for the
scale parameter and two reliability indicators where the basic
distribution is the IL distribution. Two conventional and four
Bayesian approaches are considered to accomplish this task,
namely, ML, MPS, Bayesian using LF, Bayesian using SF, E-
Bayesian using LF, and E-Bayesian using SF estimation meth-
ods. Both of the classical approaches are employed to look at
the ACIs and the Bayesian and E-Bayesian perspectives are
applied to get the Bayes and E-BCIs. To address the difficulties
of theoretically comparing the various estimates, numerous
simulations are run utilizing various performance standards
and testing instances to compare the acquired point and inter-
val estimates. The significance and feasibility of the examined
approaches are demonstrated using two actual data sets from
the domains of physics and engineering. According to the
numerical results, the E-Bayesian estimations (point and
interval) that use the SF as an observed data source outper-
form the classical estimations, Bayesian estimations using
both classical functions, and E-Bayesian estimations using
the LF.
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