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Abstract

Supervised deep learning approaches can artificially increase the resolution of microscopy images by learning a
mapping between two image resolutions ormodalities. However, suchmethods often require a large set of hard-to-get
low-res/high-res image pairs and produce synthetic images with a moderate increase in resolution. Conversely, recent
methods based on generative adversarial network (GAN) latent search offered a drastic increase in resolution without
the need of paired images. However, they offer limited reconstruction of the high-resolution (HR) image interpretable
features. Here, we propose a robust super-resolution (SR)method based on regularized latent search (RLS) that offers
an actionable balance between fidelity to the ground truth (GT) and realism of the recovered image given a
distribution prior. The latter allows to split the analysis of a low-resolution (LR) image into a computational SR
task performed by deep learning followed by a quantification task performed by a handcrafted algorithm based on
interpretable biological features. This two-step process holds potential for various applications such as diagnostics on
mobile devices, where themain aim is not to recover theHRdetails of a specific sample but rather to obtainHR images
that preserve explainable and quantifiable differences between conditions.

Impact Statement
This research addresses a crucial challenge in single-image super-resolution (SISR) by introducing Regularized
Latent Search (RLS). Traditional SISR models depend on large paired datasets and offer only moderate
resolution enhancements. Our method overcomes these limitations by leveraging the latent space of pre-trained
generative models to find plausible HR images corresponding to LR inputs. This approach not only removes the
necessity for paired images but also allows for a significant resolution boost of up to 32x. The significance of our
approach lies in its ability to balance fidelity to the ground truth and realism of the recovered image given a
distribution prior. By preserving biologically relevant content and interpretable features, our method ensures that
super-resolved images are not only faithful to the original LR images but also retain essential domain-specific
characteristics. This balance between fidelity and realism is crucial for accurate phenotypic interpretation and
quantitative analysis, making our method particularly valuable for medical diagnostics and biological research.

1. Introduction

Various deep learning models have shown excellent performance in the single-image super-resolution
(SISR) task, which aims to restore a high-resolution (HR) image from its low-resolution (LR) counterpart.
Deep learning SISR models have been applied few years ago to enhance the resolution of microscopy
images.(1–3)More recently, studies have explored image-to-image translationmodels, which are trained to
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learn a parameterized function between two different image resolutions or modalities. These supervised
approaches require a large number of paired images and rely on generative models that output artificial
images.(4) These artificial images were accepted by the community as real mainly because they were
measured as approaching real image instances. However, for the latter to hold, these approaches only
offered a moderate increase in resolution of up to 4x.

Importantly, learning a parameterized mapping from a LR image to a HR image is an ill-posed
problem: A single LR image corresponds to infinitely many highly resolved ones. Therefore, the super-
resolution (SR) task cannot only consist of maximizing the fidelity of the recovered HR image; it must be
further constrained to be well-posed. In this work, we propose to constrain this task by imposing that the
reconstructed SR image be realistic, that is, belongs to a given image distribution, a principle that is also
explored by utilizing gradient distribution prior in the context of biomedical images.(5) In short, on the one
hand, fidelity refers to recovering a SR image that, once downgraded, is close to the original image. On the
other hand, realism refers to keeping the image within a given image domain.

In this paper, we aim to better define the SR task by enforcing the solution to be a trade-off between
fidelity to the original LR image and realism, which includes the preservation of biologically relevant
content, which we describe as “interpretable features.” Assessing these features is essential for accurate
phenotypic interpretation and discrimination. By guiding the SR process toward this end, we generate
images that are both faithful to the sample and biologically interpretable and quantifiable. In this way, we
anticipate that SR in biology could exploit more than recovering only the details of a given sample, but
benefit from features measured over a set of recovered images.

Our approach, regularized latent search (RLS), consists of a regularized search in the latent space of a
pretrained generative model for HR images. By doing so, we both suppress the need for paired images and
make the problem well-posed as we search for the closest image a generator can produce that, when
downscaled, matches the LR image input. Moreover, as we keep the super-resolved image in the original
domain, instead of producing a moderate increase in resolution, we propose to push further the synthesis:
We anticipate that creating very highly resolved (up to 32x) but controlled artificial images could be of
great interest for applications such as diagnostic. This is because what is at stake, in this case, is the
preservation of measurable and interpretable features of microscopy images, not the absolute matching
with real image samples.

