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Abstract 

Background  Alongside microbiota development, the evolution of the resistome is crucial in understanding 
the early-life acquisition and persistence of Antibiotic Resistance Genes (ARGs). Therefore, the aim of this study 
is to provide a comprehensive view of the evolution and dynamics of the neonatal resistome from 7 days to 4 months 
of age using a high-throughput qPCR platform.

Methods  In the initial phase, a massive screening of 384 ARGs using a high-throughput qPCR in pooled healthy 
mother-infant pairs feces from the MAMI cohort was carried out to identify the most abundant and prevalent ARGs 
in infants and in mothers. This pre-analysis allowed for later targeted profiling in a large number of infants in a longitu‑
dinal manner during the first 4 months of life. 16S rRNA V3-V4 amplicon sequencing was performed to asses microbial 
composition longitudinally. Potential factors influencing the microbiota and ARGs in this period were also considered, 
such as mode of birth and breastfeeding type.

Results  Following the massive screening, the top 45 abundant ARGs and mobile genetic elements were identified 
and studied in 72 infants during their first months of life (7 days, 1, 2, and 4 months). These genes were associated 
with resistance to aminoglycosides, beta-lactams and tetracyclines, among others, as well as integrons, and other 
mobile genetic elements. Changes in both ARG composition and quantity were observed during the first 4 months 
of life: most ARGs abundance increased over time, but mobile genetic elements decreased significantly. Further explo‑
ration of modulating factors highlighted the effect on ARG composition of specific microbial genus, and the impact 
of mode of birth at 7 days and 4 months. The influence of infant formula feeding was observed at 4-month-old 
infants, who exhibited a distinctive resistome composition.

Conclusions  This study illustrates the ARG evolution and dynamics in the infant gut by use of a targeted, high-
throughput, quantitative PCR-based method. An increase in antibiotic resistance over the first months of life were 
observed with a fundamental role of delivery mode in shaping resistance profiles. Further, we highlighted the influ‑
ence of feeding methods on the resistome development. These findings offer pivotal insights into dynamics 
of and factors influencing early-life resistome, with potential avenues for intervention strategies.
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Background
Antibiotic resistance, a complex and pressing global 
health crisis, continues to challenge our ability to com-
bat infectious diseases effectively. The emergence and 
transfer of antibiotic resistance genes within bacterial 
populations have brought attention to the concept of the 
"resistome," a vast reservoir of genetic elements responsi-
ble for conferring resistance to antibiotics [1]. Antibiotic 
resistance continues to challenge our ability to combat 
infectious diseases as once-effective antimicrobial agents 
become increasingly ineffective, leading to longer hos-
pital stays, higher mortality rates, and escalating health-
care costs [2]. This becomes particularly dangerous in 
early stages of life, where the acquisition of antibiotic 
resistances has short and long term consequences on the 
infant health.

Infancy is a critical period characterized by rapid 
microbial acquisition and colonization of the gut with 
potential impacts on health outcomes [3]. During early 
life, the gut microbiota is highly dynamic and variable, 
influenced by a multitude of intrinsic and extrinsic fac-
tors [4–6]. Among these factors, antibiotic exposure, 
either through maternal transmission or direct admin-
istration, is recognized as a significant driver of antibi-
otic resistance gene dissemination and selection within 
the infant gut microbiome [7, 8]. Other factors, such as 
breastfeeding practices and mode of delivery have also 
been associated with the establishment of the infant gut 
resistome [9–11]. Consequently, deciphering the dynam-
ics of the infant gut resistome during the lactation period 
has become a matter of importance, as it sets the stage 
for continued microbial colonization and immune devel-
opment in early life.

Despite variations in the abundance and diversity of 
antibiotic resistance among different infant groups due to 
varying early-life factors, prevailing resistance genes pri-
marily encode for proteins that provide resistance against 
beta-lactams, tetracyclines, macrolides, aminoglycosides, 
and quinolones [12]. Infant resistome analyses at differ-
ent time points have elucidated greater relative abun-
dances of antibiotic resistance genes (ARGs) in younger 
infants compared to older children [13–16]. Thus, the 
development of the infant resistome is linked to the evo-
lution of the microbial composition, contributing to the 
long-term dynamics and stabilization of the resistome 
into adulthood [17].

The potential risks posed by antibiotic resistant bac-
teria in samples can be estimated quantitatively with 
high-throughput qPCR. This technique is widely used to 
determine the presence and abundance of multiple ARGs 
in environmental microbiota and in various types of sam-
ples [18–22]. High-throughput qPCR can be easily cus-
tomized to target specific ARGs of interest, allowing us 

to focus on clinically relevant or ecologically significant 
resistance genes [23].

Hence, quantitatively studying the evolution of the 
infant gut resistome is crucial for understanding the 
early-life acquisition and persistence of antibiotic resist-
ances and the role of lactation and other factors on these 
resistances. For this reason, the aim of this research is 
to provide a comprehensive overview of the evolution 
and dynamics of the infant resistome, from 7  days to 
4 months of age, using a high-throughput qPCR platform. 
By deepening our knowledge of the infant gut resistome, 
we can pave the way for targeted interventions aimed at 
mitigating the spread of antibiotic resistance during this 
critical developmental period.

Materials and methods
Study design and cohort
A total of 32 mother-infant pairs from the MAMI birth 
cohort [24] participated in this study, taking a total of 
longitudinal  72 infant fecal samples collected at 7  days, 
1 month, 2 months and 4 months of age (Fig. 1). Mater-
nal-infant clinical data including gender, mode of deliv-
ery, breastfeeding practices (exclusive breastfeeding or 
formula feeding, which included both mixed and for-
mula-feeding) and duration, antibiotic exposure, gesta-
tional age, and anthropometric measures were collected 
(Table 1).

