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Abstract
Background The increased resistance rate of Salmonella to third-generation cephalosporins represented by 
ceftriaxone (CRO) may result in the failure of the empirical use of third-generation cephalosporins for the treatment of 
Salmonella infection in children. The present study was conducted to evaluate a novel method for the rapid detection 
of CRO-resistant Salmonella (CRS).

Methods We introduced the concept of the ratio of optical density (ROD) with and without CRO and combined it 
with matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI-TOF MS) to establish a new 
protocol for the rapid detection of CRS.

Results The optimal incubation time and CRO concentration determined by the model strain test were 2 h and 8 µg/
ml, respectively. We then conducted confirmatory tests on 120 clinical strains. According to the receiver operating 
characteristic curve analysis, the ROD cutoff value for distinguishing CRS and non-CRS strains was 0.818 [area under 
the curve: 1.000; 95% confidence interval: 0.970–1.000; sensitivity: 100.00%; specificity: 100%; P < 10− 3].

Conclusions In conclusion, the protocol for the combined ROD and MALDI-TOF MS represents a rapid, accurate, and 
economical method for the detection of CRS.
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Background
Salmonella (Enterobacteriaceae) is a facultative anaero-
bic and dynamic gram-negative bacterium that can cause 
various infections, and it is usually classified as typhoid, 
paratyphoid, and nontyphoidal Salmonella (NTS) [1]. 
Salmonella (mainly NTS) is an important cause of 
human bacterial enteritis, and it can also cause serious, 
life-threatening, invasive infections in some patients [2]. 
This bacterium causes 93.8 million cases of gastroenteri-
tis worldwide each year, including 155,000 deaths, and is 
a major public health problem worldwide; in addition, it 
imposes a crucial economic burden on health systems [3, 
4]. Salmonella infection is usually self-limiting in children 
with normal immunity; however, immunocompromised, 
younger infants or children with suspected aggressive 
infections require effective antibiotic treatment [5, 6]. 
Third-generation cephalosporins and fluoroquinolones 
are the most important classes of antibiotics for the treat-
ment of Salmonella infections, especially invasive cases 
[7]. The use of fluoroquinolones in children is avoided 
due to potential serious adverse reactions [8]. As a result, 
third-generation cephalosporins, which are represented 
by ceftriaxone (CRO), have become the drug of choice for 
the treatment of Salmonella infections in children, espe-
cially when aggressive infection is suspected [9].

Despite the extensive use of antibiotics, Salmonella 
strains resistant to third-generation cephalosporins con-
tinue to appear, and a growing trend is being observed. In 
an epidemiological study from Taiwan, China, the rate of 
resistance to CRO from the NTS isolated from samples 
collected from children in the area increased from 4.1% 
in 2012 to 14.3% in 2019 [10]. Another research from 
Ningbo, China, revealed that the NTS strains derived 
from children in the area were more than 30% resistant to 
CRO [11]. The situation of Salmonella resistance to CRO 
is a serious concern, which may lead to the possible fail-
ure of the empirical use of third-generation cephalospo-
rins in the treatment of Salmonella infections in children 
(especially invasive ones) and more serious consequences 
[12]. Thus, adverse prognosis of Salmonella infection in 
children must be avoided through the rapid and accu-
rate identification of CRO-resistant Salmonella (CRS) 
and timely adjustment of antibiotic treatment strategies. 
However, traditional biochemical identification and drug 
susceptibility tests often last for 3–4 days or even lon-
ger, which fails to meet the needs of clinical treatment. 
Therefore, a rapid, accurate, reliable, and economical 
method for the identification of CRS must be developed 
urgently. The increased application of matrix-assisted 
laser desorption–ionization time-of-flight mass spec-
trometry (MALDI-TOF MS) in clinical microbiology is a 
possible solution to this problem.

This study was conducted from the perspective of a 
previous idea of realizing the rapid detection of antibiotic 

sensitivity to pathogenic microorganisms through a 
short-term culture method based on MALDI-TOF MS. 
The concept of the ratio of optical density (ROD) was 
innovatively introduced to reflect the differences in bac-
terial growth rate between strains with or without CRO. 
Finally, we combined the ROD and MALDI-TOF MS to 
develop a rapid, accurate, and economical method for the 
detection of CRS.

