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BACKGROUND: The detection and early diagnosis of root fractures can be challenging; this difficulty applies particularly to newly
qualified dentists. Aside from clinical examination, diagnosis often requires radiographic assessment. Nonetheless, human fallibility
can introduce errors due to a lack of experience.
AIM: The proposed system aimed to assist in detecting root fractures through the integration of artificial intelligence techniques
into the diagnosis process as a step for automating dental diagnosis and decision-making processes.
MATERIALS AND METHOD: A total of 400 radiographic images of fractured and unfractured teeth were obtained for the present
research. Data handling techniques were implemented to balance the distribution of the samples. The AI-based system used the
voting technique for five different pretrained models namely, VGG16, VGG19, ResNet50. DenseNet121, and DenseNet169 to
perform the analysis. The parameters used for the analysis of the models are loss and accuracy curves.
RESULTS: VGG16 exhibited notable success with low training and validation losses (0.09% and 0.18%, respectively), high specificity,
sensitivity, and positive predictive value (PPV). VGG19 showed potential overfitting concerns, while ResNet50 displayed progress in
minimizing loss but exhibited bias toward unfractured cases. DenseNet121 effectively addressed overfitting and noise issues,
achieving balanced metrics and impressive PPVs for both fractured and unfractured cases (0.933 and 0.898 respectively). With
increased depth, DenseNet169 demonstrated enhanced generalization capability.
CONCLUSION: The proposed AI- based system demonstrated high precision and sensitivity for detecting root fractures in
endodontically treated teeth by utilizing the voting method.
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BACKGROUND
Early and accurate detection of root fractures is critical, given its
implications for treatment modalities and prognosis. The predis-
posing factors that underlie the treatment options have been
highlighted in the literature, with the emphasis of accurate and
early detection on prognosis [1]. The prevalence of root fractures
can reach up to 7%, and the underlying etiological classification
includes both traumatic and chronic fatigue root fractures [2]. In
the pursuit of diagnosing such fractures, the detection of root
fractures involves radiographic assessment which offers invaluable
insights together with evidence from clinical assessments.
However, they are considered as subjective processes affected
by the degree of examiner´s experience [3]. Moreover, less
experienced operators may inadvertently misdiagnose dental root
fractures due to a lack of exposure to a diverse range of cases and
diagnostic nuances.
Three-dimensional (3D) dental imaging modalities, such as cone

beam computed tomography (CBCT) could enable clinicians to
visualize dental structures in multiple planes with exceptional
clarity and high accuracy for detecting root fractures. This is
particularly true due to the limitations of two- dimensional (2D)
radiographic images, such as distortion, inherent superimposition
of structures and the inability to visualize fractures in multiple

planes which can lead to false negatives or delays in diagnosis [4].
However, limitations like image artifact, cost, and radiation
exposure argue against its routine implementation in daily routine
[5]. The periapical radiograph is the standard radiographic
modality in dental clinics and the first aid for screening [6].
Evolving technology has changed the whole interface of

diagnostic methodology as well as the degree of precision of
restorative and endodontic treatment modalities [7]. Artificial
intelligence (AI) technology has been intensely introduced into
almost every branch of dentistry and is involved in diagnostic
aspects and decision making [8]. In the context of dentistry, the
integration of AI into information systems (IS) has shown
promising potential [9]. The literature provides evidence where
AI algorithms support in the interpretation of dental imagery,
diagnosis of oral conditions, and prediction of potential issues
based on input data from X-rays, patient records, or other dental
imaging modalities [10, 11].
Incorporating AI can offer a rapid means of predicting the

likelihood of specific case occurrences [12]. The challenge of
accurately diagnosing root fractures, even among dental experts,
is highlighted in the literature [13]. An extended utilization of such
a system, where dentists seek to ensure the accuracy of their
diagnoses, can also be forwarded to patients seeking a second
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medical opinion on their case in a quest to reinforce the reliability
of their medical assessments.
Convolutional Neural Networks (CNNs) is a subclass of neural

