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Introduction
Colon cancer ranks third in morbidity and mortality among all 
cancer types mentioned in the 2020 Global Cancer Statistical 
Report, accounting for 6.0% and 5.8% of total cancer incidence 
and cancer-related deaths, respectively.1 Local recurrence, 
chemotherapy resistance, lymph node metastasis, liver and lung 
metastasis are the key factors associated with poor prognosis in 
colon cancer.2 Although, advances in systemic therapy have 
improved the overall prognosis of patients with colon cancer, 
significant differences in clinical outcomes exist among patients 
treated similarly. Current treatment decisions and prognoses 
are largely based on cancer cell-centric factors, such as TNM 
staging system. There is an urgent need to investigate a new 
classification protocol that provides comprehensive insights 
into the prognosis and treatment of colon cancer and improves 
the accuracy of traditional staging approaches such as TNM.

RNA processing genes are involved in mRNA transport, 
editing, and decay of messenger RNA.3 RNA process is an 
intermediate step linking genotype and phenotype, and facili-
tates conversion of the original RNA transcript into mature 
RNA.4 In both prokaryotes and eukaryotes, many RNAs require 
processing for functional maturation into RNA molecules. The 
processing of eukaryotic messenger RNAs is complex. Common 
processing events include: (1) The mRNA produced by poly-
merase II transcription undergoes a 5ʹ end capping before leav-
ing the nucleus; (2) Except for histone mRNA, most type II 
transcripts undergo 3′ end processing. Coupled with a poly(A) 
tail measuring tens to hundreds of adenine nucleotides in 
length, the process entails cleavage of the 3ʹ end of the pre-
mRNA and polyadenylation; (3) The transcript undergoes edit-
ing including spacer deletion and splicing to form a functional 
mRNA. RNA sequencing analysis shows that more than 95% 
of human genes are regulated via alternative splicing, thus 
ensuring that a gene can produce multiple pre-mRNA or pro-
tein subtypes with different functions. RNA processing is 
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involved in several phenomena, including cellular apoptosis and 
maturation, tissue-specific expression, immune response, and 
tumor development and maintenance.5

Cancer-related shifts in RNA modification, RNA editing, 
and expression of non-coding RNA species such as long non-
coding RNAs and micro-RNAs have been reported recently.6-9 
RNA processing genes can influence the prognostic response 
of patients diagnosed with cancer.10-21 Differential analysis of 
RNA editing genes in tumors based on RNA processing fac-
tors facilitates tumor grading and treatment, and can serve as 
an important complementary marker of TNM staging system. 
However, changes in RNA splicing and their functional role in 
colon cancer development and maintenance, a feature of RNA 
processing, urgently needs to be fully elucidated. The rapid 
development and standardisation of high-throughput and low-
cost next-generation sequencing protocols has facilitated clini-
cal prognosis of tumors. In our study, we acquired eligible colon 
cancer samples to delineate the differences in tumour RNA-
editing gene phenotypes.22,23 We used transcriptome data to 
identify various heterologous RNA-processing gene pheno-
types and further investigate the underlying mechanism of 
each gene.

Finally, a 10-gene RNA processing-related prognostic clas-
sifier involving FXR1, MFAP1, RBM17, SAGE1, SNRPA1, 
SRRM4, ADAD1, DDX52, ERI1, and EXOSC7 was identified 
in this study. As shown in the bioinformatics analysis above, 
the 10 genes not only suggest a significant impact on the prog-
nosis of colon cancer, but several studies have also suggested 
that ten candidate RNA processing factors play important 
regulatory roles in the progression of colon cancer. For exam-
ple, FXR1 is a member of the RNA binding protein family and 
is highly amplified in many cancers.24 FXR1 can also stabilize 
target mRNAs such as MYC.25 MFAP1 is a member of micro-
fiber related proteins involved in microfiber assembly, elastin 
generation, and tissue homeostasis.26 By combining this 
10-gene RNA processing-related prognostic classifier with 
other clinical variables, a composite prognostic nomogram was 
constructed to facilitate clinical practice based on TNM stage 
and age. The study first explains changes in RNA splicing in 
cancer and their role in the initiation as well as maintenance of 
cancer. Further, it distinguishes tumour RNA editing pheno-
types, combined with transcriptome data to explore differences 
in heterologous RNA processing genotypes.

Materials and Methods
Colon cancer patient databases

Transcriptome sequencing data involving 446 colon cancer 
samples were acquired from The Cancer Genome Atlas colon 
cancer (TCGA-COAD) database (https://portal.gdc.cancer.
gov/). A total of 585 microarray transcriptome data 
(GSE39582)27 were obtained from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/). Clinical information and survival follow-up information 

was also accessed from the corresponding websites. The expres-
sion profile (fragments per kilobase million [FPKM] value) of 
TCGA-COAD database was transformed into transcripts per 
kilobase million (TPMs) similar to the microarray data.28 The 
“ComBat” algorithm in sva R package29 was adopted to reduce 
batch impact due to non-biological technical bias across vari-
ous databases.29,30 This study is a bioinformatics analysis and 
can be broadly classified as a retrospective study. This study 
mainly involved data analysis, which lasted about 3 months. 
Because all clinical samples and follow-up data involved in this 
study were obtained from the TCGA and GEO databases, we 
included all study samples with complete information.