Maternal‑infant biological samples and DNA extraction 
and quantification
The neonatal samples were collected as described pre-
viously [5] in sterile containers by the parents at home 
using detailed instructions (Fig.  1A). Stools were col-
lected at 7  days, and 1, 2 and 4  months after birth and 
immediately stored at − 20  °C.  Maternal fecal samples 
were self-collected at 2 months postpartum following 
specific instructions as described previoulsy [24]. Within 
24 h of collection, samples were taken to Primary Health 
Care  Centers (during scheduled pediatric visits). There 
they were stored at − 80 °C until analysis.

Total DNA was extracted, purified, and quantified 
as described in Selma-Royo et  al [5]. Briefly, DNA was 
extracted from 50 to 100 mg of fecal material using the 
Master-Pure DNA extraction Kit (Epicentre, Madison, 
WI, USA) following the manufacturer’s instructions with 
the following modifications: treatment with lysozyme 
(20  mg/mL) and mutanolysin (5 U/mL) for 60  min at 
37  °C and a preliminary step of cell disruption with 
3-μm diameter glass beads for 1 min at 6 m/s by a Fast-
Prep 24-5G Homogenizer bead beater (MP Biomedicals). 
Purification of the DNA was performed using a DNA 
Purification Kit (Macherey–Nagel, Duren, Germany) 
according to the manufacturer’s instructions. DNA 
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concentration was measured using Qubit® 2.0 Fluorom-
eter (Life Technology, Carlsbad, CA, USA) for further 
analysis.

Screening of the top antibiotic resistance genes 
in the maternal‑infant gut microbiota
A pool DNA from of 20 infant fecal samples (1 ng) taken 
at 2 months of age and a pool of DNA from their respec-
tive mothers (1  ng) at the same timepoint were used 
to pre-screen for the positive detection of 384 previ-
ously validated ARGs using the SmartChip Real-Time 
PCR (Resistomap, Finland) (Fig.  1B and Supplementary 
Table  1) [25]. The 16S rRNA gene was used as a posi-
tive control and to normalize the abundances of detected 
genes in fecal samples. Within the chip, each primer set 
was designed to target sequence diversity within a gene 
to assess the gene’s variants in the resistome. There-
fore, each gene was analysed independently. Briefly, 
SmartChip has 5184 reaction wells with a volume of 100 
nL. Each 100 nL reaction is comprised of 1 × SmartChip 
TB Green Gene Expression Master Mix (TakaraBio), 
nuclease-free PCR-grade water, 300  nM of each primer 
and a DNA template of 2 ng/μL. The chips are filled using 
the SmartChip Multisample Nanodispenser (Takara Bio). 
qPCR cycling conditions were maintained and initial data 
processing was done as previously described [26]. qPCR 
reactions were performed with three technical replicates 
with a limit of detection of cycle threshold (CT) = 27 
[26–28]. A gene was considered present in a sample if it 

was detected in at least two of the three replicates. The 
mean CT values of the replicates for each reaction was 
used to calculate the ΔCT values (ΔCT = CT detected 
gene – CT 16S rRNA gene), and the 2 − ΔCT method was 
used to calculate the relative abundances of the detected 
gene relative to the 16S rRNA gene in each sample [28]. 
The 45 most abundant and representative ARGs, MGEs 
and integrons present in the infant gut of our cohort were 
intentionally chosen for targeted quantification for this 
study to guarantee their consistent detection across all 
samples.

Gut microbiota profiling by targeted 16S rRNA amplicon 
sequencing
We also carried out the microbiota profiling of a subset 
of 48 infant fecal samples by amplification of the V3-V4 
regions of the 16S rRNA gene (Fig. 1D). Amplicons were 
obtained with PCR amplification using barcoded con-
ventional primers (341F 5′-CCT​ACG​GGNGGC​WGC​
AG-3′ and 806R 5′GGA​CTA​CNNGGG​TAT​CTAAT-3′) 
with a 466 bp fragment length. Amplicons were checked 
with a Bioanalyzer DNA 1000 chip and libraries were 
sequenced using a paired-end kit on a MiSeq-Illumina 
platform (FISABIO sequencing service, Valencia, Spain). 
The 63754 (± 33733.52) mean sequences with good qual-
ity were obtained from samples. Overall, these sequences 
were clustered into 87 ZOTUs (± 14). Bacterial diversity 
analysis was done using raw reads, which were quality 
controlled and filtered (Quality: 25 and length: 150  bp) 

Fig. 1  Flowchart of the study design. A total of 32 mother-infant pairs were included for this study, from which clinical data and fecal samples 
were collected. In the initial phase, a massive screening of 384 ARGs in pooled infant and maternal feces from the MAMI cohort was carried 
out, separately, to identify the most abundant and prevalent ARGs. This pre-analysis allowed later targeted profiling in a large number of infants 
in a longitudinal manner during the first 4 months of life. 16S rRNA V3-V4 amplicon sequencing was performed to assess microbial composition 
longitudinally. Exact number of samples for each analysis (N) are shown in the illustration
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using trimGalore (v0.6.4_dev; https://​github.​com/​Felix​
Krueg​er/ TrimGalore). The paired-end reads with a mini-
mum overlap of 30 bp were joined using Fastq-join [29]. 
Sequences were trimmed of primers and distal bases, 
and singletons were removed with USEARCH v11 [30]. 
zOTUs (zero-radius operational taxon units) mapping 
to the human genome (GRCh38) using the Burrow–
Wheeler Aligner in Deconseq v0.4.3 were filtered out. 
The resulting reads were denoised and chimeras were 
filtered with UNOISE3 [31]. Taxonomic assignment of 
zOTUs was performed in QIIME2 v2018.2 [32] using 
the QIIME2 feature classifier plugin [33] and the Riboso-
mal Database Project (RDP 2.12) [34]. The zOTUs were 
aligned with MAFFT [35] to then make a phylogenetic 
tree with FASTTREE [36] that was midpoint-rooted.