networks that can efficiently identify and classify dental structures,
detect anomalies like cavities, root fractures, and periodontal
diseases, and assist in the accurate segmentation of teeth and
surrounding anatomical features, consequently advancing image-
based diagnosis [13].
The early attempts involved the validation of a probabilistic

neural network design for detection of vertical root fractures in
periapical radiographic images and pointed out its potential for
dental fracture detection [3]. A study held by Johari et al.
demonstrated that the neural network performs more effectively
with CBCT images compared to periapical radiographs for both
endodontically and non-endodontically treated single rooted
premolars [14]. In a comparable effort, Hu et al. deployed AI
algorithms, including ResNet50, DenseNet169, and VGG19, to
detect fractures in a dataset of CBCT images comprising 276 teeth.
Their findings significantly favored the ResNet50 algorithm over
the other AI models and even outperformed domain experts [15].
This research article builds on previous work published as an

e-Poster [16]. However, independently training each AI model did
not achieve the highest accuracy or sensitivity. Herein, the present
study aims to validate five AI algorithms, comparing their
performances regarding specificity, sensitivity, and positive pre-
dictive value (PPV) in detecting root fractures. Moreover, introdu-
cing a new application of a voting mechanism in this context.
to reduce human errors and improve the overall quality of
patient care.

MATERIALS AND METHODS
Sample preparation
The study at hand was reviewed and the ethical approval was obtained
from the Institutional Review Board of Misr University for Science and
Technology (MUST IRB) under approval number 2022/0097. Single rooted
anterior teeth, extracted for periodontal reasons, were selected for the
present study. Both extracted endodontically treated maxillary and
mandibular teeth were included. The 400 collected teeth were divided
into two main groups of equal size: fractured and intact roots. The number
of root samples was based on sample size calculation using Epicalc
program version 1.02 assuming a power of 95% and alpha= 0.05, with
reference to previous research [14]. Root fracture was artificially created in
the horizontal plane to simulate incomplete root fractures, with the aid of a
diamond cutting disc (#2, 0.15 × 22mm). All teeth were radiographed with
digital radiographic image plate (photostimulable storage phosphor plate)
size 2 of the VistaScan system (Dürr Dental AG, Beitigheim-Bissingen,
Germany) and processed digitally through DBSWIN software.

Data preparation
Processing configuration. The radiographic images constituted the dataset
under study. This set of images was configured for testing using the five
identified AI models, namely: VGG16, VGG19, ResNet50, DenseNet121, and
DenseNet169. Data handling constituted a balanced distribution of both
fractured and unfractured, which guards against potential bias and stresses
transparency in the research process. The software used for graph
generation was Matplotlib using the Python library. For this research, a
standardized process of the configurations across the five models was
implemented. These configurations were carefully selected to promote
consistent and effective training across all the models, ensuring robustness
and facilitating accurate root fracture detection.
The basic configuration of this dataset was deployed, such as the

number of epochs fixed at 50 epochs for consistent training. Moreover, the
study employed regularization techniques in the form of dropout with a
value of 0.3 to mitigate overfitting during training. Early stopping was
implemented with a patience of 15 epochs, terminating training if
validation performance did not improve. Additionally, the “Reduce
Learning on Plateau” strategy was applied after 10 epochs, setting a
minimum learning rate of 0.001 and a reduction factor of 0.2 to enhance
convergence. For weight handling, the best weights were stored and
saved to prevent degradation of training versus validation loss and to

ensure optimal performance. It is worth mentioning that all the images
utilized in the five pre-trained models were resized to a uniform shape of
224 × 224 × 3 pixels for consistency in terms of the input dimensions.
Finally, Adam optimizer was utilized with a beta1 value of 0.9 and a beta2
value of 0.999 to obtain a faster convergence rate.

