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INTRODUCTION: Sugar is omnipresent in the current food environment and sugar consumption has drastically risen over the past
century. Extensive evidence highlights the negative health consequences of consuming excess dietary sugars, leading the World
Health Organization (WHO) and the American Heart Association (AHA) to devise guidelines to restrict sugar intake. According to the
WHO’s Global Oral Health Status Report of 2022, oral diseases and severe periodontitis are a massive public health problem, and
dietary sugars are a modifiable risk factor.
METHODS: We conducted a literature review using key databases to summarise the health effects of excessive sugar consumption
and their potential role in periodontal inflammation.
RESULTS AND CONCLUSION: Available evidence suggests that excess dietary fructose and sucrose can cause low-grade systemic
inflammation; and induce dysbiosis in both gut and the oral microbiota. Also, dietary sugar is potentially addictive and hypercaloric
and its overconsumption can lead to obesity, metabolic syndrome, and other risk factors for periodontal inflammation. Hence, an
unbalanced diet with excess dietary sugars holds the potential to initiate and aggravate periodontal inflammation. In the modern
food environment that enables and facilitates a high-sugar diet, adopting a diverse diet and restricting sugar intake according to
WHO and AHA guidelines seem beneficial to systemic and periodontal health. Since clinical evidence is limited, future research
should study the effectiveness of dietary interventions that control sugar consumption in preventing and managing the global
public health problem of periodontal inflammation.
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INTRODUCTION
Optimal nutrition through a diverse and well-balanced diet is vital
to human health. The chronic non-communicable disease (NCD)
burden of modern times is largely linked to suboptimal diet and
nutrition [1]. Carbohydrates are one of the major macronutrients
integral to an optimal diet and their impact on health and disease
has been discussed extensively in the scientific literature [2, 3].
Dietary sugars—a widely consumed and important source of
carbohydrates—have recently received attention for their impact
on human health and disease.
Sugars are simple carbohydrates and can be monosaccharides,

disaccharides, or sugar alcohols [4]. Glucose and fructose are the
most common monosaccharides. Both glucose and fructose have
the same chemistry—C6H12O6— but differ in structure [5, 6].
These monosaccharides naturally occur in fruits in high
quantities. Often, fructose is considered the sweetest of the
simple sugars (depending on the form of consumption) with a
higher relative sweetness over other mono and disaccharides
[4, 7–9]. Sucrose is the most common disaccharide predominant
in cane and beet sugar and is broken down to its constituent
monosaccharides—glucose and fructose—in the intestinal
mucosa [10]. Glucose can be readily used by all cells for energy.
Dietary fructose is metabolised in the liver, which is either
converted to lactate (for oxidation in tissues) or glucose (for use
or storage) [11, 12].

In prehistoric times, natural sweetness was only found in energy
and nutrient-rich food sources (fruit, dates, and honey). Hence, the
pleasant taste of sweetness means an easily digestible, instant
source of energy and an absence of harmful toxins. This led to a
ubiquitous preference for sweet taste among humans [13, 14].
Sugar was first extracted from cane juice as granular crystals in
India around 500 BC [15]. The Industrial Revolution improved the
purity of sugar and the efficiency of sugar production, making it a
household commodity. Since then, the worldwide consumption of
sugar has skyrocketed and continues in the 21st century [16]. In
the modern world, sugar is omnipresent in the form of ultra-
processed food and sugar-sweetened beverages [17]. They are
widely used to enhance the palatability of processed and
packaged food and extend its shelf life. An average American
consumes 17 teaspoons (approximately 68 grams) of added sugar
daily [18, 19]. India is the highest sugar consumer in the world
where an average person consumes approximately 18 kilograms
of sugar per year [20, 21]. A 2019 study found that in
approximately 60% of the population of the United Kingdom,
the total energy from free-sugar intake was 12.4% [22].
Consumption of a diet high in sugars is linked to systemic

inflammation, gut dysbiosis, metabolic syndrome, and numerous
chronic non-communicable diseases (NCDs) of the modern era
[23–27]. The American Heart Association (AHA) recommends
restricting the consumption of added sugars (sugars added during
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processing and preparation of food) to less than 36 grams/day for
men and to less than 25 grams/day for women [4, 28]. The 2015
World Health Organization (WHO) guideline recommends limiting
the intake of free sugars (i.e. total added sugars plus the inherent
natural sugars of the food) throughout life and limiting free sugars
to less than 10% of the total energy consumption [4, 29].
Oral diseases (a collective term representing tooth decay,