Statistical analysis
All statistical analyses were performed with R version 
4.1, and figures were drawn with the “ggplot2” R package 
[37]. Variables are presented as the number (percentage) 

or mean (standard deviation, SD), as appropriate. Sta-
tistical analyses for comparison of clinical and perina-
tal characteristics included the use of non-parametric 
Mann–Whitney U tests or Fishers exact test and Pearson 
χ2 tests for continuous and categorical variables, respec-
tively, to compare different groups of infants. Normality 
of the data was evaluated with Shapiro–Wilk tests.

Antibiotic resistance genes statistical tendency through 
the multiple timepoints was calculated with Wilcoxon 
test. The Shannon index for alpha diversity analyses of 
the relative abundances of the genes was calculated using 
the diversity function of the “vegan” R package [38]. Prin-
cipal Component Analysis (PCA) was conducted to study 
the composition of ARGs between all timepoints and to 
confirm the correlation between environmental factors 
and ARG composition, using the ‘factoextra’ [39] and 
‘FactoMineR’ [40] R packages. We tried to identify groups 
of variables whose balance was more associated with the 
response variable, using the R package MaAsLin2 [41] 
which is a complete R package to efficiently determine 
multivariable associations through general linear models 
that can accommodate most modern study designs.

Calculations of microbial richness (Observed, Chao1 
and ACE) and evenness indices (Shannon and Simp-
son) were done using the “phyloseq” R package [42]. 
Beta diversity was characterised by Principal Coordinate 
Analysis (PCoA) conducted by plotting the Bray–Cur-
tis distance matrix of log transformed zOTU counts for 
each timepoint separately. We filtered the zOTU data 
using the filter_taxa function in the “phyloseq” package, 
and only zOTUs present in at least 10% of samples were 
retained. The adonis permutational test was used to eval-
uate overall differences in microbiota structure between 
the timepoints with the “vegan” R package [38]. We also 
fitted a Poisson (log-linear regression) generalized lineal 
mixed model (GLMM) using the “mvabund” package 
[43] to assess the association of the top 10 most abun-
dant taxa individually adjusted by time, mode of delivery 
and mode of lactation, on the antibiotic resistance gene 
composition. For all methods, p-values were adjusted for 
multiple comparisons using False Discovery Rate (FDR) 
based on Benjamini–Hochberg (BH) [44].

Results
Pre‑screening for top antibiotic resistances 
in the maternal‑infant gut microbiota 
In this study, we identified a set of ARGs with the 
highest values in the maternal-infant gut from a pre-
screening analysis. A total of 211 ARGs were identified 
in the infants guts, while only 135 were detected in the 
mothers guts. The overall antibiotic resistance abun-
dance was higher in 2-month-old infants than in their 
mothers, and statistically significant in the case of 

Table 1  Characteristics of study participants

Categorical variables are expressed as positive cases-prevalence and 
(percentage, %). Normally distributed data are presented as mean ± standard 
deviation (SD) and non-normal data as median and interquartile range [IQR]. 
BMIZ, body mass index z-score. Infant body length and weight was only 
recorded at moment of birth, 1 month and 6 months of age. N = 19 of 7 days old 
infants, N = 12 of 1 month old infants, N = 22 of 2 months old infants and N = 19 
of 4 months old infants

Mother characteristics Total (N = 32)

Gestational age (weeks) 39.5 [39, 40]

Weight gain over the pregnancy (kg) 11.46 ± 3.891

Pre-gestational BMI (kg m − 2) 23.7 ± 3.6

Antibiotic consumption during pregnancy (%) 9 (28.12%)

Mother charateristics

 Gender: female (%) 32 (44.4%)

 Birth mode: vaginal birth (%) 47 (65.3%)

 Duration of breastfeeding (months) 6 [3–12]

Exclusive breastfeeding (%)

 7 days 27 (84.4%)

 1 month 19 (59.4%)

 2 months 18 (56.3%)

 4 months 17 (53.1%)

Antibiotic exposure (%)

 At birth 13 (40.6%)

 7 days 3 (9.4%)

 1 month 2 (6.3%)

 2 months 1 (3.1%)

 4 months 1 (3.1%)

BMIZ

 At birth (−) 0.27 ± 1.1

 1 month (−) 0.50 ± 0.9

 6 months 1.10 ± 0.3

https://github.com/FelixKrueger/
https://github.com/FelixKrueger/
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mobile genetic elements (MGE, 0.008 ± 0.032 in infant 
vs 0.0005 ± 0.003 in mothers, p < 0.0001) and amino-
glycosides (0.0018 ± 0.007 in infants vs 0.0006 ± 0.001, 
p < 0.0001; Table 2).

The 45 most abundant ARGs, MGEs and integrons 
present in the infant gut were intentionally chosen 
for this study to guarantee their consistent detection 
across all samples (Table  3). The targeted genes we 
included in the customized SmartChip were the total 
16S rRNA gene, specific genes for the Bacteroides 
and Firmicutes phyla, and the 45 antibiotic ARGs, 
MGEs, integrons, and other genes associated with 
antibacterial compounds. Notably, genes from differ-
ent functional groups appeared in this set of 45 genes, 
highlighting the diverse genetic elements and mecha-
nisms at play in the early infant gut (Supplementary 
Table 2).

Early‑life antibiotic resistance composition changes 
over time
The diversity of antibiotic resistance genes was found to 
increase significantly though time, going from a Shannon 
index of 1.81 ± 0.842 in 7-day-old infants, to 1.969 ± 0.612 
at 1  month of age, 2.468 ± 0.495 at 2  months, and 
2.397 ± 0.312 at 4 months (p < 0.05 between all timepoints). 
The antibiotic resistance gene composition was also com-
pared between all timepoints (Fig.  2) and differed sig-
nificantly between 7 days and 4 months of age (p = 0.024). 
Indeed, MGEs were highly correlated to 7-day-old samples 
(p < 0.001), whereas ARGs conferring resistance to qui-
nolones, vancomycin and aminoglycosides were signifi-
cantly correlated to 4-month-old samples (p < 0.001).