Similar to image-to-image translation methods like CycleGAN,(6) which operate without the need for
paired images, our method differentiates itself in its approach to SR. It is specifically designed to address
the ill-posed nature of SR by utilizing a generative adversarial network (GAN)’s latent space to identify
plausible HR images for any given LR input. Once the model is trained, it enables the SR of any LR image
with just an adjustment in the degradation function during inference. Unlike CycleGAN, which is
deterministic and tailored for specific domain translations requiring individual models for each task,
ourmethod offers versatility and is suitable for a broad spectrumof SR tasks. It eliminates the need to learn
domain-specific features and is intended for widespread application in SR, capable of being trained on a
single dataset to enhance any LR image.

2. Related work and background

2.1. SR of microscopy images

While optical SR techniques such as stimulated emission depletion (STED)(7) and photoactivation
localization microscopy (PALM)(8) can break the diffraction limit, they are limited by the need for
specialized equipment and complex sample preparation. Computational SR methods, on the other hand,
while they rely on existing training data, can represent a cheap way to enhance the resolution of images
acquired with conventional microscopes. Several approaches were developed to address the problem of
computational SR of microscopy images. Deep-STORM (Stochastic Optical Reconstruction Micros-
copy)(9) uses an encoder–decoder network to localize emitters in super-resolved images. Content-aware
image restoration(1) uses a U-Net architecture and is trained with low signal-to-noise ratio (input) and high
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signal-to-noise ratio (target) image pairs. These approaches produced interesting results, but recovered
images often lacked high-frequency details due to the mean squared error (MSE) loss. To balance this
issue, other approaches such as ANNA-PALM (Artificial Neural Network-based Photo Activated
Localization Microscopy)(3) are based on GAN. The authors trained a U-Net, and in contrast with
Deep-STORM, a combination of pixel-wise reconstruction loss and adversarial losses is used to obtain
image reconstructions of better quality. Using a similar network architecture and training loss, Wang
et al.(2) achieved SR in fluorescence microscopy across different modalities. Overall, using an adversarial
loss results in output images that are sharper and of better perceptual quality and these methods
demonstrated the potential of deep learning to improve the spatial resolution of fluorescence microscopy
images. While the deep learning architectures and applications of these methods differ, they all require
hard-to-get paired image data for training and offer a moderate increase in resolution of up to 4x.

It is essential to note that computational SR techniques effectively enhance the resolution of images by
optimizing the use of available data in the original images. However, these methods are constrained by the
existing information and cannot add details beyond what the original optical systems could capture.

2.2. Style-based generative models

StyleGAN (Style-based Generative Adversarial Network) models(10,11) are well known for their
ability to generate highly realistic images. The StyleGAN architecture consists of two subnetworks:
a mapping network denoted by Gm :ℝd !ℝd and a synthesis network consisting of Llayers denoted by
Gs :ℝL× d !ℝn. Here, d represents the dimensionality of the latent space. The mapping network takes
a sample z∈ℝd from a standard normal distribution and maps it to a vector w∈W, whereW denotes
the intermediate latent space. StyleGAN2 introduced path length penalty, which encourages a fixed-
size step in w to result in a fixed-magnitude change in the image. The regularization term is computed
using the Jacobian determinant, and penalizing changes in it promotes the generation of smoother and
more realistic images. L copies of the d-dimensional vector w are fed to the L-layer synthesis network
Gs, with each copy representing the input to the corresponding layer of Gs. The Gs network controls the
level of detail in the generated image at each layer. Individual modification of these L layers, by
adjusting the latent vector copy of w for each layer, extends the latent space intoWþ. This extended
latent space enhances the model’s capability for accurate image reconstruction, which is vital for SR
tasks, offering more nuanced control over the image generation process.(12,13)