AI pre-trained models
VGG16 & VGG19: The pre-trained model “VGG” stands for The Visual
Geometry Group. These models were used under the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC). It consisted of 16 and 19
layers respectively. Their uniform architecture involved the consistent use
of 3 × 3 filters which could be suitable for capturing the minute details
required in dental X-rays.

ResNet50: It is comprised of 50 layers and consists of a combination of
convolutional layers, batch normalization, and residual blocks. In this study,
the residual learning was dental fractures that may present subtle
distinctions from healthy teeth, making them challenging to detect.

DenseNet121 and DenseNet169: They are both CNN architectures
that belong to the family of “Densely Connected Convolutional Networks”
(DenseNets). In the context of dental fracture detection, where the fusion
of low-level features such as edges with high-level patterns is critical, this
property enhances the accuracy of fracture identification.

Model training and deployment
The voting system. To address the challenge of overfitting, commonly
referred to as the bias/variance tradeoff, a technique known as “ensemble
methods” was employed. Multiple learning algorithms were deployed to
obtain better predictive performance than could be obtained from
deploying a single model. For a proper voting mechanism, an odd
number of models was typically set for use, e.g., 3, 5, or 7 combined. The
more models used, the more computational power needs to be analyzed
and the more time is consumed.

System architecture. The presented diagram in Fig. 1 illustrates the
sequential flow of data within the research framework. The dataset
acquisition stage commenced, followed by the data preparation stage
aimed at understanding the dataset and preparing it for export to the
model. Subsequently, the data were subjected to stages of feature
engineering and cleaning stages to enhance their quality and relevance.
The first step in this phase was “Data normalization 1/255.0,” which
standardized the data. This was succeeded by “Data resizing 224 × 224 × 3
pixels,” a step that ensured uniformity in the input dimensions of the data.
Once these preprocessing steps were completed, the data were
subsequently fed as input into the five algorithmic models for analysis, a
pivotal step for predictive modeling.
The architecture displays various stages of the system. It denotes the

output of each stage as an input for the following one in a schematic way.
The first stage “data acquisition” was an input for the data preparation
stage, and then the cleaned data was utilized in the model training stage.
Finally, the voting model was deployed producing the final output result.

Testing the diagnostic performance of the trained model
Finally, the output data from the algorithmic models were advanced to the
concluding stage, characterized by the “voting classifier with a majority of
voting (50%+ 1 votes).” In this stage, the outputs of the models were
aggregated through a voting mechanism, contributing to the final
decision-making process. The diagram effectively delineates the progres-
sion of the data through these crucial stages.
Within the domain of pattern recognition and machine learning tasks

such as object detection and classification, evaluating the performance of
data centers on the critical metrics of precision and recall. Precision also
referred to as the PPV, measures the proportion of relevant instances
among the retrieved instances. The diagnostic performance of the trained
model was evaluated with precision and recall. The final equation defines
the PPV as a function of the true positive (TP) divided by the total number
of retrieved instances of TP added to false positive (FP). Whereas in the
recall function, or the sensitivity, which signifies the fraction of relevant
instances that were successfully retrieved, the TP is divided by the number
of total retrieved instances which included the TP added to the false
negative (FN) value. Both precision and recall functions are fundamentally
rooted in the concept of relevance and are widely utilized for this purpose.
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RESULTS
Pretrained models: VGG16 and VGG19
The utilization of the VGG16 architecture yielded promising
outcomes in the realm of dental fracture detection. The model
demonstrated high performance during training with a notably
low training loss of 0.09% and a validation loss of 0.18%,
showcasing a strong alignment with the provided data without
any apparent signs of overfitting. When assessing its ability to
discern fractured teeth, the model showed a high specificity of
93.6%, ensuring accurate identification of healthy teeth. Moreover,
it exhibited a sensitivity of 89.3% for the fractured class,
identifying a significant portion of actual fractures. The PPV for
fractures was calculated at 93.3%, emphasizing a high likelihood
that the flagged teeth were genuinely fractured. In the context of
nonfractured teeth, the model’s specificity reached 89.36%, and
the sensitivity was 93.6%. The PPV for the nonfractured class was
at 89.7%, underscoring the model’s ability to both detect and
confirm the absence of fractures as shown in Fig. 2A. The receiver
operating characteristic (ROC) curve’s value was 0.99 as shown in
Fig. 3A. However, in VGG19, the training loss (0.55%) and
validation loss (0.61%) highlighted the potential for overfitting.
Notably, there was a low sensitivity of 0.447 for fractured cases,
whereas a higher sensitivity of 0.745 was observed for unfractured
cases. Additionally, there was a high specificity of 0.745 for
fractured cases and a lower specificity of 0.447 for unfractured
cases. These values translated to a predictive value (PPV) of 0.636
for fractured cases and 0.574 for unfractured cases as shown in
Fig. 2B. The ROC curve’s value for VGG19 model was 0.74,
underscoring the effectiveness of VGG16 compared to its deeper
counterpart as shown in Fig. 3B.