Acquisition of RNA processing factors

RNA processing factors are genes involved in conversion of 
primary RNA transcripts into mature RNA molecules. The 
factors were obtained from the Gene Ontology term 
(GO:0006396) in the AmiGO database31 and 485 RNA pro-
cessing factors were finally used for follow-up analysis. Gene 
expression data involving these RNA processing factors were 
obtained from the TCGA-COAD and GEO databases.

Unsupervised hierarchical cluster analysis for RNA 
processing factors

The study was carried out using an unsupervised clustering “Pam” 
method according to Euclidean and Ward chains and using 
“ConsensuClusterPlus” R package.32 In order to ensure the stability 
of the classification, a total of 1000 replicates were performed.33 
Different RNA processing modes were employed according to the 
expression of RNA processing factors for future investigation. 
Gene expression clustering was carried out with 80% of the resam-
pling items, 50 resampling times and a maximum K value of 10.33 
The optimal K value was evaluated from uniform heat map and 
cumulative distribution function (CDF).33

Identif ication of prognostic characteristics related to 
RNA processing factors

We adopted univariate Cox regression analysis to identify 
prognostic genes and a combined database including TCGA-
COAD and GEO data was generated. Subsequently, the target 
gene with the greatest prognostic weight was identified using 
R package “glmnet” with the minimum absolute contraction 
and selection operator (LASSO).34-36 Then, a multivariate Cox 
analysis based on the Enter method was used to measure the 
effect of gene expression on prognosis. Finally, the prognostic 
risk features were established using multivariate Cox analysis 
combined with the identified gene expression and matching 
regression coefficients (β values).33,37 Using the median risk 
score as the critical value, gastric cancer was divided into low- 
and high-risk groups. The R “survival” package was used to 
assess differences in overall survival between the 2 groups.38 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Kaplan-Meier survival curves were generated, and differences 
were detected via log-rank test.

Development and verif ication of complex RNA 
processing-clinical prognostic nomogram

Based on the results of multivariate analysis, we integrated prog-
nostic characteristics associated with age, sex, TNM stage, and 
RNA-treated genes to generate a composite prognostic model 
using cox proportional risk regression analysis of the combined 
TCGA-COAD and GEO data. The corresponding coefficients 
in the combined database were used to further verify TCGA-
COAD and GEO databases. We compared the prognostic value 
of the composite prognostic model with the consistency index 
(C-index) of the TNM staging system, as indicated by RMS 
curve.39 The C-index was used for discrimination and the U test 
was used to determine the unreliability of the calibration curve.40 
We also used RMS package to draw the nomogram and calibra-
tion curve in R software. Decision curve analysis (DCA) was 
used to quantify the net benefit at various threshold probabilities 
in validation sets to identify the clinical usefulness of the nomo-
gram.41,42 The net benefit was assessed as follows:

Net benefit
Truepositives

n

Pt

Pt

Falsepositives

n
� �

�
�

1

where n is the total number of patients and Pt denotes the 
probability of a given threshold.

The differences in restricted mean survival (RMS) based on the 
risk score between the 2 risk groups were assessed.43 RMS repre-
sents 60-month life expectancy of patients with various risk scores. 
Eventually, based on model visualization and clinical indicator 
analysis (calibration time curve graph), a modal graph was gener-
ated utilising the clinical application performance indicator (cali-
bration curve) and decision curve analysis.39,41

Bioinformatics analyses

We used principal component analysis (PCA) to identify the 
difference in expression between R package “extra factor” 
groups.44 The gene set was annotated via GO and KEGG 
pathway enrichment analysis. GO and KEGG analyses were 
performed using clusterProfiler R Package.32 The differentially 
expressed RNA processing factors were identified with a statis-
tically significant difference of |log2FC| > 1 and a false discov-
ery rate (FDR) < .05 among different clusters in the combined 
database (combined TCGA-COAD and GEO data).33 We 
counted the nonsynonymous mutations in colon cancer to 
identify the mutational burden. Somatic changes in colon can-
cer driver genes were assessed as high or low risk scores, fol-
lowed by identification of colon cancer driver genes using 
“maftool” R Package.45 The 25 most frequent cancer driver 
genes were analysed. The mutant landscape was created using 
the maftools package, initially deleting 100 frequently mutated 
genes (FLAGS).45,46 The levels of infiltration of different 

immune cells in tcGA-COAD and GEO data were quantified 
using the “CIBERSORT” R package,47 which carries an LM22 
signature and 1000 permutations. The ESTIMATE algorithm 
can be used to estimate the immune and matrix contents 
(immune and matrix fractions)48 of TCGA-COAD and GEO 
samples using the MCP counter package.49 Different levels of 
immune cell infiltration are shown in heat maps and histo-
grams. Gene Set Enrichment analysis (GSEA) was used to 
analyze the functional enrichment of genes related to risk score 
using cluster Profiler packages.32,50 The aforementioned data 
visualization uses Ggplot2 package.51

