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Abstract 

Multiphase information fusion and spatiotemporal feature modeling play a crucial role 
in the task of four-phase CT lesion recognition. In this paper, we propose a four-phase 
CT lesion recognition algorithm based on multiphase information fusion framework 
and spatiotemporal prediction module. Specifically, the multiphase information fusion 
framework uses the interactive perception mechanism to realize the channel-spatial 
information interactive weighting between multiphase features. In the spatiotemporal 
prediction module, we design a 1D deep residual network to integrate multiphase 
feature vectors, and use the GRU architecture to model the temporal enhancement 
information between CT slices. In addition, we employ CT image pseudo-color 
processing for data augmentation and train the whole network based on a multi-task 
learning framework. We verify the proposed network on a four-phase CT dataset. The 
experimental results show that the proposed network can effectively fuse the multi-
phase information and model the temporal enhancement information between CT 
slices, showing excellent performance in lesion recognition.

Keywords: Deep learning, Contrast-enhanced CT, Hepatic malignancy, Classification, 
Artificial intelligence

Introduction
Liver cancer is one of the most common cancers threatening human health, with a rela-
tive survival rate of only 21% over the past 5 years [1]. Computed tomography (CT), as 
a rapid, efficient, and stable imaging technique, plays an important role in the identifi-
cation of liver malignancies, particularly in distinguishing between hepatocellular car-
cinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) using multiphase CT. The 
multiphase CT imaging data typically includes four phases: non-contrast phase (NC), 
arterial phase (ART), portal venous phase (PV), and delayed phase (DL). Through metic-
ulous assessment of these images, a diagnosis of the patient can be made. However, this 
diagnostic method is particularly vulnerable to psychological, physiological and other 
external factors, and exhibits strong subjectivity [2].
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Deep learning has become a booming force in the field of computer-aided cancer diag-
nosis due to its ability to solve extremely complex challenges in cancer diagnosis with 
high accuracy over time, providing convenience for medical experts in diagnosis and 
treatment [3]. In contrast to conventional machine learning methods that necessitate 
manual feature extraction from inputs, deep learning (DL) methods are more advanced 
strategies in artificial intelligence (AI) that can learn features directly from sample data 
[4]. In recent years, as a new branch of deep learning, convolutional neural networks 
(CNNs) have received increasing attention in image pattern recognition and artificial 
intelligence strategies [5–7]. For example, Yasaka Koichiro et al. [8] proposed a convo-
lutional neural network structure to classify liver tumors in multi-phase CT images. The 
model has three channels, corresponding to NC, ART and PV phases. Liang et  al. [9] 
proposed a deep learning-based framework for the classification of focal liver lesions in 
multiphase CT images, which combines a deep residual neural network (ResNet) with 
global and local paths and bidirectional long short-term memory models to use mul-
tiphase information from the feature level. Ling et  al. [10] proposed a deep learning 
model based on CT scans and minimal additional information (MAI), including textual 
inputs such as patient age and gender. The model is trained using a combination of 3D 
convolutional neural networks and multilayer perceptron.

However, many current research methods have their own limitations, as follows: (1) 
Most studies [11–17] only use three-phase CT. Although three-phase CT can provide 
relatively rich information, it still cannot fully reflect all the details of some complex 
pathological processes. In contrast, four-phase CT contains more time point data, which 
enables the deep learning network to accept richer input information and improve the 
accuracy and performance of the model. (2) Multi-phase CT images reflect the physi-
ological state changes of patients at different time points. This spatio-temporal infor-
mation correlation is crucial for in-depth understanding of disease characteristics. By 
fusing the CT image features of different phases, the generalization performance of 
the deep learning network and the understanding depth of the lesion features can be 
effectively improved. However, the existing studies [8, 15] pay less attention to the con-
nection between CT images of different phases, which may cause the loss of key infor-
mation and increase the one-sided understanding of the lesion development trend of the 
model. (3) Most current studies [8, 18–20] focus on using CT slices for analysis; how-
ever, this method has significant limitations in capturing the integrity of spatial infor-
mation. Although CT slices can provide key cross-sectional information, they lack a 
comprehensive description of the 3D structure of the tumor, which makes it difficult for 
deep learning networks to fully learn the distribution and morphological changes of liver 
tumors in 3D space. To overcome this limitation, some researchers have proposed using 
3D CNN to process the entire 3D image, but this method has high demand on comput-
ing resources and memory. In the case of limited resources, it will affect the training 
efficiency of the model and the feasibility of practical applications.