2.3. GAN-based high-resolution image reconstruction

The problem of obtaining a SR image of dimension n from a low-resolution (LR) image of dimensionm
is ill-posed as, for a non-invertible forward operator Dwith m < n, there are infinitely many HR images
that match a given LR image. Thus, the reconstruction procedure must be further constrained by prior
information to better define the objective and lead to a stable solution. One such prior consisted of
considering the reconstructed HR image to be part of a given domain. First, the distribution of HR
images is learned in an unsupervised fashion, thanks to a GAN, and then the latent space of this trained
GAN is searched to find a latent vector producing an HR image that, once downscaled, is the closest to
the LR image input. GAN prior-based image reconstruction was first introduced by Bora et al.(14) and
further improved using StyleGAN(10,11) byMenon et al. in PULSE (Photo Upsampling via Latent Space
Exploration)(15) by constraining the search to remain on the image manifold. To this end, PULSE and
two other studies(13,16) use an invertible transformation of the intermediate latent space Wþ

, which
includes a leaky rectified linear unit (rectified linear unit (ReLU))(17) followed by an affine whitening
transformation, so that transformed latent vectors approximately followed the standard Gaussian
distribution N 0,Idð Þ. Sampled vectors are then constrained to lie around a hypersphere with radiusffiffiffi
d

p
hypothesizing that most of the mass of a high-dimensional Gaussian distribution is located at or nearffiffiffi

d
p

Sd�1, where Sd�1 is the d-dimensional unit hypersphere. Constraining samples to lie in a dense area
of the StyleGAN style distribution resulted in increased realism of the generated images.
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Although the above approach showed major improvements over previous work, it also presents
important caveats that in practice led to image artifacts. Here, we show that transforming the
intermediate latent space in this way does not lead to an accurate standard Gaussian distribution, and
so prevents proper regularization based on this hypothesis. Moreover, as the search is strictly limited to

the spherical surface Sd�1, this limitation may prevent the search from reaching the closest reconstruc-
tion of the HR image.

In this work, we regularize the search in the latent space for a latent code located in “healthy” regions of
the latent space. In this way, the system is constrained to produce images that belong to the original image
domain StyleGAN was trained on. To do so, we take advantage of normalizing flow to Gaussianize the
latent style sample distribution, which leads to a much closer standard Gaussian distribution. We then use
this revertible transformation to regularize the search inWþ such that it remains in a high-density area of
the style vector distribution. We then show experimentally that the latter produces reconstructed images
that are not only realistic but also more faithful to the original HR image.

3. Method

3.1. Super-resolution by Regularized Latent Search

SR aims to reconstruct an unknown HR image x∈ℝn× n from a LR image y∈ℝm×m, which is related to
the HR image by a downscaling process described by y=D xð Þþδ, where D :ℝn× n !ℝm×m is a non-
invertible downscaling forward operator and δ is an independent noise with distribution pδ . We can
formulate this task in terms of maximum a posteriori (MAP) estimation.(18) Given an LR image y, our goal
is to recover the HR image x as the MAP estimate of the conditional distribution pG xjyð Þ:

argmax
x

logpG xjyð Þ= argmax
x

logpδ y�D xð Þð Þþ logpG xð Þ½ �: (1)

The first term is the likelihood term, describing the image degradation process D, and the second is the
image prior, describing the manifold of real HR images.

3.1.1. Image prior
Let Gsbe the synthesis network of a StyleGAN

(11) pretrained on the considered image domain. Gs takes as
input w, produced by the mapping network, and outputs an image. The image prior logpG xð Þ can be
expressed with respect to the latent variables w:

logpG Gs wð Þð Þ= logpw wð Þþ log ∣ det JG�1
s

wð Þ∣: (2)

The second term can be dropped as the path length penalty in StyleGAN2 implies that the Jacobian
determinant is constant for all w. The first term pw wð Þ is the image prior we define on w∈Wþ by

logpw wð Þ= λwPwþ λcPcross (3)

where

• Pw is a prior that keepsw in the area of high density inWþ: Pw = 1
L

PL
i= 1 logpF wið Þ, where pF wð Þ is

estimated by a normalizing flow model F explained in further detail below.
• Pcross is a pairwise Euclidean distance prior onw= w1,…,wL½ �∈Wþ that ensuresw∈Wþ remains

close to the trained manifold in W:Pcross = �PL�1
i = 1

PL
j = iþ1 wi�wj

�� ��2
2.

• λw and λc are hyperparameters that control the relative importance of the two priors.