Based on protocol recommendations, WGCNA is used to 
identify gene modules associated with prognostic signals asso-
ciated with RNA processing.52,53 The scale-free topological fit-
ting index (R2) > .85 was used as the threshold to build the 
weighted gene co-expression network. A minimum cluster size 
of 30 and a threshold of 0.25 were selected as the threshold for 
identifying co-expressed gene modules.52 The two-weight 
intermediate correlation coefficient |R| ⩾ .15 and a 
P-value < .05 represent the thresholds to identify gene mod-
ules associated with prognosis.52

Statistical analyses

Statistical tests were carried out using SPSS 24.0 (IBM, Chicago, 
IL, USA) and R statistical software (version 4.1.1; http://www.r-
project.org/). Kruskal-Wallis test and Wilcoxon test were used 
for comparison of more than 2 groups.37 Continuous data were 
tested with Mann-Whitney test, and classified data were tested 
using Fisher’s exact test.37 Kaplan-Meier plots were used to gen-
erate survival curves of each subgroup in each database, and the 
log-rank test facilitated the evaluation of statistically significant 
differences. Univariate cox regression analysis was used to screen 
genes with prognostic value, and multivariate cox regression 
analysis was used to evaluate the weight of candidate gene 
expression based on prognosis.37 Spearman analysis facilitated 
the analysis of the relationship between WGCNA module and 
clinical characteristics.53 The relationship between 2 continuous 
variables was measured with Pearson correlation coefficient.37 
The RMS curve and RMS time differences were estimated 
using survRM2 software package.39,41,43 COX regression and 
correlation analyses were performed using SPSS 24.0. Other sta-
tistical analyses and visualization were mainly implemented 
using R54 and ggploT2 R Package.51,55 Two-tailed P < .05 was 
considered statistically significant. The data processing flow 
chart is provided in Supplemental Figure 1.

Results
Acquisition of RNA processing genes and 
identif ication of 4 different RNA processing modes 
in colon cancer

A total of 1033 samples (TCGA-COAD and GSE39582) 
were included in the study and 982 RNA editing genes were 
obtained from the AmiGO database (GO:0006396). The 

http://www.r-project.org/
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expression data of RNA editing genes detected in public data-
base is only 485 genes, so a total of 485 genes were included in 
the sample with gene expression data (Supplemental Table 1). 
Thus, the data of 485 genes expressed were finally included in 
the prognostic model construction. Unsupervised cluster anal-
ysis was used to perform hierarchical clustering of data related 
to RNA editing genes in patients with colon cancer, with a 
cluster coeffcient of K = 4. Finally, 4 different modes of RNA 
editing were identified as shown in the heatmap (Figure 1A). 
The principal component analysis (PCA) plot showed tremen-
dous variation in the expression profile of the 4 modes (Figure 
1B). Significant differences in survival prognosis were detected 
among the 4 modes (Figure 1C). Clusters A and D were asso-
ciated with prognostic advantage, while clusters B and C were 
related to prognostic disadvantage.

Identif ication of prognostic features related to RNA 
processing

We adopted univariate Cox regression analysis to identify the 
genes associated with prognostic significance in the com-
bined database. Among 458 RNA processing genes, 51 were 
associated with overall survival including 20 genes (HR > 1, 
P < .05) associated with risk and 31 with a protective role 
(HR < 1, P < .05, Supplemental Table 2). Kyoto Encyclopedia 
of Genes and Genomes (KEGG) and Gene Ontology (GO) 
functional enrichment analysis suggested the genes associated 
with prognosis were related to key biological functions such as 

spliceosome, RNA methyltransferase activity, U2-type precata-
lytic spliceosome, catalytic activity involving RNA, U2-type 
spliceosome complex, RNA splicing, and ncRNA processing 
via transesterification involving a bulged adenosine used as the 
nucleophile (Figure 2A). A total of 10 genes containing non-
zero parameters were determined (Figure 2B and C). The 
LASSO regression algorithm was used to screen 51 genes in 
the combined database to conveniently and effectively stratify 
the RNA processing genes with increased prognostic accuracy 
(Figure B and C). The genes finally incorporated into the sur-
vival prediction model included FXR1, MFAP1, RBM17, 
SAGE1, SNRPA1, SRRM4, ADAD1, DDX52, ERI1, and 
EXOSC7 (Figure 2D). The effect of the selected genes on 
prognosis was measured via multivariate Cox analysis, based on 
the Enter method, visualized by dendrogram (Figure 2D). 
Prognostic risk profiles were established by combining the con-
firmed gene expression values with matching regression coef-
ficients (β value) in multivariate Cox analysis. The corresponding 
risk scores for the databases were calculated based on the fol-
lowing formula: Risk score = −2.224*ADAD1-0.309*DDX52-
0.325*ERI1-0.501*EXOSC7 + 0.405*FXR1 + 0.508* 
MFAP1 + 0.495*RBM17 + 0.514

*SAGE1 + 0.500*SNRPA1 + 0.997*SRRM4. Using the 
median risk score as a cutoff, patients with colon cancer was 
divided into high-risk and low-risk groups (Supplemental 
Table 3). Kaplan-Meier survival curves showed that the sur-
vival time of patients in the high-risk group was less than that 
of patients in the high-risk group of the Union database 