periodontitis, tooth loss, and oral cancer) are the most common
diseases that affect humans and a global public health problem
affecting around 3.5 billion people across the world [30, 31].
The WHO’s Global Oral Health Status Report of 2022 puts the
gravity of the problem into perspective; the global prevalence
of oral diseases is greater than the combined global prevalence
of the five major NCDs (neurodegenerative diseases, type-2
diabetes mellitus, cardiovascular disease, chronic respiratory
diseases, and cancer) by a billion cases [31]. The highest number
of cases of oral diseases (excluding cancers) are in the Southeast
Asian region of the world which is the highest consumer of sugar
globally [31, 32]. High sugar consumption, along with tobacco and
alcohol abuse, are key modifiable risk factors for preventing oral
diseases [30, 31].

Oral diseases and chronic NCDs share several common risk
factors and sugar consumption is of particular concern [30, 31].
It has been proposed to redefine the current non-communicable
disease framework by including oral disease as an NCD and
sugar as a common risk factor for NCDs [24]; the proposed 6×6
approach consists of six NCDs (oral diseases, mental disorders
and conditions, cardiovascular disease, diabetes, cancer, and
chronic respiratory diseases) with six common risk factors
(sugars, air pollution, tobacco, alcohol, unhealthy diet, and
sedentary lifestyle) [24].
Severe periodontitis has a global prevalence of 19%, with a

billion cases worldwide in 2019 [31]. There is mounting evidence
that a high-sugar, ultra-processed diet increases the risk of
periodontal inflammation [33–35]. Periodontitis is the inflamma-
tion of tooth-anchoring tissues (the periodontium) due to
dysbiosis of the periodontal microbiota, leading to the gradual
loss of tooth support (Fig. 1). Periodontal health is inextricably
linked to systemic health and several lifestyle factors play an
important yet underestimated role in periodontitis [36–38].
Among them, the role of dietary sugars in periodontal inflamma-
tion has not been discussed extensively in the literature. Hence,

Fig. 1 Periodontal inflammation: an overview. The periodontium is the structural apparatus that provides support and anchorage to the
tooth. Dysbiosis of the biofilm that accumulates on the tooth elicits an altered immune response in the form of a non-resolving
hyperinflammation. Prolonged inflammation and oxidative stress (due to neutrophil oxidative killing) in the periodontium leads to tissue
damage and destruction that manifests as periodontitis (pocket formation, attachment loss, and bone loss); gradually the tooth loses support
and if inflammation is untreated, results in tooth loss. Periodontitis is influenced by dysbiosis-inducing and pro-inflammatory lifestyle risk
factors (unhealthy diet, stress, smoking) and systemic risk factors like obesity, diabetes, rheumatoid arthritis, and non-alcoholic fatty liver
disease (NAFLD); periodontitis and systemic risk factors have a two-way relationship through low-grade systemic inflammation. Periodontitis
also results in extra-oral co-morbidities such as cardiovascular disease (CVD), inflammatory bowel disease (IBD), and neurodegenerative
disease. The optimal management of periodontitis should focus on the removal of dysbiotic biofilm as well as the elimination of dysbiosis-
inducing and pro-inflammatory lifestyle and systemic risk factors. Along with daily biofilm control through brushing and flossing, the optimal
prevention strategy should also advocate for a healthy diet, smoking cessation, and a healthy lifestyle with good systemic health. (Created in
BioRender. Biorender, P. (2024) BioRender.com/x62x671).
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this review aims to summarise the effects of consuming excess
dietary sugars (fructose and sucrose) on periodontal inflammation
and its relevance in preventing and managing the global public
health problem of periodontitis.

METHODS
We adopted a non-systematic, narrative approach to review the
existing literature on the health consequences of consuming
excess dietary sugars and their potential role in periodontal
inflammation. We used the PubMed and SCOPUS databases to
search with the keywords “Sugar” OR “Fructose” OR “Sucrose” AND
“Inflammation” OR “Periodontal Inflammation” OR “Dysbiosis” OR
“Periodontitis” OR “Health”. We summarised the plausible
mechanisms relating to excess dietary sugars and systemic and
periodontal inflammation using relevant articles.