The evolution of each individual ARG over time was 
reported (Fig. 3 and Supplementary Fig. 1) and detailed 
results are described below.

Table 2  Results of the antibiotic resistance genes detected in the pre-screening of the mother and infant fecal sample pools

# Relative abundances of the detected genes relative to the 16S rRNA gene in each sample. Normally distributed data are presented as mean ± standard deviation (SD) 
and non-normal data as median and interquartile range [IQR]. Pearson’s-Chi-square test was used for categorical variables, and Mann–Whitnney U test (or Fisher’s 
exact test) were used for continuous variables, as appropriate, for calculating statistical significance, which are marked with a *p < 0.05 was considered statistically 
significant

Genes detected (%) Relative abundance# p-value

Integrons (N = 4) Infant 100.00 0.043 [0.021–0.121] 0.859

Mother 75.00 0.004 [0.004–0.042]

MGE (N = 48) Infant 60.41 0.008 [0.001–0.038]  < 0.0001*

Mother 43.75 0.0005 [0.0002–0.003]

Betalactams (N = 54) Infant 46.29 0.0006 [0.0002–0.003] 0.397

Mother 18.51 0.0004 [0.0002–0.001]

MLSB (N = 47) Infant 53.19 0.001 [0.0005–0.007] 0.871

Mother 29.78 0.003 [0.0002–0.009]

Aminoglycoside (N = 60) Infant 58.33 0.001 [0.0003–0.007] 0.035*

Mother 41.66 0.0006 [0.0002–0.001]

MDR (N = 39) Infant 64.10 0.001 [0.0008–0.0204] 0.201

Mother 35.89 0.002 [0.0001–0.003]

Sulfonamide (N = 6) Infant 100.00 0.004 [0.0007–0.01] 0.322

Mother 66.66 0.0004 [0.0001–0.001]

Phenicol (N = 22) Infant 45.45 0.0004 [0.0002–0.002] 0.943

Mother 18.18 0.0005 [0.0001–0.001]

Tetracycline (N = 26) Infant 69.23 0.008 [0.002–0.0171] 0.216

Mother 53.84 0.0009[0.0002–0.0131]

Quinolone (N = 11) Infant 54.54 0.001 [0.0005–0.003] 0.401

Mother 18.18 0.0006 [0.0003–0.0008]

Other (N = 17) Infant 52.94 0.0017[0.0002–0.0119] 0.710

Mother 41.17 0.005 [0.002–0.008]

Vancomycin (N = 24) Infant 33.33 0.001 [0.0008–0.002] 0.008*

Mother 20.83 0.0001 [0.0001–0.0001]

Trimethoprim (N = 17) Infant 47.05 0.0002 [0.0001–0.0003] –

Mother 0.00 –
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Aminoglycosides
Aminoglycoside evolution was tested by quantifying 
the relative abundances of the aaC2, aadA7, apmA and 
strB genes (Fig. 3A). The relative abundance of the ami-
noglycoside resistant gene aadA7 shows a significant 
increase from 7 days to 2 months of age (3.20–19.44%; 
p < 0.01) and 4  months (31.11%; p < 0.001). At 2 and 
4 months of age, aadA7 has a significantly higher rela-
tive abundance than the other aminoglycoside resist-
ance genes (p < 0.05). Moreover, at 2  months, the strB 
is more abundant than aacC2 gene (2.15% and 0.43%; 
p = 0.004).

Beta‑lactams
A total of 9 ARGs conferring resistance to antibiotics 
where measured (Fig.  3B). A significant increase from 
7 days to 2 months and to 4 months of age was observed 
for blaOXA48 (0.04–0.45%; p < 0.01, and to 0.56%; 
p < 0.01), blaACT​ (044–1.77%; p < 0.01, and to 14.04%; 
p < 0.01) and blaOXY (2.52–4.98%; p < 0.05, and to 7.41%; 
p < 0.001). The penA resistance gene showed a significant 
increase from 7  days to 2  months (3.33–6.94%; p < 0.05) 
but then decreases at 4 months (4.94%; p < 0.01), althouth 
it keeps statistically higher compared to 7 days abundance.

Both 2- and 4-month-old infants have higher amounts 
of the blaOXY gene (7.98% and 8.41%, respectively) than 
blaOXA48 (0.45%; p = 0.003, and 0.56%; p = 0.002), cfxA 
(0.92%; p = 0.001 and 1.41%; p = 0.016) and pbp (0.89%; 
p = 0.012 and 1.14%; p = 0.024), whereas penA is in higher 
amounts than blaOXA48 (p = 0.006 and p = 0.015) and 
cfxA (p = 0.003 and p = 0.032). The resistant gene cfxA 
has a lower abundance in 2-month-old infant guts than 
blaSHV11 (3.59%; p = 0.007), blaSFO (1.60%; p = 0.015), 
and blaACT​ (1.77%; p = 0.013). Finally, 2-month-
old infants had higher abundances of penA than pbp 
(p = 0.015), and blaSHV11 than blaOXA48 (p = 0.04).

Integrons
Integron abundance in infants’ guts was measured by 
quantifying the int1 integron, which showed an increase 
from 7 days (10.47%) to 1 month of age (36.12%), and then 
a decrease at 2 (24.84%) and 4  months of age (22.84%), 
but no statistical differences were found between time 
points (Fig. 3C).