3.1.2. Normalizing flow

Using a sequence of invertible mappings, a normalizing flow F :ℝd !ℝd is a transformation of an
unknown complex distribution into a simple probability distribution that is easy to sample from and
whose density is easy to evaluate such as standard Gaussian.(19)
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Let z=F wð Þ with probability density function p zð Þ. Using the change-of-variable formula, we can
express the log density of w by(20)

logpF wð Þ= logp zð Þþ log ∣ det JF wð Þ∣, z=F wð Þ (4)

where JF wð Þ is the Jacobian of F evaluated at w. In practice, the Jacobian determinant in equation nf
should be easy to compute so that the density pF wð Þcan be evaluated. Furthermore, as a generative model,
the invertibility of F allows new samples w= F�1 zð Þ to be drawn through sampling from the base
distribution. In the literature, several flow models were proposed, such as real non-volume preserving
flow(21) and masked auto-regressive flow (MAF).(22)

3.1.3. Optimization process
In the likelihood term presented in equation map estimation, we assume that the noise follows a Laplace
distribution, that is, δ� Laplace 0,λlIð Þ . This assumption simplifies the log density of δ to
logpδ δð Þ= � δk k1�C, whereC is a constant. Thus, the optimization problem in equationmap estimation
is effectively transformed into an optimization over w, resulting in the final objective function:bw = argmin

w
y�D Gs wð Þð Þk k1� logpw wð Þ (5)

The selection of the Laplace distribution for noise modeling is favored due to its simple form, which
simplifies the log-density function andmakes the loss function easier to optimize. Moreover, the L1 norm,
which arises in the log density of the Laplace distribution, offers greater robustness to outliers than the L2
norm. This characteristic is particularly beneficial in the context of SR, where the ability to handle
irregular noise or artifacts in LR images is crucial, especially given the challenges commonly associated
with microscopy data.

3.2. Evaluation of the Gaussianization process

To assess the quality of the Gaussianization process, we sampled 5000 vectors z�N 0,Idð Þ. These vectors
were then transformed into style vectorsw =Gm zð Þusing the mapping network Gm of StyleGAN.We then
Gaussianized the distribution of W using alternatively PULSE and our method. The quality of the
Gaussianization process was evaluated by computing the squared norm for all of these vectors within
the transformed distribution (see Figure 1). Ideally, the squared norm of the standard Gaussian distribution

Z should follow a chi-squared distribution, that is, znk k22 � χ2d , and thus, it forms a narrow distribution
centered around d = 512, the dimensionality ofW. We can see that this is the case forZ, which is Gaussian.
However, the W does not follow this pattern, which is inconsistent with the prior assumption held by
BRGM(BayesianReconstruction throughGenerativeModels).(18) Furthermore, while the PULSEmethod
results in a broader distribution, our method more accurately narrows the squared norm distribution to
match the expected chi-squared distribution.

4. Experiments

4.1. Experimental settings

A critical aspect of our study was the necessity to work with high downscaling factors, such as 16x and
32x, which are central to our application scenario. These factors are not commonly used in the literature,
and to the best of our knowledge, there are no experimental datasets available with such high downscaling
factors. Most existing datasets typically focus on moderate downscaling factors of 2x or 4x, which is not
aligned with the needs of our study, where we aim to address more extreme cases of resolution
enhancement. Therefore, we had to generate our own LR images.

As for implementation details, we began by training a StyleGAN2-ADA (StyleGAN2 with Adaptive
Discriminator Augmentation)(23) model on a subset of the BBBC021 dataset,(24,25) which comprises cells
treated with drugs acquired following the cell painting assay.(26) That is, cells were fluorescently stained
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with markers for F-actin, B-tubulin, and deoxyribonucleic acid (DNA), as described in.(26) The dataset
comprises wide-field epi-fluorescence images, captured using the automated ImageXpress imaging
platform. From this dataset, we extracted images of size 128 × 128 centered around each cell nucleus
and used 400 images per compound treatment (approximately 28,000 in total) to train StyleGAN2-
ADA.(23) We then proceeded to generate 100000 random samples z�N 0,Idð Þ and used their associated
style vector w =Gm zð Þ to train the normalizing flow model. We opted for MAF, as it tends to perform
better thanRealNVP (Real-valuedNon-Volume Preserving) for density estimation tasks. Our normalizing
flow model comprised five flow blocks with all hidden dimensions set to 1024. For super-resolving the
images using our RLS algorithm, we employed anAdam optimizer over 200 iterations with a learning rate
of 0.5 and initialized the search using the mean of 10,000 randomly generated latent vectors.