Methods
Bacterial strains
Three CRS and three non-CRS strains were used to 
establish a model. One non-CRS strain was ATCC14028, 
and the remaining two non-CRS strains and three CRS 
strains were isolated from clinical specimens sent to the 
Department of Clinical Laboratory, Children’s Hospital, 
Zhejiang University School of Medicine, between August 
2019 and July 2020. The minimal inhibitory concentra-
tions (MICs) for all strains were confirmed via E-test 
(Bio-Kont, Wenzhou, China). The outlined procedure 
consists of the following steps: Initially, fresh overnight 
cultures of the bacteria to be tested were utilized to cre-
ate a 0.5 McFarland standard bacterial suspension, which 
was subsequently evenly spread onto Mueller-Hinton 
agar (MHA, Biocell, Zhengzhou, China). Following this, 
an E-test strip was applied to the MHA and the culture 
was allowed to incubate overnight at 35  °C. Finally, the 
minimum inhibitory concentrations (MICs) were deter-
mined and interpreted based on the Clinical and Labora-
tory Standards Institute breakpoints published annually 
[13]. Whole-genome sequencing (WGS) was performed 
to determine the genotypes of the three CRS strains uti-
lized in this study, employing the Illumina HiSeq X-Ten 
platform (Illumina, San Diego, USA). Furthermore, a 
total of 120 Salmonella strains isolated from clinical 
specimens received by the laboratory from August 2019 
to July 2020 were randomly selected in a 1:3 ratio (R vs. S) 
to validate the efficacy of the rapid identification proto-
col introduced in this research. All strains were cultured 
overnight at 35 °C on Columbia agar containing 5% sheep 
blood (Biocell, Zhengzhou, China), and fresh overnight 
cultures were used for the tests. E-test was performed to 
confirm the MICs of the 120 Salmonella strains. In addi-
tion, MALDI-TOF MS (Bruker Daltonik, Bremen, Ger-
many) was used to reconfirm all Salmonella strains at 
the genus level included in this study. The process mainly 
included the following: ① the fresh overnight cultures 
were transferred to a cleaned MALDI target; ② carefully 
covering each sample with 1  µl 70% (V/V) formic acid 
and 1  µl matrix solution; ③ drying of samples at room 
temperature; ④ loading of the plate into the IVD MALDI 
Biotyper System (Bruker Daltonics, Bremen, Germany) 
for analysis.
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Model strain testing
Determination of optimal incubation time
① The experimental model strains were cultured at 
35  °C on Columbia agar containing 5% sheep blood 
for 16–18  h. ②The single colonies (colony diam-
eter ≈ 1.5  mm) were selected using inoculation rings, 
placed in sterile test tubes containing 2  ml brain–heart 
infusion (BHI) medium (Binhe, Hangzhou, China), and 
thoroughly mixed. ③ The bacterial suspension was dis-
pensed into two wells of a 96-well plate, with each well 
containing 200  µl. One well was added with CRO for a 
final concentration of 32  µg/ml, and the other had no 
CRO added to it. The final concentration was established 
through a thorough review of relevant literature and 
the MICs of the model strains [14]. ④ The 96-well plate 
was incubated in an enzyme-labeled instrument (Tecan, 
Grödig, Austria), and the OD was measured at 37  °C 
and 620  nm wavelength, with reading performed every 
5  min for 180  min. ⑤ The data were exported, and the 
ROD (ROD = ODBHI + CRO/ODBHI) for each point in time 
was calculated. The optimal incubation time point (the 
shortest time needed to observe a significant difference 
in ROD) was determined through the comparison of the 
difference in the ROD between the sensitive and drug-
resistant groups at each time point.