Multi drug resistances (MDR)
czcA, mdtH, pcoA and tolC2 were measured to assess 
the evolution of multi-drug resistant genes. mdtH 
increased significantly from 7  days (11.20%) to 
2 months of age (17.22%; p < 0.001), but then decreased 
when infants reached 4  months of age (12.77%; 
p < 0.01). This gene is highly more abundant than tolC2 
and pcoA genes in 2- and 4-month-old infants (1.23%; 
p = 0.06 and 1.77%; p = 0.004 for 2 months, and 0.44%; 
p < 0.0004 and 1.09%; p = 0.002, for 4  months, respec-
tively for each gene). Finally, 2-month-old infants had 
lower amounts of pcoA than czcA (3.53%; p = 0.015) in 
their gut (Fig. 3D).

MGE
Transposase tnpA1 and insertion sequences IS261 
and ISEcp1 were measured as representative for the 
MGE group (Fig.  3E). All three of these genes showed 
a decrease from 7 days to 4 months of age, with ISEcp1 
significant between 7  days and 2  months (6.09% and 
4.58%; p < 0.01) and between 7 days and 4 months (3.36%; 
p < 0.01).

Macrolide‑lincosamide‑streptogramin B (MLSB)
The six macrolide-lincosamide-streptogramin antibiotic 
resistance genes measured were: ermB3, ermF, ermX2, 
mefA, mphA and oleC (Fig. 3F). Similar to other groups 
of antibiotics, we observed an increase in the abundance 

Table 3  List of antibiotic resistance genes (ARGs) measured in the infant fecal samples

Antibiotic class ARG​

Integrons (N = 1) intI1_1

MGE (N = 3) IS26_1, tnpA_1, ISEcp1

MLSB (N = 6) ermX_2, mphA, ermF, oleC mefA, ermB_3

Quinolone (N = 3) qepA, qnrS_1, qnrB

Aminoglycosides (N = 6) aph4-ib, strB, aac(6’)-Ib_1, aacC2, apmA, aadA7

MDR (N = 4) mdtH, czcA, pcoA, tolC_2

Betalactams (N = 10) blaCTX-M, blaTEM, blaOXY, penA, blaACT​, blaSHV11, blaSFO, pbp, cfxA, 
blaOXA48

Other (N = 2) bacA, mcr1

Phenicol (N = 3) mdtL, cmlV, catA1

Vancomycin (N = 3) vanA, vanHB, vanB_1

Tetracycline (N = 4) tetO_2, tetA_2, tetW
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of mphA and oleC genes from 7  days to 2  months of 
age (3.14–11.02%; p < 0.01 and 0.18–1.20%; p < 0.001, 
respectively). The same pattern was observed from 
7  days to 4  months of age (3.14–11.02%; p < 0.001 for 
mphA, 0.18–4.52%; p < 0.01 for oleC, and 3.14–11.02%; 
p < 0.001 for ermB3). This increase longer-range increase 
was also observed for the ermB3 gene (from 0.53% at 
7 days to 1.76% at 4 months of age; p < 0.05). ermX2 was 
significantly more abundant at 2 and 4  months of age 
(23.97% and 59.18%, respectively) than oleC (p = 0.0005 
and p = 0.009, respectively for each timepoint), mefA 

(p = 0.0002 and p = 0.006), ermF (1.48%; p = 0.0004 and 
1.28%; p = 0.0006) and ermB3 (0.59%; p = 0.0002 and 
1.76%; p = 0.003). mphA was also more abundant than 
oleC and mphA in 2- and 4-month-old infants. ermF 
amounts at 4 months of age were significantly lower com-
pared to the oleC gene.

Other ARGs
bacA and mcr1 were highly relevant in the initial pre-
screening (Fig.  3G). Both showed a significant increase 
from 7  days to 2 and 4  months of age: bacA increased 

Fig. 2  Antibiotic resistance composition changes over time. Principal Coordinate Analysis (PCA) biplot depicting the relationship 
between the composition of antibiotic resistances and time. Blue ellipses represent 7-days old infants, yellow ellipses the 1-month old, grey 
ellipses the 2-months old, and red ellipses the 4-months old infants. The black arrows are the group of ARGs that best explain the differences 
between the sample groups. Angles between the arrows represent correlations; acute angles represent positive correlations and obtuse angles 
represent negative correlations
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from 2.01 to 6.31% (p < 0.05) and then to 14.66% (p < 0.05), 
whereas mcr1 increased from 0.74 to 1.53% (p < 0.05) and 
then decreased to 1.06% (p < 0.05).

Phenicol
To quantify phenicol-resistant genes, catA1, cmlV and 
mdtL were measured (Fig. 3H). The comparison between 
their abundance in each timepoint showed that at both 
2 and 4 months of age, catA1 (0.37% and 0.23%) was sig-
nificantly lower than mdtL (3.96% and 2.75%; p = 0.003 
and p = 0.002 for each time) and cmlV (3.06% and 4.44%; 
p = 0.001 and p = 0.006). The individual genes did not 
show any time-related fluctuations between sampling 
points (p > 0.05).

Quinolone
Quinolone-resistant genes qepA and qnrB showed a sig-
nificant increase form 7  days (6.55% and 0.17%, respec-
tively) to 2 months (23.44%; p = 0.01 and 0.26%; p = 0.05) 
and then again at 4 months of age (28.26%; p = 0.01 and 

0.31%; p = 0.01). qnrS1 was significantly lower in abun-
dance than qepA and qnrB at all timepoints (p < 0.05) 
(Fig. 3I).

Tetracylcine
Antibiotic resistance to tetracycline was measured by 
the quantification of tetA2, tetL2, tetO2, and tetW genes 
(Fig.  3J). The tetL2 gene increased significantly from 
7  days (0.49%) to 2  months (1.77%; p = 0.01) and then 
again at 4 months (2.51%; p = 0.01). On the contrary, the 
tetO2 gene decreased in abundance from 7 days (4.11%) 
to 4 months (1.95%; p = 0.05).