To fine-tune the regularization parameters λw and λc, we empirically evaluated a spectrum of values,
eventually setting them to 5e-5 and 0.01, respectively. This process revealed that the algorithm’s
performance remained relatively stable across a broad range of these parameters, indicating a lack of
sensitivity as long as the values fell within a specific boundary. Precisely, we observed optimal
performance when λw was between 1e-6 and 5e-4, and λc ranged from 0.005 to 0.05. These findings
suggest that while the exact values of λw and λc are flexible, maintaining them within these determined
ranges ensures the algorithm functions effectively.

For evaluation, we used 100 random samples from various compound treatments, ensuring samples
were not included in the training of the generative network.We simulated degraded images from these HR
images using bicubic downsampling, which is a common choice in the literature. We then compared the
results of our algorithm with those of Pix2Pix and two state-of-the-art unsupervised image reconstruction
methods based on StyleGAN inversion: PULSE(15) and BRGM.(18) For the baselinemethods, we used the
same parameter settings reported by the original papers.

4.2. Results

4.2.1. RLS recovers high-quality cell images
We reconstructed images using RLS and compared them to images generated with baseline methods. The
results of this comparison are presented in Figure 2. At these high upscaling factors, due to the lack of
proper regularization, the competing methods fail to produce reasonable cellular details and tend to

Figure 1. Distribution analysis of squared L2 norms demonstrating the Gaussianization of latent style
vectors. The graph compares the density of squared norms from the original Z space (blue), the

untransformed W space (orange), and the distributions resulting from the PULSE (green) and our
method (red).
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produce images that can be accurately downscaled to the LR image at the cost of generating distorted
cellular structures. In contrast, our approach produces highly realistic images for most examples and can
reproduce cell phenotypes induced by compound treatment even if the fine-grain details are not similar.
For instance, when reconstructing the images of cells treated with nocodazole, a known microtubule
destabilizer, RLS captures the typically fragmented microtubule phenotype, resulting in a more accurate
texture. Reconstructing images of cells at higher resolution obviously provides access to finer-grain
measurable features.

To quantitatively assess this gain in performance, we evaluate the SR images using Frechet inception
distance (FID)(27) and kernel inception distance (KID)(28) to measure the discrepancy between the real HR
images and the reconstructed one. As expected, the scores of FID andKID listed in Table 1 show that with
both upscaling factors, our method significantly improves realism.

4.2.2. RLS achieves better perceptual scores
We evaluated the reconstruction accuracy of RLS using learned perceptual image patch similarity
(LPIPS),(30) peak signal-to-noise ratio (PSNR), and multi-scale structural similarity index for motion
detection (MS-SSIM)(31) metrics to compare the reconstructed SR images to the real HR images.
As expected, RLS did not achieve the best pixel-wise reconstruction losses but achieved either the lowest
or second-lowest LPIPS scores on both 32x and 16x upscaling factors. The latter suggested that while the
recovered SR image is not exactly the same as the HR image, it is perceptually closer. It is worth noting

Figure 2. Qualitative comparison of SR reconstructions on the BBBC021 dataset: visualizing the
performance of RLS against baseline methods in reconstructing cellular structures and phenotypes under

negative control (DMSO) and various treatment conditions at a 16x upscaling factor.
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that although Pix2Pix produced images with high PSNR and MSSIM scores, it struggled to accurately
reconstruct cellular details. This observation highlights the fact that PSNR and SSIM metrics may not be
fully appropriate to evaluate the performances of the SR tasks.

4.2.3. RLS preserves interpretable features
RLS achieves a balance between realism and fidelitywhen super-resolvingmicroscopy images. However,
as any deep learning method for SR, it cannot generate details it would not have seen during training.
Therefore, it cannot be used in a context where novel events can be expected. However, it could possibly
be used to perform measurements to quantify expected phenotypic changes. This is the case for many
assays used in basic research in biology. It is also the case in diagnostics such as parasitemia for instance
where the tool must assess if a parasite is present or not. Instead of relying on a blind classification or
regression of LR images, these tasks on LR images in such a context could be decomposed into two steps.
A first step based on our deep learning approach would consist of reconstructing a HR image, while a
second step would use a dedicated handcrafted analysis to quantify a phenotypic feature, making the
analysis explicitly interpretable.