Figure 1.  Identification of 4 different RNA processing modes in colon cancer. (A) Heatmap of 4 distinctive RNA processing modes defined by an 

unsupervised cluster analysis. (B) The principal component analysis (PCA) of the 4 subtypes were shown by the heatmap. (C) Kaplan-Meier survival 

curve analysis of overall survival for the 4 modes.
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(Figure 2E), TCGA (Figure 2F) and GEO databases (Figure 
2G). Kaplan-Meier survival analysis showed that patients with 
low-risk scores showed significantly longer overall survival 
than those with high-risk scores. Multivariate Cox regression 
analysis showed the following hazard ratios for high-risk 
scores: combined database: P < .001, HR = 2.646, 95% CI: 
2.096-3.34; TCGA database: P < .001, HR = 2.649, 95% CI: 
1.835-3.825; GEO database: P < .001, HR = 2.663, 95% CI: 
1.957-3.623 (Table 1). In addition, subgroup analysis was per-
formed based on age, gender, and TNM staging to explore the 
interaction between RNA processing-related risk signatures 
and clinical features in the combined database. The outcomes 
indicated that the group with the high-risk score was a distinct 

element in the overall survival in different subgroups (Table 2). 
In addition, clinical features such as TNM stage and age were 
also distinct prognostic elements in colon cancer (Table 2).

Construction of overall survival nomogram for 
colon cancer patients

A combined nomogram containing the RNA processing gene-
based risk score signatures and the significant clinical variables 
(TNM stage, sex, and age) was established to further improve 
the prognostic accuracy of the combined data (Figure 3A) to 
facilitate model visualization as well as clinical application. 
Meanwhile, the restricted mean survival time (RMST) of the 2 

Figure 2.  Identification of prognostic features related to RNA processing. (A) GO and KEGG functional enrichment analysis of differential genes among the 

4 subgroups. (B) Lasso variable trajectory plot of prognosis-related RNA-processing genes. (C) Lasso coefficient filter plot of prognosis-related RNA-

processing genes. (D) The corresponding hazard rations of the contained 10 genes in the signature represented by the dendrogram. (E-G) Kaplan-Meier 

survival curve analysis by log-rank test of high-risk and low-risk groups in combined database (E), TCGA database (F) and GEO database (G).
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groups in various databases was evaluated. Low risk group 
patients have better RMST at different time points in the 
combined database (Figure 3B), TCGA (Figure 3F) and GEO 
database (Figure 3J). Important differences in RMST between 
the high-risk and the low-risk groups were determined at vari-
ous times; the difference in RMST increased with extended 
duration (Table 3). The differences in RMST between these 
groups were 0.427 (combined database), 0.552 (TCGA), and 
0.231 (GEO) months for overall survival in the next year, 
reaching 7.816 (combined database), 7.601(TCGA) and 7.780 
(GEO) in the fifth year.

To validate the prognostic performance of the constructed 
nomogram, calibration curve, decision curve analysis (DCA), 
and concordance index (C-index) were used to test the prog-
nostic performance of the combined database model, TCGA 
and GEO. Compared with the TNM stage model, the clinical 
models based on TNM stage, sex, and age and risk score, the 
composite model involving risk score, TNM stage, age and sex 
revealed a significant improvement in survival rates (Figure 
3C, G, and K), which were assessed by C-index. The calibra-
tion curve showed the probabilities of observation and predic-
tion of the nomograms in the combined database, TCGA and 
GEO (Figure 3D, H, and L). Eventually, we compared the net 
clinical benefits of the composite model with the models based 
on TNM stage, clinical and risk scores using the DCA curve. 
The nomogram based on the composite model showed higher 
net benefit (Figure 3E, I, and M). The foregoing results dem-
onstrate the reliability, stability and enhanced prognostic per-
formance of the nomogram-based composite model.

Functional enrichment analysis of RNA editing 
gene-related modules

RNA expression profiles were assessed based on prognostic 
features related to RNA processing considering that RNA pro-
cessing genes control the life cycle of nuclear RNA. Using 
Pearson correlation analysis, we identified genes with expres-
sion levels related to trait risk scores, to establish a list ranked 
according to Pearson’s correlation coefficients. The gene set 
enrichment analysis (GSEA) of genes with strong risk score 
correlation was performed. The gene expression map showed 
that the genes positively associated with risk score were largely 
expressed in pathways associated with cell proliferation cycle 
markers, such as reactome cell mitotic, reactome cell cycle 
checkpoints, reactome cell cycle, reactome mitotic prometa-
phase and reactome M phase, which were significantly enriched 
in colon cancer samples expressing higher risk (Figure 4A). By 
contrast, genes inversely associated with risk score were largely 
expressed in pathways associated with metabolic markers, 
including reactome defensins, reactome class C 3 metabotropic 
glutamate pheromone receptors, keg allograft rejection, reac-
tome antimicrobial peptides and kegg autoimmune thyroid 
disease in colon cancer samples (Figure 4A).

Next, we adopted weighted correlation network analysis 
(WGCNA) to obtain feature correlation modules based on 
approximately scale-free characters. The top 5000 most varia-
ble genes estimated via median absolute deviation (MAD) 
were used to perform WGCNA analysis. The optimal soft 
threshold power was selected to compute the adjacency matrix 

Table 1.  Univariate and multivariate Cox analyses of the RNA processing-related signature in different databases.