Vancomycin
The vanA, vanB and vanHB genes, conferring resist-
ance to vancomycin, increased significantly over time 
(Fig. 3K). vanA increased from 0.73% at 7 days of age to 
4.60% at 2 months (p = 0.001) and to 5.82% at 4 months 
(p = 0.0001). Similarly, vanHB increased significantly 
from 7  days (0.30%) to 2  months (2.13%; p = 0.001) and 

Fig. 3  Evolution of antibiotic resistance genes relative abundance. Tendency plots representing the antibiotic resistant genes evolution from 7 days 
to 4 months of age of each ARGs measured, grouped by antibiotic resistance to: A Aminoglycosides, B Beta-lactams, C Integrons, D MDR, E MGE, 
F MLSB, G Others, H Phenicol, I Quinolone, J Tetracycline and K Vancomycin. Statistical differences are marked as following: *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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to 4 months of age (2.12%; p = 0.01). Finally, vanB1 gene 
increased significantly from 7  days (0.33%) to 2  months 
(0.89%; p = 0.01), from 1 months (0.25%) to 2 months of 
age (p = 0.05), from 1 to 4  months (1.15%; p = 0.05) and 
from 7 days to 4 months (p = 0.01). At the end, the abun-
dance of vanA is higher than vanB1 (p = 0.039).

Factors that modulate antibiotic resistance though time
Mode of delivery and antibiotic exposure at birth
Infant’s mode of delivery exerted a strong influence on 
antibiotic resistance composition in 7-day-old infants, 
resulting in a significantly different antibiotic resistance 
composition for infants born vaginally or with c-section 
procedures (Fig. 4A–D). Hence, at 7 days of age most of 
the antibiotic resistances are associated with c-section 
birth (p < 0.001). The class of ARGs most contributive to 
the first PC component was MDRs, followed by vancomi-
cyns, MLSBs, others, quinolones and phenicol. MGEs 
and genes conferring resistances to beta-lactamases, con-
tributed mostly to the second PC component.

In 1-month-old infants, we observed that most of the 
ARGs, except for MGEs, were positively associated to 
c-section birth. Vancomycin-related genes and amino-
glycoside-related ones were the main contributors to the 
ARG variation in our study population depending on 
mode of delivery (p < 0.001).

Similarly, at 2 months of age, infants born by c-section 
were also associated with the majority of the antibiotic 
resistances (p < 0.001) with the exception of tetracy-
clines, which were associated with vaginally birth. How-
ever, this pattern was reverted at 4-months of age, where 
again most antibiotic resistances were associated with 
c-section delivery, following the order of vancomycin, 
quinolone, others, aminoglycosides, beta-lactams, MLSB 
and tetracyclines (p < 0.001 for all). MDR-, phenicol- and 
MGE- related genes made a greater contribution to the 
second component (p < 0.001) and their association with 
c-section was slightly lower.

Infant feeding type
Infant feeding type (maternal breastfeeding or artificial 
lactation, which included the combination of breastfeed-
ing and formula-feeding, and exclusive formula-feeding) 
was also found to influence the ARG profile in infants 
(Fig. 4E–H). At 7 days of age, vancomycin, MDR, other, 
MLSB, quinolone, and phenicol ARGs were highly asso-
ciated with infants who received infant formula-feeding 
(p < 0.001). This pattern was maintained at 1  month of 
age, where beta-lactam- and tetracycline-resistant genes 
also gained importance in artificially fed infants. How-
ever, at this timepoint MGE was associated to breastfed 
infants. At 2 months of age genes classified as quinolones, 

vancomycins, aminoglycosides and others were strongly 
correlated to infants who received artificial lactation. 
Finally, 4-month-old infants also showed a significant 
contribution between artificial lactation (p < 0.001) and 
most ARGs, namely aminoglycoside-, vancomycin-, qui-
nolone- and beta-lactam-resistant genes.

In addition, the MaAsLin approach allowed us to find 
specific associations (Fig.  5) when controlling for infant 
age and other variables (lactation and delivery). We 
observed an association of longitudinal samples with the 
establishment of resistance genes (very strong and rapid 
changes with respect to time). It is complex to have a 
marker associated since there are many changes associ-
ated with time and more in concert with the samples of 1, 
2 and 4 months. Even though, we can find markers posi-
tively associated with delivery, such as MGE_tnpA_1, and 
also associated with lactation, such as aminoglycoside_
aacC2, Beta-Lactam_blaTEM and MGE_IS26_1.

Environmental factors, microbiota and ARGs
Alpha and beta diversity analyses and taxa compo-
sition of microbiota are reported in Supplementary 
Fig.  2. Beta diversity analyses showed that microbial 
composition was significantly different between time-
points (7 days vs. 4 months: p = 0.006), and 1 month vs 
4  months: p = 0.006). The GLMM explained the asso-
ciations between the top 10 most abundant micro-
bial genus, adjusted by environmental factors, on the 
antibiotic resistance gene load (Table  4). For the time 
categories, 1 and 4  months of age showed significant 
p-values (p = 0.001 and 0.003, respectively), indicat-
ing evidence that age has an effect on the ARGs com-
position. Variables related to breastfeeding and vaginal 
delivery also have significant p-values. From the 10 
most abundant genera, Bifidobacterium (p = 0.042), 
Streptococcus (p = 0.002), and Bacteroides (p = 0.018) 
showed an influence on the ARG composition, mean-
ing that the abundance of these species plays a crucial 
role on the composition of antibiotic resistances. The 
interaction between all environmental factors studied 
showed that breastfeeding and 4 months of age have a 
strong interaction and influence on the ARGs compo-
sition, followed by the same interaction with the addi-
tion of vaginal delivery, and the interaction of only 
that age and mode of delivery. Similarly, vaginal mode 
of delivery and 1 month of age also show a significant 
influence, higher than the interaction of that age and 
breastfeeding. These results highlight the importance 
of time on ARG composition among the other factors 
but elucidate that vaginal mode of delivery and breast-
feeding can also drive the ARG composition, though 
likely in a time-related manner.
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Discussion
In this study, we investigated the dynamic evolution of 
antibiotic resistance genes in the early-life gut microbi-
ome of infants, shedding light on ARG evolution as well 
as the factors influencing them. Our findings reveal a sig-
nificant shift in the ARGs profile from 7 days to 4 months 
of age, indicating a complex trajectory of resistance 
development in the infant gut. This observation high-
lights the novelty of our research, as it underscores the 
importance of understanding the resistome dynamics in 
early life, a critical period for microbiome development.