Determining the optimal concentration of CRO during 
incubation
① This step was the same as ① and ② in Determination 
of optimal incubation time. ② The bacterial suspension 
was distributed into eight wells of the 96-well plate, with 
each well containing 200 µl. A specific concentration of 
CRO suspension was added to seven of the wells (at final 
concentrations of 0.5, 1, 2, 4, 8, 16, and 32  µg/ml), and 
no CRO was added to the remaining one. ③ The 96-well 
plate was incubated in an enzyme-labeled instrument. 
The OD of bacterial suspension in each well was deter-
mined at the optimal incubation time point determined 
in Step 2.2.1 (37 °C, wavelength: 620 nm), and the ROD 
under different CRO concentrations was calculated. ④ 
The optimal CRO concentration during incubation was 
determined through a comparison of the difference in 
the ROD between the sensitive and drug-resistant groups 
after incubation at different CRO concentrations (the 
minimum CRO concentration showing a significant dif-
ference in ROD).

Clinical strain testing
A total of 120 clinical strains collected were validated 
after the model strain test. The optimal concentration of 
CRO and the short-term incubation time was determined 
by the model strain test. The other testing procedures are 
the same as the model testing procedures, and the flow is 
shown in Fig. 1.

Fig. 1 Flow chart of the rapid detection of 120 clinical strains used in this study
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Data analysis
Quantitative variables were expressed as the median 
and interquartile range (25th and 75th percentiles). The 
Mann–Whitney U test was used to compare differences 
between continuous variables. The ROD is calculated as 
follows:

 ROD = ODBHI+ CRO/ODBHI

Receiver operating characteristic (ROC) curve analysis 
was conducted to evaluate the diagnostic value of the 
proposed protocol for the detection of CRS strains in 
this study. The maximum value of the calculated Youden 
index was used to determine the best cutoff value. Sen-
sitivity and specificity were determined to evaluate the 
diagnostic efficacy of the rapid identification protocol. 
The area under the curve (AUC) was interpreted as fol-
lows: AUC < 0.7, low accuracy; 0.9 ≥ AUC ≥ 0.7, moder-
ate accuracy; AUC > 0.9, high accuracy. The statistical 
software MedCalc version 19.1 (MedCalc Software Ltd, 
Ostend, Belgium) was used for data analysis. Statistical 
significance was set at P < 0.05, and all tests of signifi-
cance were two-sided.

Results
Results of model strain testing
The model strains comprised six strains of Salmo-
nella typhimurium. Three model strains (ATCC14028, 

19CR6047, and 20CR6031) exhibited sensitivity to CRO 
(MIC = 0.064 µg/ml), and the remaining three (19CR6025, 
19CR6048, and 20CR6050) presented resistance 
(MIC ≥ 256  µg/ml). WGS was conducted to determine 
the genotypes of the three CRS strains. Table  1 shows 
the information on the model strains used in this study. 
The results of time echelon analysis of the model strains 
revealed that the minimum ROD difference between the 
CRS and non-CRS strains was more than 0.5 after incu-
bation for 2 h, and the difference tended to be stable after 
incubation for 2  h. Therefore, the short-term incuba-
tion period was set at 2 h. Figure 2 displays the ROD of 
the model strains at different time nodes. The results of 
CRO-concentration echelon analysis of the model strains 
indicated that the minimum ROD difference between the 
CRS and non-CRS strains was more than 0.5 at the CRO 
concentration of 8 µg/ml. When the CRO concentration 
was less than 8 µg/ml, the minimum ROD difference was 
less than 0.5. However, at the CRO concentration greater 
than 8 µg/ml, the minimum ROD difference remained at 
0.5–0.6 and did not increase significantly. Therefore, we 
set the optimal concentration of CRO during incubation 
to 8 µg/ml. Figure 3 shows the RODs of the model strains 
at different CRO concentrations.