Database Factor Univariate Multivariate

HR (95% CI) P-value HR (95% CI) P-value

Combined database (n = 951) Age (>60 vs ⩽60) 1.024 (1.013-1.034) <.001 1.029 (1.019-1.04) <.001

Sex (Male vs Female) 1.232 (0.961-1.579) .1 1.29 (1.006-1.654) .045

TNM stage (III and IV vs I and II) 2.199 (1.87-2.586) <.001 2.295 (1.935-2.722) <.001

Risk score (High risk vs low risk) 2.923 (2.322-3.679) <.001 2.646 (2.096-3.34) <.001

TCGA database (n = 409) Age (>60 vs ⩽60) 1.021 (1.002-1.04) .034 1.035 (1.016-1.055) <.001

Sex (Male vs female) 1.1 (0.715-1.692) .664 0.845 (0.542-1.317) .457

TNM stage (III and IV vs I and II) 2.276 (1.768-2.929) <.001 2.386 (1.832-3.107) <.001

Risk score (High risk vs low risk) 2.774 (1.972-3.903) <.001 2.649 (1.835-3.825) <.001

GEO database (n = 542) Age (>60 vs ⩽60) 1.025 (1.012-1.038) <.001 1.029 (1.016-1.042) <.001

Sex (Male vs female) 1.3 (0.959-1.763) .091 1.495 (1.098-2.034) .011

TNM stage (III and IV vs I and II) 2.124 (1.721-2.622) <.001 2.254 (1.804-2.816) <.001

Risk score (High risk vs low risk) 2.923 (2.151-3.973) <.001 2.663 (1.957-3.623) <.001
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and the largest 20 adjacency matrices, the largest complement 
of 20. The adjacency matrix was used to construct the cluster 
dendrogram; 8 color modules (green, blue, turquoise, brown, 
red, black, yellow, and gray) were recognized (Figure 4B). 
Uninvolved genes were transferred to the grey module for 
downstream investigation.

The correlation analysis of clinical traits was performed 
using the modular features constructed via WGCNA analysis 
to assess the modular-trait relationship. The 3 modules (brown, 

black, and turquoise) were largely and positively related to the 
RNA processing gene-based risk score (|R| > .15, P < .05, 
Figure 4C), which suggests that the genes in these modules 
may perform basic biological roles associated with prognostic 
characteristics. Therefore, a gene functional enrichment inves-
tigation was performed in every module to determine the bio-
logical function of risk score-related modules. The most 
abundant terms in the brown module genes were homologous 
recombination, Fanconi anemia pathway, cell cycle, microtube 

Table 2.  Subgroup analysis of the RNA processing-related signature.

Database Factor Subgroup analysis P-value for 
interaction

Samples HR (95% CI) P-value

Combined database (n = 951) Age

⩽60 280 1.871 (1.096-3.192) 0.022 0.773

>60 671 2.047 (1.534-2.733) <0.001

Sex

Male 438 1.947 (1.309-2.894) 0.001 0.930

Female 513 1.999 (1.436-2.781) <0.001

TNM stage

I and II 526 1.740 (1.177-2.574) 0.006 0.557

III and IV 425 1.944 (1.388-2.722) <0.001

TCGA database (n = 409) Age

⩽60 125 1.804 (0.689-4.721) 0.229 0.801

>60 284 1.975 (1.194-3.268) 0.008

Sex

Male 191 1.606 (0.837-3.083) 0.154 0.654

Female 218 1.959 (1.061-3.616) 0.032

TNM stage

I and II 236 1.296 (0.624-2.690) 0.487 0.478

III and IV 173 1.880 (1.050-3.368) 0.034

GEO database (n = 542) Age

⩽60 155 1.938 (1.016-3.697) 0.045 0.860

>60 387 2.077 (1.459-2.958) <0.001

Sex

Male 247 2.169 (1.314-3.581) 0.002 0.760

Female 295 1.949 (1.313-2.892) 0.001

TNM stage

I and II 290 1.952 (1.224-3.114) 0.005 0.906

III and IV 252 1.933 (1.278-2.924) 0.002
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Figure 3.  The construction of nomogram for overall survival in patients with colon cancer. (A) Prognostic nomogram for 1-year, 3-year, and 5-year overall 

survival of patients with colon cancer. (B, F, J) The restricted mean survival time (RMST) between the high-risk group and the low-risk group in the combined 

database, TCGA and GEO. (C, G, K) Concordance index (c-index) plots of TNM stage model, Clinic model, Risk score model and Composite model at 

different time points in the in the combined, TCGA and GEO databases respectively. (D, H, L) The calibration curve of the observation and prediction 

probabilities of the nomograms in the combined, TCGA and GEO databases respectively. (E, I, M) Decision curve analysis plots of TNM stage model, Clinic 

model and Composite model in combined, TCGA and GEO databases respectively. TNM stage model: involved in TNM stage only; Clinic model: involved in 

age, sex and TNM stage; Risk score model: involved in risk score only; Composite model: involved in risk score, TNM stage, age, and sex.