Sugar and inflammation
Inflammation is a host defence response against a wide range of
noxious stimuli. It is mounted by the immune system, which holds
a diverse army of cells and proteins intricately connected in a
complex network of physiological and biochemical processes,
functioning to protect the host [39, 40]. Unregulated or
unresolved chronic inflammation can potentially lead to pathol-
ogy, making inflammation a double-edged sword [41]. Low-grade
systemic chronic inflammation is a common factor in several of
the most prevalent NCDs like cardiovascular disease (CVD),
diabetes mellitus (DM), neurodegenerative diseases, cancer, and
metabolic syndrome [42]. Diet, lifestyle, and microbiome dysbiosis
are major contributors to systemic chronic inflammation [42].
Current evidence indicates that excess dietary fructose can induce
chronic low-grade systemic inflammation through several
mechanisms [23, 43].

Inflammation due to gut barrier dysfunction. Permeability is a
normal homoeostatic feature of the intestinal mucosal barrier
(epithelium and the mucus layer). An increased intestinal
permeability disrupts homoeostasis and leads to the transfer of
bacteria and their products into the host causing endotoxemia
and inflammation [44]. Consuming excess sucrose and fructose
increases intestinal permeability and causes endotoxemia and
inflammation [45–49]. The consumed fructose in the intestine is
absorbed into the hepatic portal vein and reaches the liver for
metabolism. Most of the fructose is absorbed into the intestinal
epithelial cells through GLUT5 (fructose transporter type 5) and is
metabolised by ketohexokinase. This process causes stress in the
endoplasmic reticulum and leads to an increased intestinal
permeability due to the downregulation of tight junction proteins
[43]. Also, a portion of unabsorbed fructose in the small intestine
influences the gut microbiota; excess fructose causes an increase
in gram-negative bacteria and lipopolysaccharide (LPS) levels in
the intestinal environment. LPS activates the macrophages to
release pro-inflammatory cytokines that affect the tight junction
proteins to cause increased intestinal permeability leading to the
entry of endotoxins into the portal vein [45, 50]. The fructose-
induced disruption of nitric oxide homoeostasis in the intestinal
epithelium also plays a role in the loss of tight junctions and
barrier dysfunction [50].
Gut barrier dysfunction causes the bacterial endotoxin to

translocate to the liver, activating toll-like receptor 4 (TLR-4) of
the Kupffer cells (resident liver macrophages). The activated
Kupffer cells, through the nuclear factor kappa-B (NF-κB) pathway,
produce pro-inflammatory cytokines like interleukin-1β (IL- 1β)
and tumour necrosis factor-α (TNF-α). This cascade causes hepatic
insulin resistance and the formation and accumulation of fat in the
liver leading to hepatic steatosis and non-alcoholic fatty liver
disease (NAFLD) [45, 46, 49–52]. Hepatic steatosis and NAFLD
increase circulating pro-inflammatory cytokines like IL-1β, TNF-α,

IL-6, and the acute phase C-reactive protein (CRP), leading to
chronic low-grade systemic inflammation. The pro-inflammatory
state of NAFLD has system-wide effects and is associated with
metabolic syndrome, type-2 diabetes mellitus (T2DM), and CVD
[53–55]. This pro-inflammatory state triggers the adipose tissue to
produce adipokines that further exacerbate NAFLD and systemic
inflammation thereby initiating a vicious cycle [53, 54]. Hence,
excess dietary sugars can drive inflammation by activating TLR-4
and initiating NAFLD [45, 46, 49–52, 56, 57].

Inflammation and oxidative stress due to immune dysfunction.
Excessive consumption of fructose is shown to cause inflamma-
tion by directly affecting the immune system; a sugar-rich diet
increases the production of pro-inflammatory cytokines from
macrophages through TLR-4 activation, increases tissue infiltration
of macrophages and neutrophils, increases the Th17/Treg cell ratio
and promotes inflammation by augmenting Th17 cell-mediated
responses [23, 58–60]. Fructose, through AGE-RAGE interactions,
causes a pro-inflammatory state [61]; high levels of fructose cause
the accumulation of advanced glycation end-products (AGEs) that
activate the receptor for advanced glycation end-products (RAGE)
and lead to pro-inflammatory dendritic cells that produce IL-1β
and IL-6 [62]. Also, high fructose consumption led to systemic
oxidative stress in rats; there was an increase in reactive oxygen
species (ROS) in blood mononuclear cells and elevated IL-12 and
IL-6 in the serum following high fructose consumption for
12 weeks [63].
Metabolites of fructose activate the immune system and elicit