Pretrained model: ResNet50
When ResNet50 was utilized for root fracture detection, the
resulting graph demonstrated that the model grappled with
substantial noise, resulting in a specificity of 0.85 for the fractured
class and 0.425 for the unfractured class as shown in Fig. 2C. This
situation signified a model bias toward identifying unfractured
cases rather than fractured cases. Additionally, this bias was
evident in the ROC curve values shown in Fig. 3C, further
highlighting the need for fine-tuning, and addressing imbalances
to achieve a more accurate detection of both fractured and
unfractured cases. This approach tackled the problem of over-
fitting but suffered from high noise and bias.

Pretrained models: DenseNet121 and DenseNet169
DenseNet121 emerged as an effective solution for addressing
both overfitting and noise issues in the present root fracture
detection model. It achieved a well-balanced metric between
training and validation losses, with values of 0.11 and 0.23,

respectively. These results had a notable impact on the model’s
sensitivity and specificity, which reached 0.893 and 0.936,
respectively. Consequently, the PPVs for fractured and unfractured
cases were 0.933 and 0.897, respectively as shown in Fig. 2D.
However, the ROC curve’s value for DenseNet121 model was 0.98,
confirming its effectiveness as shown in Fig. 3D.
On the other hand, for the DensNet169 model, the gap

between the training and validation losses noticeably narrowed,
with values of 0.112% and 0.211%, respectively. Convergence
significantly enhanced the model’s generalization capability,
resulting in an improved sensitivity of 0.872 and specificity of
0.936. Consequently, the PPVs increased, reaching 0.932 for
fractured cases and 0.88 for unfractured cases as shown in Fig. 2E.
Whereas the ROC curve’s value for DenseNet169 model was 0.98
as shown in Fig. 3E. The cumulative results of the five AI models
presented as training loss, validation loss, sensitivity, specificity,
PPV, and ROC values are summarized in Table 1.
The different models revealed different and inconsistent results.

The voting system was implemented as explained in the system
architecture to provide a concrete result for a decision in every
data image as shown in Fig. 4.

DISCUSSION
The present study evaluated the efficiency of AI for accurately
detecting dental root fracture lines in digital 2D dental periapical
radiograph. This study introduces an AI-based voting system
that deployed five different algorithms to overcome individual
potential discrepancies between different models. Such an
approach empowers low-experienced and undergraduate dentists
which tackles the poor performance and reproducibility encoun-
tered in detecting root fractures [1].
Current literature supported utilizing AI in the dental healthcare

system, however with particular attention to its limitations [17].
The recent literature valued the importance of ongoing develop-
ments, which can significantly impact diagnosis and decision
making in dentistry [18]. Health information systems are a
subsidiary of the domain of Information Systems that can
significantly support in the process of diagnosis in the dental
section. When using customized tools or implementing analysis, it
is referred to as “Health Informatics” [19]. Using Artificial
intelligence as tools to perform the analysis is commonly used
in almost every intelligent system.
In the present study, five state-of-the-art AI algorithms: VGG16,