To address the limitations existing in the above methods, we draw inspiration from 
[21, 22] and propose a four-phase CT lesion recognition framework based on multiphase 
information fusion and a spatiotemporal prediction module. To achieve higher predic-
tion accuracy and reduce model parameters, we first use ResNet18 to extract features 
from four-phase CT images. Then, we introduce an interactive perception mechanism to 
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enhance the feature extraction process and realize the tradeoff of channel-spatial infor-
mation between different phase CT image features, so as to effectively fuse the multi-
phase CT image features. Then, the one-dimensional deep residual network [14] was 
used to integrate the one-dimensional features of multi-phase, and the GRU architecture 
[23] was used to solve the problem of incompleteness of the model in capturing spatial 
information, and the whole network was trained based on the multi-task learning frame-
work. Finally, the average results of the single-phase and the prediction results of the 
prediction module were weighted to obtain the final result.

Related work
This section mainly describes the related work of the proposed method, mainly from the 
following aspects, including: (1) the application of CNNs in multi-phase CT images; (2) 
the application of multi-phase information fusion in multi-phase CT; (3) the application 
of time sequence method in four-phase CT.

The application of CNNs in multi‑phase CT images

CNNs are a deep learning neural network architecture specifically designed to process 
and analyze data with a network structure, such as images and videos. Convolutional 
neural networks are also widely utilized in the diagnosis of liver malignant tumors. 
Previous studies, such as STIC [24], apply VGG16 as a feature extractor to CT images 
to extract rich spatial features from them. These feature maps are subsequently input 
into the Temporal-Encoder module to further extract the key information embedded 
in the time series. In another study [10], 3D ResNet18 was used as the basic network 
to explore the 3D structural information of four-phase CT for diagnosis. In this study, 
we choose 2D ResNet18 as the feature extraction network. Compared with VGG16, 2D 
ResNet18 can not only efficiently extract detailed spatial features from 2D CT slices but 
also achieve significant optimization in model complexity and the number of parame-
ters, thereby improving training efficiency and inference speed. Meanwhile, compared 
with 3D ResNet18, although the latter is able to capture 3D spatial information, it may 
encounter higher computational costs when dealing with large-scale datasets.

Multi‑phase information fusion

The diagnosis of liver malignant tumors using multi-phase CT is a challenging task, 
and the core difficulty is to accurately integrate the information between each phase 
to achieve accurate diagnostic results. At present, multimodal data fusion methods 
are mainly divided into two categories: image-level and feature-level. Among them, 
feature-level fusion has attracted much attention because it can deeply mine the inter-
nal relationship between data. Studies [9, 25] have successfully demonstrated how to 
use multi-stage information at the feature level to classify or segment multi-phase CT 
images, which significantly improves performance. Wang et al. [26] directly connected 
brain MRI images as the input of the model to exploit multimodal information. In this 
paper, a multiphase information fusion framework for four-phase CT is proposed to fur-
ther improve the diagnostic accuracy of liver malignant tumors. In the feature extrac-
tion stage, by introducing an interactive perception mechanism, we can not only extract 
unique channel-spatial attention feature maps for each phase but also capture the 
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potential associations between adjacent phases. These feature maps are then effectively 
weighted into the feature representation of the current phase to achieve effective feature 
fusion of multiphase CT images. This process not only retains the unique information 
of each phase but also mines more comprehensive and in-depth features of liver lesions 
through the interaction and fusion between features, which provides strong support for 
the subsequent diagnosis of malignant tumors.