Table 3.  RMST between the 2 risk groups at different time points.

Database Time point 
(months)

RMSTa RMST differenceb P-
value

Low risk (95% CI) High risk (95% CI)

Combined database (n = 951) 12 11.751 (11.628, 11.874) 11.378 (11.182, 11.574) −0.373(−0.604, −0.142) 0.002

36 33.770 (33.121, 34.418) 30.644 (29.695, 31.593) −3.126(−4.275, −1.976) 0.000

60 53.810 (52.399, 55.221) 45.994 (44.055, 47.932) −7.816(−10.214, −5.419) 0.000

TCGA database (n = 409) 12 11.659 (11.435, 11.882) 11.107 (10.747, 11.466) −0.552(−0.976, −0.128) 0.011

36 33.220 (32.048, 34.393) 30.071 (28.451, 31.692) −3.149(−5.149, −1.149) 0.002

60 52.887 (50.246, 55.528) 45.286 (41.881, 48.691) −7.601(−11.910, −3.292) 0.001

GSE39582 database (n = 542) 12 11.817 (11.680, 11.953) 11.585 (11.379, 11.791) −0.231(−0.478, 0.016) 0.060

36 34.164 (33.422, 34.906) 31.224 (30.099, 32.348) −2.940(−4.288, −1.593) 0.000

60 54.485 (52.849, 56.121) 46.705 (44.365, 49.045) −7.780(−10.635, −4.925) 0.000

The bold value means the outcome was statistically significant.
aRestricted mean survival time (RMST), months.
bRMST difference =RMSThigh risk-RMSTlow risk.
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motor activity, DNA-dependent ATPase activity, ATPase 
activity, chromosomal region, spindle, condensed chromosome, 
organelle fission, nuclear division, chromosome segregation, 
indicating the role of the brown module in the cell cycle (Figure 
4D). The genes in the turquoise module were associated with 
protein digestion and absorption, ECM-receptor interaction, 
collagen-containing extracellular matrix, focal adhesion, colla-
gen binding, extracellular matrix component, extracellular 
matrix structural constituent, growth factor binding, endoplas-
mic reticulum lumen, extracellular matrix organization, extra-
cellular structure organization, and cell-substrate adhesion 
(Figure 4E). In the absence of sufficient gene enrichment in 
the black modules, no functional enrichment analysis was per-
formed. These findings suggest that RNA-processing genes 
based on risk scores were involved in multiple and important 
mechanisms associated with tumour malignancy phenotypes 
(proliferation, cell cycle, and metabolism).

Expression and clinical features of RNA processing-
related prognostic features

All 1033 colon cancer samples were combined to identify the 
clinical characteristics and expression of prognostic signals 

associated with RNA processing. The expression of all 10 
prognostic gene markers identified via Cox regression analysis 
and LASSO varied significantly between the 2 risk groups 
(Figure 5A and B). Risk-related genes indicated higher levels 
of expression in patients with high risk score. In contrast, the 
expression of protective genes was higher in patients with low 
risk scores (Figure 5A and B).

In addition, the high-risk group had a higher proportion of 
patients with advanced tumor stages (stage III and IV) (Figure 
5C). The proportions of clusters A and D with poor prognosis 
as well as stromal activation were higher in the high-risk group 
(Figure 5C).

Genetic variation and immune heterogeneity in 
prognostic characteristics related to RNA processing 
gene

Tumour mutational burden (TMB) in the TCGA database 
was analysed to identify the extent of genomic changes in the 
low- and high-risk subgroups. Figure 6 shows the TMB in dif-
ferent risk subgroups. In Figure 6A, the TMB of the high-risk 
group was significantly higher than in low-risk group (P = .018). 
First, the genomic data, including tumour mutations in the 

Figure 4.  Functional enrichment analysis of RNA processing-based risk score-related genes. (A) Mountain map showed GSEA analysis results of genes 

associated with risk score. (B) The construction of a clustering dendrogram of the top 5000 most variable genes by an adjacency matrix. (C) Module-

clinical traits relationship. Each column showed a module characteristic gene; each column corresponds to a clinical trait. Each cell contained the 

corresponding correlation (upper number) and P-value (lower number). (D) GO and KEGG functional enrichment analysis of genes in the brown module. 

(E) GO and KEGG functional enrichment analysis of genes in the turquoise module.
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TCGA-COAD dataset were analysed to identify potential 
mechanisms of RNA processing-related prognostic features. 
Additional mutations are related to higher risk scores (Figure 
6B). Kaplan-Meier survival analysis suggested that patients 
carrying low TMB (L-TMB) showed better survival than 
those with high TMB (H-TMB, P = .043, Figure 6C).

Next, the synergistic effects of TMB and risk scores were 
evaluated in TCGA-COAD prognostic stratification. Results 
indicated that TMB status did not influence prognosis based on 
risk score. Low- and high-risk subgroups showed enormous 
diversity in survival in both low- and high-TMB subgroups 
(P = .006; Figure 6D). Overall, the outcomes suggested that risk 
score stratification is a potential predictor distinct from TMB.