pro-inflammatory responses [43, 64]. Uric acid, a byproduct of
fructose metabolism, activates nicotinamide adenine dinucleotide
oxidase (NADPH oxidase) and increases the production of ROS
leading to mitochondrial oxidative stress [43, 65]. This oxidative
stress activates the NLRP3 inflammasome which recruits caspase-1
and increases the production of IL-1β [43, 66]. Uric acid also
activates the NF-κB pathway to produce pro-inflammatory
cytokines [43]. Lactate is another metabolite that accumulates
during a high-fructose diet and promotes chronic inflammation
[43]. Lactate promotes the formation of the Th17 subset, induces
the production of IL-17, and interferes with the killing capacity of
CD8+ T lymphocytes [43, 67, 68]. High fructose consumption
caused the accumulation of NF-κB and IL-1β and reduced the
antioxidant capacity in female rats [69]. Overall, high dietary
fructose intake induces oxidative stress and low-grade systemic
inflammation and puts the body in a pro-inflammatory state
[23, 43, 58, 64]. It is important to note that chronic low-grade
systemic inflammation and periodontitis have a bi-directional
relationship [70, 71].

Sugar and periodontal inflammation. A diet high in sugars is
associated with periodontal inflammation [33, 34, 72–74]. An
observational study found that an excessive intake of added
sugars was associated with periodontal disease in adolescents
[33]. A recent systematic review concluded that excessive
consumption of free sugars was positively associated with
periodontal disease, but also reported that the evidence is limited
due to the study designs [72]. An analysis of NHANES data
(1988–1994) showed that frequent consumption of added sugars
was positively associated with periodontal disease [34]. Consum-
ing added sugars beyond the WHO and AHA recommended limit
was associated with a higher prevalence of dental decay and
inflammatory periodontal disease in Brazilian adolescents [73, 74].
A 2023 systematic review concluded that sugar-sweetened
beverage consumption increases the risk of gingival and period-
ontal inflammation [75]. Another 2023 meta-analysis concluded
that restricting free-sugar intake reduces gingival inflammation
[76]. Hence, high dietary sugar intake can exacerbate periodontal
inflammation and detrimentally affect periodontal health, possibly
through low-grade systemic inflammation induced by gut barrier
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dysfunction, NAFLD and immune dysfunction stemming from a
high-sugar diet. Also, gut barrier dysfunction has a bi-directional
relationship with periodontal inflammation through the oral-gut
axis [77, 78].

Sugar-induced microbial dysbiosis
The human microbiome is critical to health and disease [79].
“Microbiome” is a term that represents all the microbes that reside
in the human body (microbiota) along with their genomic content
[80]. Humans have evolved to co-exist with microorganisms
symbiotically and live in a finely balanced relationship with the
microbiota. The most diverse microbiomes in the human body are
in the gut and the oral cavity [81, 82]. A change in the composition
and the diversity of the microbiota that leads to the disruption of
their symbiotic balance with the host is called dysbiosis [83]. Diet
and lifestyle, among several other factors, contribute to the
dysbiosis of the microbiota leading to pathological states [84].

Gut microbial dysbiosis. The gut microbiota mainly comprises the
phyla: Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and
Verrucomicrobia [26, 45]. The gut microbiota produces beneficial
short-chain fatty acids (SCFAs) like butyrate and propionate that
play an important role in gut barrier integrity and mucosal
immunity [85]. Dysbiosis of the gut microbiota has numerous local
and systemic consequences and is tied to several systemic
diseases [86]. A high-sugar diet induces gut dysbiosis by
increasing the abundance of Bacteroidetes and Proteobacteria
and decreasing the abundance of Firmicutes and SCFA-producing
bacteria [26, 43, 45, 85]. This alteration increases intestinal
permeability, endotoxin translocation and inflammation
[43, 85, 87]. In rats, 10% fructose feeding for four weeks showed
a decrease in Firmicutes, an increase in Bacteroidetes and
Proteobacteria, and a decrease in SCFA-producing bacteria [88].
Rats on a sucrose-rich diet showed an increase in the Bacter-
oidetes/Firmicutes ratio and a decrease in α diversity. There was
also a decrease in SCFAs along with lipid accumulation in
the blood and liver [89]. High fructose consumption in
rats (10.5g/kg/day) increased the abundance of Lachnospira,
Parasutterella, and Blantia with no change in the diversity of the
microbiota; increased uric acid levels; increased IL-6 and TNF-α;
decreased IL-10; decreased the expression of intestinal tight
junction proteins; led to increased intestinal permeability and
caused lipid accumulation in the liver [90]. Study participants
consuming high-fructose syrup (100g/day) showed increased
Bacteroidetes, decreased Firmicutes, and reduced SCFA-producing
bacteria [91]. Interestingly, consuming similar levels of fructose
(100g/day) entirely through fruits positively affected the gut
microbiota [91].