Application of time sequence method in four‑phase CT

In four-phase CT imaging, due to the abundant temporal enhancement information 
contained in slices, the temporal modeling method can efficiently integrate and express 
the global temporal information. The modular deep learning framework proposed by 
STIC [24] captures the spatial features of CT images through Spatial-Extractor, and sub-
sequently inputs these features into the Temporal-Encoder, and uses the Gated Recur-
rent Unit (GRU) for temporal modeling. The spatial and temporal features of four-phase 
CT are effectively extracted. BD-LSTM proposed by Liang et al. [27] performs well in 
the classification task of focal liver disease by simultaneously utilizing the contextual 
information of CT sequences. There are other temporal modeling methods that are 
widely used in the processing of spatio-temporal data. Dai et al. [28] proposed a method 
to explore and exploit higher-order spatio-temporal dynamics for long-term frame pre-
diction. The proposed method achieves more accurate prediction of video frames by 
capturing high-order spatio-temporal dependencies. Unlike STIC, this work focuses 
more on long-term prediction and considers higher-order spatio-temporal dynamics 
rather than just temporally enhanced information between adjacent slices. UNIMEMnet 
[29] learns long-term motion and appearance dynamics through a unified memory net-
work for video prediction. The proposed method combines a memory mechanism and a 
recurrent neural network, which is able to capture long-term dependencies and dynamic 
changes in videos. Although UNIMEMnet has achieved remarkable results in video 
prediction, its complex memory mechanism may not be suitable for the task of four-
phase CT lesion recognition with a relatively small amount of data. PredRNN [30] is a 
recurrent neural network for spatio-temporal predictive learning. The proposed method 
stacks multiple RNN layers and introduces memory units to capture long-term depend-
encies in spatio-temporal data. Compared with STIC and the proposed method, Pre-
dRNN focuses more on the general spatio-temporal prediction task and is not optimized 
specifically for four-phase CT lesion recognition. In contrast, GRU may be more advan-
tageous in dealing with such tasks due to its simpler structure and fewer parameters. In 
this paper, we innovatively adopt the GRU architecture to model the temporal enhance-
ment information between CT slices. Different from STIC [24] method, we first use a 
one-dimensional deep residual network (1D Resent) to extract one-dimensional features 
from multiphase CT images, which not only contain rich spatial information, but also 
imply the change trend in time. Subsequently, we feed these 1D features into the GRU 
architecture to further model the spatio-temporal information in depth. This network 
design enables the model to capture the spatio-temporal dependencies between differ-
ent slices more accurately, thus exhibiting higher accuracy and robustness in the liver 
malignancy classification task.
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Experiment
Data collection

A journey of a thousand miles begins with a single step. Data collection is essential for 
the experiment. The dataset for this study comprises four-phase CT images and corre-
sponding demographic information from the First Affiliated Hospital of Zhejiang Uni-
versity School of Medicine. In total, 398 cases of liver malignant tumors were collected, 
including 196 cases of intrahepatic cholangiocarcinoma (ICC) and 202 cases of hepato-
cellular carcinoma (HCC).

We obtained non-contrast, arterial, portal venous, and delayed-phase four-phase CT 
images using the GE Medical system and Philips CT scanning systems. In addition, 
the two CT systems used in this study included a total of five CT models, which could 
provide more valuable images and facilitated the full artificial intelligence process from 
scanning to reconstruction. Patient characteristic statistics and CT scan acquisition 
parameters are shown in Table 1.

Experimental detail

Data pre‑processing

To maximize the quality of CT images, manual annotation was performed by two anno-
tators using medical image processing software (ITK-SNAP) to create a 3D bound-
ing box, which were then reviewed by a radiologist. These four-phase CT images were 
stored in DICOM format. We first resampled the voxels to 1  mm size, extracted the 
lesion and its surrounding 10 mm pixels using a 3D bounding box. Finally, the CT image 
was adjusted the CT image resolution of 64 × 128 × 128.