Furthermore, Maftools was used to access colon cancer 
driver genes. High-risk groups showed higher TMB in colon 
cancer. When genes were filtered out with low-frequency 
mutations (5% of colon cancer samples), the top 25 driver 
genes with the highest frequency of alteration were further 
analysed (Figure 6E and F). The mutation annotation file 
(MAF) analysis of the TCGA cohort showed that the altered 
frequency of PIK3CA, APC, TP53, TIN, KRAS, SYNE1, RYR2, 

OBSCN, MUC16, FAT4, ZFHX4, PCLO, FBXW7, LRP2, 
CSMD3, DNAH5, LRP1B, DNAH11, ABCA13, and USH2A 
was not similar in the subgroups with low and high risk scores 
(Figure 6E and F). These results may provide new insights into 
the prognostic mechanisms of tumour risk score as well as gene 
mutations.

The relationship between tumour microenvironment and 
risk based on genes associated with RNA processing was 
explored to characterise immune heterogeneity, given the abun-
dance of stromal as well as immune activation pathways in 
high-risk populations. The heatmap in Figure 7A shows 
immune cell infiltration in low- and high-risk groups. The 
MCP inverse algorithm was adopted to identify the proportion 
of immune and stromal cells in different risk groups. No sub-
stantial difference was found in stromal, estimated, and immune 
scores between the two groups (Figure 7B). Additionally, dif-
ferential analysis of cellular components revealed higher per-
centages of CD8+ T cells, plasma cells, and eosinophils in 
samples with a low risk score than in those with a high risk 
score (Figure 7C). The high-risk group had a higher percentage 
of M0 and M1 macrophages.

Figure 5.  Expression and clinical features of RNA processing-related prognostic features. (A) The expression patterns of 10 prognostic-related RNA 

processing genes in the entire 1033 colon cancer samples shown by the heatmap. (B) The differential expression of 10 prognostic-related RNA 

processing genes between the low-risk group and the high-risk group. The P value was obtained by Mann-Whitney test. (C) The distribution of TNM 

stages and 4 different RNA processing modes between the low-risk group and the high-risk group shown by the histogram.
Abbreviation: ns, no statistical significance
*P < .05, **P < .01, ***P < 0.001.
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Discussion
Although advances in systemic therapy have helped the overall 
prognosis of patients diagnosed with colon cancer, significant 
differences in clinical outcomes exist among patients treated 
similarly. Current treatment decisions and prognosis are mainly 
based on cancer cell-centric factors, such as the TNM staging 
system. RNA processing is involved in tissue-specific expres-
sion, apoptosis and maturation, immune responses, and tumor 
development and maintenance. Rapid advances in genomics 
and transcriptomics have facilitated systematic exploration of 
the heterogeneity of colon cancer. In this study, we identified 
transcriptional heterogeneity of RNA-editing genes in colon 
cancer based on an open database. Cluster analysis of colon can-
cer samples successfully identified and validated 4 RNA-edited 
gene-based molecules with molecular heterogeneity. Subtypes 
in each cluster were compared with clinical data to identify the 
unique molecular features of each cluster. Finally, a 10-gene 
RNA processing-related prognostic classifier involving FXR1, 

MFAP1, RBM17, SAGE1, SNRPA1, SRRM4, ADAD1, DDX52, 
ERI1, and EXOSC7 was identified. By combining this feature 
with other clinical variables, a composite prognostic nomogram 
was constructed to facilitate clinical practice based on TNM 
stage and age. The study first explains changes in RNA splicing 
in cancer and their role in the initiation as well as maintenance 
of cancer. Further, it distinguishes tumour RNA editing pheno-
types, combined with transcriptome data to explore differences 
in heterologous RNA processing genotypes. Concurrently, by 
obtaining gene-like labels, the risk assessment classifier can be 
used to stratify the survival prognosis of patients with colon 
cancer in specific TNM subgroups, predict new sample catego-
ries and identify cancer subtypes. It can be used to provide clas-
sification and targeted treatment plans for patients, disease 
diagnosis and treatment according to specific transcriptome 
data, reduce cancer mortality, improve cancer life expectancy, 
and meet the current criteria for precision medicine. This study 
identified the differences in the phenotypes of RNA-edited 

Figure 6.  Genetic variation in prognostic characteristics related to RNA processing gene. (A) Violin chart of the tumor mutation burden (TMB) between 

low-risk and high-risk groups. (B) Scatter plot of correlation analysis between tumor mutational burden risk scores. (C) Kaplan-Meier survival curve 

analysis combining high and low tumor burden mutations and high and low risk scores. (D) Kaplan-Meier curves analysis for low and high TMB groups of 

the TCGA database. (E) TMB analysis in the low-risk group. (F) TMB analysis in the high-risk group.
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genes in colon cancer, combined with transcriptome data to 
identify various phenotypes of heterologous RNA-edited genes, 
and provided further theoretical standards associated with 
potential pathogenic mechanisms of each RNA-edited gene. 
The new classification method combined with RNA-edited 
gene expression data provide detailed prognostic insights into 
colon cancer to predict treatment response and improve the role 
of traditional staging methods such as TNM.

This study provides a standard of reference for the discovery 
of highly sensitive and specific biomarkers for colon cancer 
treatment, which can predict tumour prognosis and facilitate 
the development of more effective anti-tumour drugs. 