One novel aspect of our study is the use of a high-
throughput, quantitative approach to measure and 
quantify ARGs, providing a high-resolution view of 
ARG abundance. This approach offers advantages over 
other methods, such as amplicon sequencing or shotgun 
metagenomics, as it allows for precise quantification of 

specific resistance genes [45]. This precision is particu-
larly valuable when monitoring changes in ARG abun-
dance over time and in response to different factors. The 
same high-throughput qPCR approach employed in this 
study has until now, mostly been used for environmen-
tal resistome analyses, such as those of aquatic environ-
ments [46, 47], wastewater treatment plants [48], and soil 
and manure [49, 50], and, to a lesser extent, in farm and 
wild animal gut resistomes [51–53].

The examination of several genes in our study revealed 
novel information that enhances our understanding of 
the evolution of the infant resistome, shedding light on 
previously unexplored aspects of this important sub-
ject. We have observed that most antibiotic resistances 
increase through time, as 4-month category had a higher 
value, suggesting that the effect of age on the ARGs com-
position is more pronounced at that moment.

Comparing our findings with existing literature, we 
note several key insights. Firstly, our study highlights the 
emergence of mobile genetic elements (MGEs) as promi-
nent contributors to ARGs in the early infant gut, par-
ticularly at 7 days of age. This finding aligns with previous 

Fig. 5  Top 50 features with significant associations with external 
factors and time. Delivery_mode includes c-section and vaginal 
delivery. Lactation_mode includes exclusive breastfeeding 
and artificial lactation. Only significant associations (p < 0.05) are 
shown

Table 4  Generalized lineal mixed model (GLMM) to explain the 
associations between the microbiota and environmental factors 
on the antibiotic resistance gene load

Wald test was applied to assess the significance of the coeficients obtained with 
the GLMM. Only significant associations are shown. Signif. codes: (*): p < 0.05; 
(**): p > 0.001; (***): p > 0.0001. N = 19 of 7 days old infants, N = 11 of 1 month old 
infants and N = 18 of 4 months old infants

Variable Wald value p-value Statistics

Time

 Time_4months 1.551 0.003 **

 Time_1month 0.821 0.001 ***

Microbiota (top 10 genus)

   Bifidobacterium spp. 2.528 0.042 *

   Streptococcus spp. 3.060 0.002 **

   Bacteroides spp. 2.297 0.018 *

Environmental factors

 Lactation_Maternal 0.855 0.015 *

 Delivery_Vaginal 0.582 0.005 **

Interactions

 Time_4months –- Lactation_
Maternal

1.393 0.001 ***

 Time_4months –- Lactation_
Maternal –- Delivery_Vaginal

0.438 0.009 **

 Time_4months –- Delivery_Vagi‑
nal

0.366 0.007 **

 Time_1month –- Delivery_Vaginal 0.332 0.001 ***

 Lactation_Materna –- Deliv‑
ery_Vaginal

0.319 0.016 *

 Time_1month –- Lactation_Mater‑
nal

0.221 0.018 *
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research emphasizing the role of MGEs in disseminating 
resistance genes [11, 16, 54]. Our study found that MGE 
were higher in infants than in mothers in agreement 
with previous studies [16]. In addition, despite limited 
data on MGE, we also found higher MGE at 7 days com-
pared to the later time points. This observation is also in 
agreement with a recent study where they found higher 
MGEs at 7 days compared with later time points using a 
metagenomic approach [55]. Research has indicated that 
during the initial stages of life, the presence of mobile 
genetic elements could be attributed to maternal factors 
or the specific family environment, which has the great-
est impact by the time a child reaches 6  months of age 
[56]. In contrast, beta-lactam resistance genes exhibit 
complex patterns, with some genes increasing in abun-
dance over time, while others experience shifts. These 
trends reflect the intricate dynamics of ARGs in response 
to selective pressures [15].

Abundance patterns of ARGs associated with qui-
nolones, vancomycin, and aminoglycosides were signifi-
cantly increased with 4-month-old samples. It has been 
described that the prescription of quinolones to mothers 
increases the risk of their offspring acquiring commu-
nity-acquired, quinolone-resistant E. coli [57]. Vancomy-
cin is prescribed during the perinatal period for treating 
colitis, C. difficile–induced diarrhea, and gram-positive 
bacterial infections [58]. Aminoglycosides, usually com-
bined with a beta-lactam, are widely used for neonatal 
sepsis, and genes for acetylation, phosphorylation and 
adenylation conferring aminoglycoside resistance have 
been identified in infant gut microbiota [59]. However, 
the percentage of infants of our study that were exposed 
to antibiotics was very low, and none of them suffered 
from sepsis or colitis. All this consistently supports the 
notion that antibiotic exposure, either directly or indi-
rectly, influences the infant resistome, and also that 
antibiotic resistances can occur even in the absence of 
antibiotic exposure [44].

Our study highlights the significant increase of tetra-
cycline resistance over time. The resistance gene tet has 
been reported to be the most abundant and representa-
tive resistance genes in the infant gut resistome, pos-
sibly due to its prevalence in various bacteria species, 
such as Firmicutes and Bacteroidetes [60, 61]. It has 
also been reported that vertical transmission from the 
mother can be responsible for the acquisition of these 
resistance in infants [62–64]. Although tetracyclines are 
not used during pregnancy and early life, they are still 
extensively used in animals and, therefore, the environ-
ment and the diet may be sources of tet genes without 
direct exposure to the antibiotic [62, 65]. As a result, 
infants face a significant increase of tetracycline resist-
ance over time.