Distribution of clinical strains
A total of 120 Salmonella strains isolated from stool 
samples of infants with diarrhea were included in the 

Table 1 Information on model strains used in this study
Original No. Origin Bacterial species MIC of ceftriax-

one (µg/ml)
Genotype

ATCC14028 QC Salmonella typhimurium 0.064 /
19CR6047 The Children’s Hospital of Zhejiang University School of Medicine Salmonella typhimurium 0.064 /
20CR6031 The Children’s Hospital of Zhejiang University School of Medicine Salmonella typhimurium 0.064 /
19CR6025 The Children’s Hospital of Zhejiang University School of Medicine Salmonella typhimurium > 256 CTX-M-55, TEM-1
19CR6048 The Children’s Hospital of Zhejiang University School of Medicine Salmonella typhimurium > 256 CTX-M-55
20CR6050 The Children’s Hospital of Zhejiang University School of Medicine Salmonella typhimurium > 256 CTX-M-55, TEM-1

Fig. 2 Ratio of optical density value of the model strains at different time nodes
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confirmation tests for the proposed rapid identification 
protocol. These strains included 80 strains of Salmo-
nella group B (66.7%), 15 strains of Salmonella group D 
(12.5%), 12 strains of Salmonella group C1 (10.0%), and 
13 strains belonging to other serogroups (10.8%). Out of 
the 120 strains, 30 (25.0%) were CRS, and the remain-
ing 90 (75.0%) were non-CRS strains. Figure 4 shows the 

distribution of MICs of the 120 clinical strains included 
in this study.

Results of clinical strain testing
Confirmatory tests were performed on the 120 clini-
cal strains based on the optimal short-term incubation 
time (2 h) and optimal concentration of CRO (8 µg/ml) 
determined by the model strains. The 30 CRS strains and 

Fig. 4 Distribution of minimum inhibitory concentrations (MICs) of 120 clinical strains included in this study

 

Fig. 3 Ratio of optical density value of the model strains at different ceftriaxone concentrations
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90 non-CRS strains had median RODs of 0.989 (0.963–
1.014) and 0.447 (0.265–0.587), respectively. A significant 
difference in the ROD was observed between the CRS 
and non-CRS strains according to the Mann–Whitney U 
test (P < 10− 3). Figure 5 displays the scatter diagram of the 
ROD for the clinical strains after 2 h of incubation. The 
ROD showed a significant AUC of 1.000 (95% confidence 
interval (CI), 0.970–1.000, P < 10–3) during the detec-
tion of CRS strains via the rapid identification protocol 
proposed in this study. The optimal ROD cutoff value 
was 0.818. The sensitivity was 100.00%, and the specific-
ity was 100.00%. Figure  6 shows the ROC curve for the 
performance of the rapid detection method introduced in 
this study for clinical isolates.

Discussion
The introduction of MALDI-TOF MS into clinical micro-
biology laboratories over the past decade has revolu-
tionized the manner of identification of pathogenic 
microorganisms [15]. The research on MALDI-TOF 
MS in the rapid detection of antibiotic sensitivity has 
enabled the rapid identification and determination of the 

drug sensitivity of pathogenic microorganisms in clinical 
microbiology laboratories [16].

Three ways can be used to realize the rapid detection 
of the antibiotic sensitivity of pathogenic microorgan-
isms based on MALDI-TOF MS. The first is the use of 
machine learning in the analysis of mass spectrograms 
for the rapid detection of antibiotic sensitivity of patho-
genic microorganisms [17–19]. This method only needs 
to analyze the mass spectrogram of different strains 
without additional operations, but it requires proficiency 
in complex machine learning algorithms and special 
analysis software. The second method enables the rapid 
detection of antibiotic sensitivity of pathogenic microor-
ganisms by measuring the marker peaks associated with 
drug resistance [20–24]. This method does not require 
complex mass spectrogram processing, but the scope 
of its application is limited, and the rapid detection of 
drug-resistant bacteria and drug-resistant mechanisms 
cannot be realized without drug-resistant marker peaks. 
The third method attains the rapid detection of antibiotic 
sensitivity to pathogenic microorganisms through short-
term culture methods. The principle of this method is the 