Currently, heterozygous mutations of RNA splicing elements 
U2AF1, SRSF2, and SF3B1 have been reported in chronic 
lymphocytic leukemia, myeloid leukemia, uveal and mucosal 
melanoma.15-21 The study provides candidates for future 
research and improved treatment for colon cancer, adding to 
the growing understanding of RNA processing gene. Several 
valuable studies investigated the ten candidate RNA process-
ing factors. Fragile X-related protein 1 (FXR1), which is highly 
amplified in many types of cancer,24 is a member of the fragile 
X-related (FXR) family of RNA-binding proteins (RBPs). It is 
widely recognized that FXR1 binds to AU-rich elements 
(AREs) within the 3′ untranslated region (3′UTR) and 

Figure 7.  Immune heterogeneity in prognostic characteristics related to RNA processing gene. (A) Heat map showing immune cell infiltration between the 

high-risk and low-risk groups. (B) The differential expression of stromal score, immune score and ESTIMATE score between low-risk and high-risk 

groups. (C) Heat map showing immune cell infiltration between the high-risk and low-risk groups. The P value was obtained by the Mann Whitney test.
Abbreviation: ns, non-statistical.
*P < .05; **P < .01; ***P < .001.
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enhances the stability of tumour necrosis factor alpha (TNF-
α) and COX2 mRNAs.56 Several mechanisms of FXR1 have 
been shown to stabilise the target mRNAs, such as MYC.25 
Microfibrillar-associated protein 1 (MFAP1) is a member of 
microfibrillar-associated proteins (MFAPs), which are extra-
cellular matrix glycoproteins involved in microfibril assembly, 
elastinogenesis and tissue homeostasis.26 It is presumed to be 
an ortholog of the Saccharomyces cerevisiae tri-snRNP protein 
Spp381 involved in the regulation of mRNA splicing.57 RNA 
binding motif protein 17 (RBM17) binds to spliceosome and 
participates in the alternative splicing of mRNAs.58 It is widely 
accepted that the expression of RBM17 is correlated with 
malignant tumors.59 RBM17 is directly bound by tiRNA-Gly 
and improves the malignant activities of cancer cells via 
RBM17-mediated alternative splicing.60 Sarcoma antigen 1 
(SAGE1) is expressed in different histological tumors.61 As 
one of the cancer/testis antigens, male germ cell proteins are 
expressed ectopically in different malignant tumours. SAGE1 
is an ideal target in cancer immunotherapy.62 Small nuclear 
ribonucleoprotein polypeptide A1 (SNRPA1) is a protein-
coding gene. It is associated with mRNA splicing-major path-
way.63 SNRPA1 plays an oncogenic role by interacting with 
RMRP to inactivate p53 in colorectal cancer.64 Serine/Arginine 
Repetitive Matrix 4 (SRRM4) is generally acknowledged as a 
neural-specific splicing factor, with a very low basal expression 
outside of the brain.65 Head et  al.66 reported that although 
SRRM4 expression is low in normal non-neural tissues, in 
malignant tumours, it is further silenced, leading to inhibition 
of normal microexon inclusion. Therefore, the SRRM4 splic-
ing program acts as a proliferation inhibitor mediated via dif-
ferentiation. Adenosine deaminase domain containing 1 
(ADAD1) associated with CD4+ T cells was significantly 
related to the prognosis of colon cancer.67 Dead-box RNA 
helicase 52 (DDX52) is involved in various RNA-based pro-
cesses that bind to ATP. Previous studies have shown that 
DDX52 expression is down-regulated in prostate cancer, lung 
cancer and malignant melanoma68 Its function is mainly medi-
ated via c-MYC pathway.69 Exoribonuclease 1 (ERI1) is an 
RNA exonuclease involved in binding histone mRNA, playing 
a role in the decay of histone mRNA after replication. It also 
acts as a regulatory RNA interference (RNAi).

Immune cells are an important part of tumour microenvi-
ronment, and their number and status are important in the 
genesis, metastasis, and invasion of tumor. Our findings 
revealed no substantial difference in immune cell types among 
different risk groups, suggesting that the diversity of immune 
cell infiltration may not be the primary factor underlying the 
difference in prognosis among high-risk groups.

This study has limitations. First, because of the lack of clini-
cal sample detection data specific to our own research centre, 
we can only provide validated results of the RNA-edited gene-
based prognostic prediction model in the future to determine 
the prognostic efficiency of the model. Second, the role of 

potential RNA-edited gene prognostic markers in tumouri-
genesis and maintenance requires additional experimental vali-
dation and in-depth study of related mechanisms. Our research 
group is conducting follow-up clinical study and related 
experiments.

Conclusion
We constructed an RNA-edited gene-based prognostic feature 
classifier of colon cancer to improve the prognosis of patients 
with colon cancer in well-defined TNM subgroups, and was 
characterised by immune heterogeneity, pathway activation, 
clinical outcomes, and genetic variation. The study provides a 
rationale for the elucidating the role of RNA-editing genes and 
suggests the clinical role of potentially meaningful colon cancer 
RNA-processing factors as prognostic markers.
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