Oral microbial dysbiosis. The oral microbiome is a diverse
community of around 700 different species of bacteria, predomi-
nantly of the phyla: Actinobacteria, Bacteroidetes, Firmicutes,
Fusobacteria, Proteobacteria, Saccharibacteria, and Spirochaetota
[82]. Emerging evidence suggests that excessive intake of dietary
sugars can push the oral microbiome towards dysbiosis. Short-
term, 10% sucrose rinses (14 days) caused a loss of α-diversity and
increased the abundance of Actinomyces and Corynebacterium in
the supragingival microbiota [92]. An in-vitro study showed that
2% sucrose treatment could disrupt the balance between alkali
and acid-producing bacteria to cause dysbiosis in a multi-species
biofilm model [93]. Also, sucrose incubation reduced oral
microbiota diversity and increased the abundance of Streptococcus
species [94]. Higher sucrose intake and high-glycaemic load food
items decreased the oral microbiota diversity in post-menopausal
women [95]. A recent systematic review concluded that excessive
sugar intake significantly reduced the diversity and caused
dysbiosis of the oral microbiota [96]. However, the quality of the
systematic review was reportedly questionable [97]. Since the

evidence regarding sugars and dysbiosis of the oral microbiota is
not robust, future research needs to study further the micro-
biological consequences of high-sugar intake in the oral cavity.

The addictive and hypercaloric sugar
Addiction potential of sugar. Sweet taste is one of the most
intense sensory experiences of humans and current evidence
indicates that excess dietary sugars are potentially addictive [98].
Addiction—also known as substance use disorder—is diagnosed
using a set of eleven criteria given by the Diagnostic and Statistical
Manual of Mental Disorders-5 (DSM-5) [99]. Animal models of
sugar addiction display several diagnostic criteria for substance
use disorder like bingeing, craving, tolerance, withdrawal, and
hazardous use [98, 100, 101]. Also, several parallels exist between
sugar and drugs of abuse (cocaine, heroin, amphetamine, nicotine
etc); both involve similar cross-sensitization phenomena and
neurochemical pathways—Intermittent sugar intake causes the
release of dopamine in the nucleus accumbens (the pleasure
centre of the brain) that drives a sense of reward (liking;
reinforcement and learning; and motivation and wanting) while
also delaying the release of satiety-inducing acetylcholine in the
nucleus accumbens [98, 100, 101]. Cross-sensitization is when one
drug of abuse elicits the same hyperactive locomotory behaviour
of another drug of abuse; rats sensitised to amphetamine showed
similar hyperactivity when fed with a 10% sucrose solution [102].
Sugar addiction also involves the endogenous opioid system.
Highly palatable food rich in sugar releases endogenous opioids in
the limbic system and causes dependence; injection of naloxone
(an opioid antagonist) causes signs of opioid withdrawal
symptoms in sugar-dependent rats [103]. Overall, there is
significant evidence to indicate that sugar behaves like a drug
and could potentially lead to addiction [98, 100, 101, 104].

Overconsumption of sugar. Some evidence indicates that sugars
are no different from other calories and that only when sugar
consumption results in a positive energy balance (higher energy
intake compared to energy expenditure), it leads to obesity,
metabolic syndrome and other related co-morbidities [105–111].
However, sugar can be hypercaloric as it is easy to overconsume
for several reasons: consuming sugar is potentially addictive; sugar
is widely used in most ultra-processed, packaged food that is
aggressively and attractively advertised and marketed; sugar and
sugar-containing ultra-processed food are hyper-palatable, easily
accessible, readily available and relatively inexpensive; sugar and
sweets are widely accepted to the extent that it is even associated
with celebratory occasions; and unlike nicotine or alcohol, there is
neither taboo nor governmental restriction policies on sugar.
Another factor that can lead to overconsumption is the lack of
adequate satiety after consuming sugar-sweetened beverages
[111, 112]. Consuming added sugars can also promote nutrient
and energy deficits through various mechanisms leading to
overconsumption and obesity [113]. These factors predispose an
individual to overconsume added sugars through an unbalanced
diet and disrupt the overall energy balance. This paradigm is
evident with the global increase in the prevalence of obesity and
metabolic syndrome in parallel with the global rise in sugar
consumption [114–116]. Extensive evidence in scientific literature
shows that sugar is associated with several NCDs [117]. A 2023
umbrella review concluded that high sugar intake is associated
with obesity, metabolic syndrome, NAFLD, T2DM, CVD, and cancer
[118]. It is important to note that obesity, metabolic syndrome,
T2DM, and NAFLD are well-known risk factors with a bi-directional
relationship to periodontal inflammation [71, 119–125].