Since the CT image slices are single-channel gray scale images, The pre-trained mod-
els trained on ImageNet cannot be directly employed. Some studies have resorted to 
duplicating the single-channel CT slices to create three-channel images. However, this 
approach does not add genuine color information and may result in redundant data.

In the field of medical images, especially when processing CT images, window 
width and window level are two important parameters used to adjust the contrast and 

Table 1 Patient information and CT scan acquisition parameters

Patient number 398

Age (mean ± std) 59.95 ± 9.83

HCC/ICC 202/196

Male/female 295/103

CT model Philips Brilliance iCT 256
GE Revolution EVO
GE Optima CT540
GE Revolution CT
GE Revolution Frontier

Ratio of CT model 298:34:14: 36:16

Convolution kernel B, STANDARD

Ratio of kernel 298:100

Tube voltage (kV) 120,140,100,80

Tube current (mA) 351.12 ± 93.20

Pixel size (mm) 0.72 ± 0.05

Slice thickness (mm) 3.39 ± 0.97
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brightness of the image. By utilizing combinations of two different window widths 
and window levels, we obtain grayscale image slices with varying contrast and bright-
ness. These grayscale slices, processed with different window settings, are then 
superimposed onto the original data to form pseudo-color CT slices, resulting in 
three-channel images, this is shown in Fig. 1. Such processing can effectively utilize 
the fully trained pre-trained models on ImageNet. In this paper, corresponding data 
enhancement processing was performed on CT slices in different phases to learn CT 
image features more effectively.

Environment configuration

All experiments were done on the same workstation, whose hardware environment is 
shown in Table 2. To avoid problems caused by improper partitioning of the dataset 
and ensure the robustness and generalization ability of the model, we use five-fold 
cross validation. The dataset was divided into a training set and a test set with a ratio 
of 4:1. The experiments utilized Stochastic Gradient Descent (SGD) optimizer for 
parameter optimization, with an initial learning rate of 0.001. The learning rate was 
decayed by 0.1 every 10 epochs, and the total number of epochs was set to 50. The 
batch size was set to 2.

Fig. 1 Channel expansion processing

Table 2 Experimental environment

Name Metrics

CPU Intel(R) Core(TM) 
i9-10900X 
CPU@3.70GHZ

GPU Tesla V100-SXM2 32 GB

Operating system Ubuntu 18.04.6

CUDA
Programming languages
Deep Learning Framework

12.0
Python 3.6
Pytorch
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Validation methods and metrics

This section will verify the effectiveness of the proposed method from four aspects: 
comparing with a 3D model, targeted ablation experiment, verifying the effectiveness of 
four-phase CT images, and the feasibility of pseudo-color for data enhancement. Evalu-
ation metrics used in the experiments include Receiver Operating Characteristic (ROC) 
curve, Area Under the Curve (AUC) of the ROC curve, Accuracy (ACC), F1-score, and 
Negative Predictive Value (NPV).

Comparison with 3D CNN model

To demonstrate the effectiveness of our approach, we conducted comparisons with 
state-of-the-art methods, including 3D ResNet-18 [19], 3D DenseNet-121 [31], STIC 
[24], MexPale [10], TransMed [32] and the TDN [14, 33] model for video classification 
tasks. The comparative results are shown in Table 3, Table 4 compares the parameters of 
each model and the ROC curve is shown in Fig. 2.  

Ablation experiment

Effectiveness of SPM, MIFF

In this section, to evaluate the effectiveness of the proposed multi-phase information 
fusion framework (MIFF), Spatiotemporal prediction module (SPM) and multi-task 
learning framework, we conduct a series of ablation experiments for validation. The 
ROC curve is shown Fig. 3. Including:

(1) Backbone: For each phase of CT images, employ 2D ResNet18 architecture for clas-
sification. Finally, achieve results through averaging fusion.