VGG19, ResNet50, DenseNet121, and DenseNet169 were selected.
These models were chosen for their robustness, high performance,
and proven efficacy in image classification tasks. VGG16 and
VGG19 are chosen for their simplicity and depth, while ResNet50
has demonstrated high accuracy in detecting vertical root

Fig. 1 Schematic diagram for the AI-based system architecture. The proposed AI-based system is composed of three stages: First, the
preparation of the dataset, then the models training stage, finally the model development stage (outcomes).
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fractures in CBCT scans [20]. DenseNet169 and DenseNet121
leverage dense connectivity patterns to enhance feature reuse
and parameter efficiency, making them ideal choices for image
analysis objectives [21, 22].
In contrast to training and validating the deep learning models

on radiographic images retrieved from real world context (i.e.
retrieved from patients) [23] or in ex vitro models that highly
mimic it as fixing the teeth in cadaver jaws [24], unmounted

extracted teeth were utilized. This choice was based on simplifying
the testing model, reducing the noise produced from surrounding
structures and emphasizing on accuracy of detection in consistent
context. However, this ex-vivo research design does not closely
correlate to the clinical settings, which encounter limitations in
generalizing the results. This is due in part to the restricted availability
of patient data in real-world context. Nonetheless, recent evidence
revealed improved diagnostic performance when the data set was

Fig. 2 The Training loss versus validation loss for the five AI models. A VGG16, (B) VGG19, (C) ResNet50, (D) DenseNet121, and (E)
DenseNet169. The graphs demonstrated the outperformance of VGG16, DenseNet121 and DenseNet169 over VGG19 and RensNet50. The
blue line indicates the training loss, while the orange line represents the validation loss. The blue line decreases steadily over time, indicating
that the model is learning and improving its performance on the training data. The closer the two curves are to each other, the better as it
indicates that the network achieved better performance on the training dataset. The plotted graph suggests that the model’s performance on
unseen validation data starts to deteriorate, which could be an indication of overfitting in VGG19 and ResNet50. The ResNet50 model shows a
risk of overfitting compared to the VGG19 model. Better performance is noticed in both DenseNet121 and DenseNet169 models.
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mixed with extracted teeth from in vitro model, underscoring the
viability of such approach [20].
Data sets augmentations are commonly introduced to improve

the generalization of the involved model. Proposed methods to
introduce such variations include and are not limited to rotating,
flipping, contrast adjustment and noise introduction [25].

However, such a strategy was not recruited despite the relatively
small sample size for the training data sets to avoid errors like
overfitting [26]. Data augmentation can retain existing biases and
imbalances from the original dataset and may not consistently
improve results. Moreover, inappropriate or excessive augmentation
can introduce noise and artifacts, potentially degrading the model’s

Fig. 3 The ROC values for the five AI models. A VGG16, (B) VGG19, (C) ResNet50, (D) DenseNet121, and (E) DenseNet169. The curve shows
the relationship between the true positive rate (TPR) on the Y axis and the false positive rate (FPR) on the X axis for different classification
thresholds. A higher AUC value suggests that the model has a better ability to discriminate between fractured and unfractured teeth. The
graphs demonstrated the lower performance of VGG19 and ResNet50 and the outperformance of VGG16, DenseNet121 and the ROC values
approaching 1 (i.e. 100%).
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performance, similar to the limitations seen with synthetically
produced datasets [27]. Therefore, the study would reflect more
reliable results mimicking the real time context. At the heart of the
methodology lies the utilization of the datasets, which were split into
training and testing/validation sets, at ratio of 80:20. Adopting 80% for
training provides the model with ample training data to learn patterns
and generalize effectively, while reserving 20% for validation/testing
allows for an objective assessment of performance, addressing
overfitting and underfitting issues [28], in accordance with the best
diagnostic performance and in alignment with standard machine
learning practices [3, 14].
Matplotlib software, a plotting library for Python, was used in