To evaluate to what degree the information conveyed by the SR images can be used for such quantitative
assays andmaybe later for interpretable diagnostics, we applied it to two assays that allowed straightforward
quantification of “interpretable features” on HR images but not on LR images. Here, interpretable features
refer to the measurable and explainable phenotypic changes crucial for biological assessment, such as the
nucleocytoplasmic ratio in response to TNF-α treatment and alterations in the Golgi apparatus morphology
in reaction to nocodazole.Quantitative analysiswas conducted on the SR images to assess the reconstruction
of these features, and results were compared against those obtained from HR images as well as baseline
methods, including BRGM, PULSE, and an unregularized latent search (“w/o Regu.”).

The first assay aimed to track the location of the nuclear factor kappa B (NF-κB) protein within the cell.
Upon treatment with TNF-α, a pro-inflammatory cytokine, the protein moves to the nucleus, causing a
shift in fluorescence signal from the cytoplasm to the nuclear area, resulting in bright green nuclei.
We observed that the nucleocytoplasmic fluorescence ratio measured on 1000 HR-treated and
HR-untreated images could be replicated when computed from super-resolution (SR) images
(Figure 5a). We also provided some visual examples of super-resolving the LR images, that is, the first
step in Figure 3, which shows that our method can reconstruct images of wild-type and treated cell images
obtained with this common assay.

The second assay we conducted aimed to monitor changes in the morphology of the Golgi apparatus.
When cells are exposed to nocodazole, microtubules disassemble, causing the Golgi, originally located
near the center of the cell, to break up into smaller stacks. Figure 4 shows that standard assays such as
nocodazole-inducedGolgi scattering (green) were reproducedwith SR images.Moreover, as illustrated in

Table 1. Quantitative evaluation of RLS and baseline methods for SR on the BBBC021 dataset at 32x
and 16x upscaling factors

Upscaling factor Method FID↓ KID ×103ð Þ↓ MSSIM↑ LPIPS↓ PSNR↑

32x Pix2Pix(29) 67.141 66.515 0.507 0.420 15.846
PULSE(15) 13.629 9.056 0.526 0.378 16.469
BRGM(18) 15.862 13.293 0.400 0.475 14.207
RLS 7.571 3.209 0.528 0.343 16.536

16x Pix2Pix(29) 45.503 41.700 0.708 0.274 19.983
PULSE(15) 17.354 14.937 0.723 0.244 20.806
BRGM(18) 19.862 17.254 0.608 0.301 17.914
RLS 6.983 3.347 0.660 0.262 19.177

Note: The best and the second best are highlighted in bold and italic, respectively.
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Figure 3. Visual examples of super-resolving translocation assay LR images at a 32x upscaling factor
under negative control (DMSO) and tumor necrosis factor (TNF)-α treatment conditions: left: LR image,

middle: SR reconstruction, and right: GT.

Figure 4. SR of images from a Golgi assay at a 16x upscaling factor under negative control (DMSO) and
nocodazole treatment conditions. The left column shows the LR images, the middle column shows the SR

reconstructions, and the right column shows the GT images.
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Figure 5b, when computed only from SR images, a straightforward average spot size differencemeasured
on 1000 HR-treated and 1000 HR-untreated images could be retrieved.

Furthermore, we utilized cells treated with DMSO (Dimethyl Sulfoxide) as negative controls and cells
treated with nocodazole (or TNF in the case of the translocation assay) as positive controls.We developed
a classifier trained on HR images to distinguish between the two phenotypes and evaluated its perform-
ance on both HR and super-resolved images, ensuring that the datasets for GAN training and classifier
training were distinct to maintain the integrity of our results. Additionally, we trained a separate classifier
on LR images for phenotype differentiation, and its testing was confined to LR images. The results as
shown in Table 2 indicate that the SR operation does not degrade the discriminative signal contained in LR
images, and the classification accuracy is about the same on SR and LR images. Furthermore, we show
evidence that this signal difference can be retrieved when quantifying the same interpretable feature
variation present in HR images using handcrafted image analysis (see Figure 5).