Multidrug resistance in bacteria occurs by accumula-
tion of ARGs on plasmids or transposons. Macrolide–
lincosamide–streptogramin B (MLSB) is a significant 
multidrug-resistant phenotype usually related to staphy-
lococci as it leads to methicillin-resistant Staphylococ-
cus aureus (MRSA). Neonatal MRSA infections not only 
have high mortality and morbidity rates but also have 
long-term adverse effects on neonates [66]. The mac-
rolide resistance gene ermB has previously been found 
to be prevalent in the infant gastrointestinal tract [67], 
correlating with our findings. Most ermB carriers turned 
out to be Enterococcus spp., and Klebsiella spp., from 
which some pathogenic species are considered multi-
drug resistant bacteria. This study also reports that the 
mcr1 gene, which confers resistance to colistin, increases 
significantly in the infant gut over time, and it has been 
previously identified in multidrug resistant Salmonella 
enterica, which causes acute diarrhea [68].

Our analysis also considers the influence of factors 
like mode of delivery and lactation on the resistome. The 
results presented in our study showed a significant dif-
ference in ARG composition in 7-day-old infants based 
on the mode of delivery. The alteration of the early gut 
microbiome due to delivery mode may contribute to dif-
ferences in ARG composition, and some studies have elu-
cidated the presence of ARGs in c-section born babies 
[9, 69, 70]. Moreover, the association of MDR genes with 
infants born via c-section is particularly noteworthy. A 
study by Yassour et al. [71] found that c-section delivery 
was associated with a higher risk of the infant gut micro-
biome being enriched with opportunistic pathogens 
carrying MDR genes [71]. This aligns with our findings, 
where MDR genes were prominent in c-section-born 
infants at 7  days of age. The differential association of 
tetracycline resistance genes in 2-month-old infants is 
of interest, as it suggests that factors beyond the mode of 
delivery may also contribute to ARG acquisition.

The influence of mode of lactation on ARG compo-
sition in infants, as demonstrated in our study, adds 
another layer to the complexity of early-life microbiota 
and resistance gene dynamics. Previous research has 
shown that breastfed infants exhibit a distinct gut micro-
biome and resistome profile [11, 72, 73] compared to 
formula-fed infants. Our findings are consistent with this 
observation, as we noted differences in ARG composi-
tion based on mode of lactation, particularly at 4 months 
of age. The prevalence of vancomycin, MDR, and other 
ARGs in artificially fed infants is concerning. These genes 
confer resistance to antibiotics that are crucial for treat-
ing various infections. The temporal changes observed in 
the association of specific ARGs with mode of lactation 
raise important questions about the mechanisms under-
lying these shifts.
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The varying contributions of different ARGs at different 
time points emphasize the dynamic nature of early-life 
gut microbiota and its susceptibility to external influ-
ences. One-health approach methodologies are essential 
for deciphering the complex resistome structure in the 
microbiomes of humans, animals, and the environment. 
Further research is needed to explore the mechanisms 
behind these fluctuations and their potential long-term 
consequences.

Gut microbiota profiling was performed in a subset of 
our population to address the possible influence on the 
antibiotic resistance load. Interestingly, Bifidobacterium 
spp. showed the strongest effect on ARG composition, 
shedding light into the important role of these genus on 
the variation of antibiotic resistances in early life. In some 
studies, the negative correlation between Bifidobacterium 
abundance and ARG load has been described in infants 
from 7 days to 4 months of age [74]. Moreover, it has been 
found that Bifidobacterium genus themselves are less likely 
to possess ARGs than other taxa such as Enterococcus, 
Streptococcus, Staphylococcus, and Bacteroides genus [75, 
76]. It is important to consider that as the infant grows, 
their microbiome diversifies, acquiring a more complex 
phylogenetic structure. This increased microbial diver-
sity is accompanied by an increase in the diversity of the 
resistome. Although these findings are important, further 
metagenomic approaches should be performed in order 
to specifically assess the influence of the different bacterial 
taxa in the early infant gut on the abundance of resistances.

While this study has provided valuable insights into 
the relationship between environmental factors and the 
composition of ARGs, several limitations should be con-
sidered. The sample size in this study was limited to 72 
samples from specific geographic locations, potentially 
restricting the generalizability of the findings. Moreover, 
our study population did not have a representative group 
of infants exposed to antibiotics during their early-life, 
and this was beneficial to study the more targeted effect 
of lactation; it would be interesting for next approaches 
to include this factor.

The high-throughput methodology employed to quantify 
ARGs was robust; however, it was confined to a specific set 
of ARGs. This may have overlooked certain aspects or var-
iations in other ARGs and low abundance ARGs have been 
missed. Despite these limitations, this study serves as a 
foundational exploration into understanding the interplay 
between environmental factors and ARG composition. 
Future research could address these limitations by expand-
ing sample diversity, employing multi-omics approaches 
for ARG characterization, and conducting longer longitu-
dinal studies to unravel the temporal dynamics of ARGs in 
different environmental settings.

Conclusion
Our investigation into the dynamics of the early-life gut 
resistome in infants has illuminated the intricate and 
evolving landscape of antibiotic resistance genes dur-
ing this critical developmental phase. Our study pro-
vides valuable insights into the evolution of the infant 
gut resistome and the use of qPCR-based ARG quantifi-
cation, alongside comprehensive analysis of factors like 
mode of delivery and lactation, contributes to our under-
standing of how resistance genes develop and change 
over time. The significant shifts in resistance gene com-
position over time and the differences according to infant 
feeding type emphasize the need for a nuanced under-
standing of early-life resistance dynamics. These findings 
have important implications for strategies aimed at miti-
gating antibiotic resistance in infants and underscore the 
need for continued research in this vital area of microbi-
ome science.
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