the present study to generate curves for visualization purposes of
the model’s performance metrics output. Its flexibility and
granular control supported in production of clear, publication-
quality graphs that provided an intuitive understanding of the
model’s efficacy across diverse evaluation parameters [29]. The
current study employed the AI-based system for dental fracture
detection based on 2D periapical radiographs of extracted teeth.
Despite the limitation of two-dimensional projections, they are
cost-effective and readily accessible diagnostic tools.
The present findings are in line with the previous work by

Kositbowornchai et al. which was built on ex vitro model
radiographic images and outlined the efficiency of neural
networks for fracture detection. Although overall accuracy was
varying over different parameters of training and test sample size,
it could reach up to 95.7% [3].

The proven reliability of the AI-based system for root fracture
detection in the current study was in accordance with the
previous work of Guo et al. who incorporated the deep learning
algorithm for crack detection and gained accuracy exceeding 90%
in a step forward in diagnosis and decision-making automation
[30]. In the former scholar, the neural network was tested on a
hundred photographic optical images rather than radiographic
images with a resolution of 1920 × 1080-pixel.
Noteworthy, the present results revealed the inconsistency

between the five models, demonstrating varying values of PPV
and ROC. Among the models, the DenseNet121 and DenseNet169
models achieved the highest sensitivity and specificity rates,
making them the most effective models for both detecting
fractures and identifying unfractured roots. Whereas the VGG19
and ResNet50 models showed comparable performance and were
generally inferior to the other models. Moreover, ResNet50 and
VGG16 demonstrated a bias towards identifying the fractured
roots. The VGG16, DenseNet169, and DenseNet121 models
exhibited high values approaching 100% in contrast to the rest
with values ranging from as low as 42% for sensitivity of detecting
fractured roots in ResNet50 model.
These findings were contradicted by Day et al. as the best

performance was manifested by ResNet50 and the low perfor-
mance by VGG16 [31]. This contradiction could be attributed to
different methodologies which aimed for detection of dental
carious in dental panoramic radiographs in contrary to the
recruited-in-hand research strategy. The former study utilized

Fig. 4 The voting system for final prediction for the 5 models. The result of each AI model for the image both for fractured and unfractured
roots is given, followed by the voting decision of the AI voting mechanism. In the fractured tooth sample (on the left side), three models voted
as fractured (VGG16, Dense Net121, and DenseNet169) and thus the final decision was “detected as fractured”. In the unfractured sample (on
the right side), two models voted as fractured (VGG16 and VGG19) and thus the final decision was “detected as unfractured”. The arrow
represents the fracture line.

Table 1. The collective results of the five AI models; VGG16, VGG19, ResNet50, DenseNet121, and DenseNet169.

Pretrained models Training loss Validation loss Fractured roots Unfractured roots ROC

Sensitivity Specificity PPV Sensitivity Specificity PPV

VGG16 0.09% 0.18% 0.870 1.000 1.000 1.000 0.870 0.886 0.990

VGG19 0.545% 0.61% 0.447 0.745 0.636 0.745 0.447 0.574 0.740

ResNetNet50 0.61% 0.63% 0.426 0.851 0.740 0.851 0.426 0.597 0.740

DenseNet121 0.11% 0.23% 0.894 0.936 0.933 0.936 0.894 0.898 0.980

DenseNet169 0.11% 0.21% 0.872 0.936 0.932 0.936 0.872 0.880 0.980

The data presented as training and validation loss (value in percentage), ROC value, sensitivity, specificity, and PPV values both for fractured and unfractured
roots.
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the Dental Carious Detection Net (DCDNet) model with a complex
architecture and Multi-Predicted Output (MPO) structure, where
the AI models were deployed as blocks in “bottlenecks” structure.
This resulted in varying precision and recall for different types of
carious lesions where the cervical carious demonstrated the
lowest values. Such discrepancies highlighted differences in
system architecture and data set complexities between the two
studies.
On the other hand, these results were contradicted by the