Fig. 5 Scatter diagram of the ratio of optical density of the clinical strains after 2 h of incubation
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short-time culture of pathogenic microorganisms with 
or without specific antibiotics, followed by the collec-
tion and analysis of culture products via MS. Two main 
methods are used in the subsequent MS stage: The first 
method involves performing MS on the collected short-
term culture products, the use of R software for a series 
of processing of mass spectra, the calculation of the AUC 
of each peak map, and the calculation of the relative 
growth (RG) value from the AUC (RG = AUCBHI + antibiotic/
AUCBHI) [14, 25]. Finally, the difference in RG value 
is used for the rapid detection of antibiotic sensitiv-
ity. Despite its simple operation, the method requires 

specialized software to perform complex analysis of 
mass spectrum data during data processing. The second 
method uses a microsystem for short-term culture and 
identifies culture products via MS. Reliable identification 
results (score ≥ 1.7) with or without a specific antibiotic 
indicate resistance to a specific antibiotic. A reliable iden-
tification obtained in the absence of a specific antibiotic 
(score ≥ 1.7) but not in the presence of a specific antibiotic 
(score < 1.7) indicates no resistance to a specific antibiotic 
[26]. Although this method is simple, rapid drug sensitiv-
ity results depend on the score of MS identification, and 
any factors that can affect such score may have adverse 

Fig. 6 Receiver operating characteristic curve of the performance of the rapid detection method introduced in this study for clinical isolates
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effects on drug sensitivity results. Therefore, the reliabil-
ity of the second method is questionable, especially in the 
identification of a large number of clinical strains.

In this study, we used the first method from the short-
term culture protocol and innovatively introduced the 
concept of ROD to reflect differences in bacterial growth 
rates between Salmonella strains with or without CRO. 
Then, we combined MALDI-TOF MS and ROD to con-
struct a novel method for the rapid detection of CRS. 
First, model strains were used to determine the two main 
parameters, namely, the optimal incubation time and 
optimal concentration of CRO during incubation. Under 
ideal conditions, the difference in the ROD between sen-
sitive and resistant strains after short-term culture should 
be between 0 and 1. Therefore, when the ROD difference 
exceeded 0.5, a relatively significant difference was con-
sidered. As shown in Fig. 2, the minimum ROD difference 
between the CRS and non-CRS strains was more than 0.5 
after incubation for 2 h, and the difference tended to pla-
teau afterward. Therefore, the optimal incubation time 
was 2 h. As shown in Fig. 3, the model strains revealed 
that the minimum ROD difference between the CRS and 
non-CRS strains was more than 0.5 at the CRO concen-
tration of 8 µg/ml. When the CRO concentration was less 
than 8 µg/ml, the minimum ROD difference was less than 
0.5. Therefore, the optimal concentration of CRO during 
incubation was 8  µg/ml. Then, confirmatory tests were 
performed on 120 clinical strains based on the optimal 
short-term incubation period (2 h) and optimal concen-
tration of CRO (8  µg/ml) determined using the model 
strains. The selected Salmonella strains showed a distri-
bution that was close to that of clinical isolates (the main 
strain was Salmonella group B, and CRO-resistant strains 
accounted for 25%). According to the results of ROC 
analysis of clinical Salmonella detection, the rapid iden-
tification protocol exhibited a nearly perfect detection 
capability for clinical CRS strains (AUC: 1.000; 95% CI: 
0.970–1.000; sensitivity: 100.00%; specificity: 100.00%; 
P < 10− 3). Thus, this rapid identification protocol is not 
only accurate and reliable but also greatly reduces the 
detection time compared with the conventional clinical 
method.

Finally, two limitations of the study must be noted: ① 
This work is single-center research, and the detection 
parameters of the proposed rapid identification protocol 
may be inapplicable to other regions due to variations 
in epidemic strains. Therefore, the detection parameters 
must be redetermined when applying this rapid identifi-
cation protocol in other regions. ② Given the small num-
ber of strains, Salmonella strains for CRO intermediate 
susceptibility were excluded in the confirmatory testing 
of clinical strains in this study. Therefore, the effective-
ness of detection for these strains is unknown. However, 
given the small number of Salmonella strains for CRO 

intermediation, their influence on the effectiveness of the 
introduced rapid identification protocol is limited.

Conclusions
In summary, the protocol combining ROD and MALDI-
TOF MS is a rapid, accurate, and economical method for 
CRS detection.
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