Table 2. Comparison of classification accuracy for identifying phenotypic changes between negative
control (DMSO) and positive control (TNF-α and nocodazole and nocodazole conditions) in the
translocation and Golgi assays, respectively, using super-resolved images and HR images as a

benchmark

LR BRGM PULSE w/o Regu. RLS HR

DMSO vs TNF–α (32x) 85.60 79.20 85.60 85.80 87.00 97.60
DMSO vs nocodazole (16x) 72.80 53.00 62.60 67.80 74.20 96.80

Figure 5. Making interpretable measurements from LR images: first increasing the resolution by a SR
method and then measuring a handcrafted interpretable feature. Each pair in the boxplots displays the
distribution of handcrafted interpretable measurements, where the solid box represents the negative
control (DMSO) and the dotted box signifies the positive controls (TNF-α for translocation and

nocodazole for Golgi), across various SR methods including RLS, BRGM, PULSE, and “w/o Regu.”
alongside with the HR images for benchmarking. (a) Translocation ratio measurement: The y-axis

quantifies the translocation ratio, an interpretable metric indicating TNF-induced NF-κB translocation
(green). The translocation ratio can be differentiated between two conditions not only from real HR

images but also from SR images. (b) Mean spot area measurement: The y-axis quantifies the mean spot
area, an interpretable metric indicating nocodazole-induced Golgi spreading (green), distinguishable
between two conditions not only from real HR images but also from SR images reconstructed by our

method.
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It is worth noting that in Figure 5 the similarity in performance between the “w/o Regu.” model and
RLS during the translocation assay reveals an interesting insight. It suggests that, for this specific assay,
the additional regularization does not significantly change the outcome. However, it is important to note
that this assay was designed to evaluate strong phenotypic changes where the expected changes are
substantial and easy to detect. In this case, the nonregulated version can also accurately capture the
phenotypic changes, since the differences between the images are large. This is evidenced by the
comparative classification accuracies in Table 2 for the translocation assay, where RLS achieves similar
performance to the “w/o Regu.” version and the baseline methods. The advantages of regularization in
RLS are more apparent in assays with subtler phenotypic variations, where detecting nuanced differences
is more challenging. For example, in the Golgi morphology assay, where detecting changes requires more
detailed analysis, RLS’s regularization reconstructs realistic images that more faithfully represent
biological structures required for detailed quantitative evaluations. Furthermore, considering the overall
performance, RLS demonstrates consistent and enhanced performance compared to both the baselines
and the non-regularized version, as indicated by the superior classification results in Table 2. This
suggests that RLS is a more robust method for super-resolving microscopy images, especially in assays
where the phenotypic changes are subtle. Overall, the experiments confirm that the quality of super-
resolved images is adequate for further analysis. Ourmethod enables a two-stage process: employing deep
learning for the challenging task of SR followed by a handcrafted, interpretablemethod for the subsequent
quantitative measurements.

4.3. Robustness

In opposition to supervised methods that are sensitive to the input image domain, this approach is not
restricted to a particular degradation operator that is used during training. To evaluate this aspect, we
applied additional degradation operators such as Gaussian noise, salt and pepper, and Gaussian blur to a
bicubic downscaled image DS before reconstruction. As depicted in Figure 6, the reconstruction closely
matches the DS image. This result validates our choice of using the bicubic downscaling operator during
training instead of more complicated specific degradation.

4.4. Ablation study

Figure 7 demonstrates ablation experiments highlighting the impact of the components of our image prior.
First, “w/o Regu.” searches the latent space without any regularization for the image that, once
downscaled, matches the LR image. The second variant is denoted “w/o Pw ,” that is, the image prior
does not include the prior term Pw. Similarly, “w/o Pcross” refers to the suppression of Pcross.

To evaluate the three variants, we use the same set of parameters described in Section 4.1. One can
see that searching the latent space without any regularization produces images that do not necessarily
belong to the original image manifold and therefore do not appear realistic. It also tends to generate
images that are accurately downscaled to the LR image but at the cost of generating distorted images
when Pcross or Pw is discarded. This implies that both priors play an important role in generating
realistic details.