Clinical relevance
There are three critical factors in the initiation, development, and
progression of periodontal inflammation: dysbiosis of biofilm
communities that initiate periodontal inflammation, unresolved
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and exaggerated host inflammatory response that causes tissue
damage, and systemic diseases and conditions that aggravate the
periodontal host inflammatory response [126, 127]. Excessive
intake of dietary sugars (fructose and sucrose) can negatively
influence all three factors and can play an important role in the
initiation, development and progression of periodontal inflamma-
tion (Fig. 2)—excess sugars disrupt the eubiotic balance of the oral
microbiota to cause dysbiosis; excess dietary fructose is pro-
inflammatory and cause low-grade systemic inflammation and
oxidative stress that aggravates periodontitis; excess dietary
sugars are addictive and hypercaloric which leads to systemic
risk factors (obesity, metabolic syndrome, T2DM, and NAFLD) that
further aggravate periodontal inflammation.
At present, the main strategies to prevent (daily brushing of

teeth) and manage (professional biofilm removal) periodontal
inflammation are unidimensional and only aim to control and

remove the dysbiotic biofilm on the teeth. Along with the current
convention, we need to adopt multidimensional strategies to
modify lifestyle factors that induce dysbiosis and a systemic pro-
inflammatory state for optimal prevention and management of
periodontal inflammation (Fig. 1) [36]. Excess consumption of
sugar through an unhealthy diet facilitated by the current food
environment seems to be deleterious to systemic and periodontal
health and is a modifiable lifestyle risk factor that can be used to
prevent and manage periodontal inflammation.
Recently, several dietary and nutritional interventions have

been discussed and investigated against periodontal inflamma-
tion [128]—a micronutrient-rich diet low in sugar and processed
carbohydrates significantly reduced gingival and periodontal
inflammation [129, 130]; a similar type of diet also reduced the
abundance of periodontitis-associated bacterial species in the
supragingival biofilm [131]. A more recent secondary analysis of

Fig. 2 Excess dietary sugars and periodontal inflammation. Excess dietary sugars are potentially pro-inflammatory, dysbiosis-inducing,
addictive, and hypercaloric and can initiate and aggravate periodontal inflammation. (AGE- advanced glycation end-products; RAGE- receptor
for advanced glycation end-products; ROS- reactive oxygen species; LPS- lipopolysaccharide; TLR-4- toll-like receptor-4; NAFLD- Non-alcoholic
fatty liver disease; NF-κB- nuclear factor kappa-B; SCFA- short-chain fatty acids; NA- Nucleus accumbens; T2DM- type-2 diabetes mellitus; IL-
interleukin; TNF- α- tumour necrosis factor-α; NLRP3- NOD-, LRR- and pyrin domain-containing protein 3) ( Created in BioRender. Biorender, P.
(2024) BioRender.com/h79u248).
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four studies found that avoiding sugar, processed food, and
sweetened beverages for four weeks with a focus on whole food
rich in dietary fibre and micronutrients, significantly reduced the
inflammation in the gingiva [132].
There is limited research in the literature regarding the effects

of sugar and a sugar-rich diet on periodontal health and disease.
This lack of a robust body of evidence sets the stage for future
sugar and periodontal health research. Also, with the current
genomic technologies, future nutrigenomics research could
explore the association between sugar and periodontal inflamma-
tion in greater detail by studying the effect of excess dietary
sugars on gene expression [133].

Concluding remarks
Available evidence suggests that excessive consumption of sugar
is potentially pro-inflammatory and dysbiosis-inducing. Sugar is
also potentially addictive, and several factors facilitate its over-
consumption leading to systemic risk factors for periodontal
inflammation. Current research, although limited, indicates that
excessive dietary sugar intake is associated with periodontal
inflammation and can be viewed as a modifiable lifestyle risk
factor. Lifestyle modification strategies through dietary and
nutritional interventions that control sugar and ultra-processed
food consumption seem beneficial to periodontal health and need
further investigation. Advocating for conscious eating with
moderation in dietary sugar intake could serve as a simple, cost-
effective, and practical public health strategy for preventing and
managing periodontal inflammation.
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