results of Johari et al, where the accuracy, selectivity, and
specificity were 70%, 97.7%, and 67.7% respectively in periapical
radiographs [15]. This could be attributed to the differences in
methodologies that aimed to validate the AI algorithms for the
detection of vertical rather than horizontal root fracture, which
encounter challenges in detection on periapical radiographs.
Noteworthy, their employed AI model was the probabilistic neural
network, trained on a significantly smaller dataset of endodonti-
cally treated teeth (120 roots), in contrast to the CNN employed in
the current study, which was trained, tested and validated using a
larger dataset comprising 400 root images. The discrepancies
between the results of Johari et al and ours are mainly reflected in
both accuracy and specificity. Moreover, the intended algorithms
presented, though low, a degree of false positive prediction, which
was attributed to the anatomical configurations of roots like
grooves and invaginations [13].
Additionally, in contradiction to the present findings, a former

study reported superiority of ResNet50 over both VGG19 and
DenseNet169, where accuracy, sensitivity, and specificity were
97.8%, 97.0%, and 98.5% while 74%, 42.6%, and 85% in the current
study [15]. A possible explanation is the discrepancies in
methodologies, where the authors conducted a retrospective
evaluation on CBCT images. The surpassing diagnostic perfor-
mance of 3D image modality over digital periapical radiographs in
AI-based root fracture detection model was well-proven by Johari
et al. [14].
Herein, the significance of the voting system is emphasized

where the voting mechanism deployed the five models for
obtaining a final decision. This approach drew inspiration from the
conscious voting mechanism employed by radiologists in real-
world medical practice. By aggregating the insights from diverse
models, model assembling leverages their collective wisdom to
achieve more robust and accurate predictions, effectively addres-
sing the challenges posed by overfitting in machine learning
applications [26]. Similarly, Shrestha et al. have comprehensively
examined algorithmic fairness across various domains and
advocated for voting mechanisms to facilitate democratic
decision-making [32].
Therefore, the combined decision is obtained by a majority vote

of the individual AI classifiers. This explains the reason for having
an odd number of classifiers in order to get a decisive outcome
[33]. The number of the classifiers (n) could be equal to 3, 5, 7.
However, the more the n, the more computing power, and the
fewer the n the less reliability of the results.
The current findings agreed with the demonstrated superiority

of the voting system by Shimpi et al for the detection of oral
cancers [27]. Running the voting algorithm involved reflected an
innovative prospective for the present study as a step forward in
automation for root fracture detection.
The present study was conducted in an in vitro setting rather

than a clinical environment, which limits the applicability of the
findings to real-world scenarios. The use of artificially created
fractures may not accurately represent the complexity and
variability of fracture lines encountered in clinical practice. Future
studies should focus on validating these AI models in clinical
settings to ensure their effectiveness and reliability in real-world
conditions. Additionally, incorporating and implementing larger
data sets as well as training on images of multirooted teeth could
enhance the robustness and generalizability of the AI systems.

Further research should also explore the integration of these
voting-based AI systems into routine dental diagnostic workflows.

CONCLUSION
Within the limitations of the present study, the integration of AI-
based system offers a promising approach to root fracture
detection in periapical radiographs. The evaluation of the five
models—VGG16, VGG19, ResNet50, DenseNet121, and Dense-
Net169—revealed performance discrepancies that could be
addressed through a voting mechanism that enhances detection
accuracy, showing potential for automated decision making.

DATA AVAILABILITY
The datasets used and analyzed during the current study are available from the
corresponding author on reasonable request.
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