4.5. Uncertainty

An important challenge of the SR task is that it is an ill-posed problem. Although we can improve this
aspect by using an image prior constraint, several closely related highly resolved images could still be
consistent with a single LR image. To generate n realistic SR images, we sample n latent codes denoted as
w1,w2,…,wn . We assume that their distribution follows a Gaussian distribution N μ,σð Þ , where the
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parameter σ follows an inverse gamma distribution. Using the Bayes rule, we estimate the distribution’s
parameters by

max
μ,σ

Xn
i = 1

logp wijyð Þ�n
2
logσ2�n

2
log 2πð Þ� 1

2σ2
Xn
i = 1

wi�μð Þ2þ logp σð Þ
" #

Here, the first term is the log-likelihood of the posterior distribution of p wjyð Þ, which is defined in
Eq. (5); the second term is the regularization term, which penalizes large values of σ; and logp σð Þ is the
log prior distribution of σ. Figure 8 displays multiple solutions for a given LR image we can obtain with
our approach. Sampling close variations of HR images from a single LR input can be used to enhance the
robustness of the estimation of an image-based quantitative feature by reducing the effects of noise or
artifacts that may exist in the input LR image.

Figure 6. Evaluation of RLS performance under various degradation conditions: Images downscaled by
bicubic method are further altered with Gaussian noise, salt and pepper noise, and Gaussian blur to
assess the stability of the proposed method across a range of image perturbations (at a 16x upscaling

factor).
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Figure 7. Ablation study showcasing the impact of regularization components on RLS performance, with
qualitative results in the left column and quantitative results in the right column. The variants include
“w/o Regu.” (searching the latent space without any regularization), “w/o pw” (the image prior does not
include the prior term pw ), “w/o pcross” (the image prior does not include the prior term pcross ), and

“RLS” (the full RLS model) (at a 16x upscaling factor).

Figure 8. Visualizing the ill-posed nature of the SR task and the uncertainty associated with SR
reconstruction. Five distinct SR images (SR1 to SR5) are generated for each LR image by sampling five

different latent codes from the latent space, alongside the GT (at a 16x upscaling factor).
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5. Conclusion

In this paper, we propose a robust SR method based on RLS within a pretrained StyleGAN. It does not
require coupled image pairs for training and constrains the SR task to a given image prior to offering a
trade-off between fidelity and realism of the SR reconstruction. Furthermore, we show that such a
method could be used to split analyses, such as the classification of LR images, into a reconstruction of
SR images performed by deep learning and a simple dedicated handcrafted analysis of an interpretable
feature.

The latter could be used, for instance, for rapid diagnostic based on smartphone directly available on
the field. In this case, a dataset of LR images of slides acquired from fast and/or cheap solutions available
on the field could be coupled with the acquisition of the same slides using high-end expensive HR
microscopes with limited access. In this application, HR images could then be reconstructed directly on
the field to perform an explainable diagnostic such as a parasite count.

6. Limitations and future work

One common challengewith deep learning-basedmethods, especially those using generative priors like in
our study, is their limited generalizability to unfamiliar and unseen data. Our approach, which utilizes
StyleGAN for unsupervised learning within a specific domain, may not encompass the full diversity
encountered in real-world scenarios. To enhance the model’s generalizability, strategies such as incorp-
orating data augmentation to introduce training data variability, or applying transfer learning for domain
adaptation, could be beneficial.

Our current findings serve as an initial validation of our method’s capabilities. However, we acknow-
ledge the necessity of further evaluations using more varied datasets, encompassing a broader range of
imaging techniques and sample preparation methods. The absence of such diverse experimental data in
our current research is due to the specific requirement of our study to explore SR at high upscaling factors
like 16x and 32x. These factors, which are crucial to our application’s needs, are rarely addressed in the
available literature, and to our knowledge, datasets with such extreme upscaling factors are not yet
available. Existing datasets generally focus on more moderate upscaling factors, such as 2x or 4x, which
do notmeet the demands of our research that targets significantly higher levels of resolution enhancement.
We are committed to extending our validation to include real-world imaging conditions as soon as datasets
meeting our high upscaling factor requirements become available. This will enable amore comprehensive
assessment of our method’s applicability and performance in practical scenarios.
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