Table 3 Performance comparison of other model

Model ACC (%) AUC (%) F1‑scor e(%) NPV (%)

3D ResNet-18 79.25 82.83 78.18 80.38

3D DenseNet-121 79.50 80.21 78.36 79.83

MexPale 78.75 81.59 77.84 80.06

STIC 77.75 78.55 72.18 82.31

TransMed 79.00 80.90 77.64 80.31

TDN 80.25 84.00 80.89 81.25

Ours 85.5 89.73 85.44 86.35

Table 4 Parameter comparison

Model 3D ResNet‑18 3D DenseNet‑121 MexPale STIC TransMed TDN Ours

Params (M) 33.21 45.01 19.01 132.53 120.55 24.06 13.29
FLOPs (G) 172.12 179.99 150.99 2586.09 347.58 755.03 147.89
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(2) Backbone + SPM: The 2D ResNet18 network is used for feature extraction, and 
then the spatiotemporal prediction module (SPM) is used for preliminary predic-
tion to obtain preliminary classification results

(3) Backbone + MIFF: Incorporate an interactive perception mechanism into the 2D 
ResNet18, and subsequently obtain results through averaging fusion.

(4) Backbone + SPM + MIFF: The spatiotemporal prediction module is used to inte-
grate the one-dimensional features, and finally the GRU classifier is used for clas-
sification.

(5) Backbone + SPM + MIFF + Multi-task Learning Framework: Our proposed model.

From Table 5, it can be observed that our proposed multi-phase information fusion 
framework, along with the spatiotemporal prediction module, significantly enhances the 
lesion recognition performance of the four-phase CT algorithm based on the Backbone. 
Compared to using Backbone alone, our approach shows improvements of 4% in accu-
racy (ACC), 3.61% in area under the curve (AUC), 4.09% in F1-score, and 4.98% in nega-
tive predictive value (NPV). This indicates a substantial performance enhancement of 
our model in the task of lesion recognition.

Fig. 2 ROC curves for different 3D CNN model
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The influence of λ on the diagnosis result

In the framework of multi-task learning, we consider the output of the spatio-tem-
poral prediction module as the primary task and the output of the unimodal net-
work as an auxiliary task. To assess the necessity of employing a multi-task learning 
framework and justify prioritizing the spatiotemporal prediction module out-
put as the primary task, we conducted a series of comparative experiments. These 

Fig. 3 ROC curves for the model

Table 5 The classification accuracy of a backbone with different modules

Model ACC (%) AUC (%) F1‑score (%) NPV (%)

Backbone 81.50 85.12 81.35 81.73

Backbone + SPM 82.25 85.51 82.94 82.90

Backbone + MIFF 83.00 87.26 82.90 85.16

Backbone + SPM + MIFF 83.75 87.75 83.60 89.13

Ours (Multi‑task) 85.50 89.73 85.44 86.35
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experiments aim to provide insights into the value of multi-task learning in model 
training and validate the rationale behind prioritizing prediction module output as 
our main objective. The results are shown in Table 6.

Effectiveness of the multiphase information fusion framework

The multi-phase information fusion framework successfully facilitates the interaction 
of information between phases by introducing the interactive perception mechanism. 
This mechanism calculates the channel and spatial weights of feature maps extracted 
from two adjacent phases, and then performs cross-modal feature weighting to pro-
mote effective information exchange between different modalities. Experimental 
results show that the proposed mechanism significantly improves the accuracy of 
diagnosis, and the Accuracy (ACC) and Area Under Curve (AUC) increasing by 3% 
and 5%, respectively. In addition, the experiment also shows that with the increase of 
the number of layers applying this mechanism, the diagnosis performance of the net-
work improves further, the results are shown in Table 7.

Feasibility of channel extension

In this section, we primarily assess the feasibility of using pseudo-color for data aug-
mentation. We configured two sets of window width parameters to obtain CT images 
with varying attenuation scales, the parameters are shown in Table 8. Specifically, our 
goal was to capture both the essential part of lesions and the information surrounding 

Table 6 The influence of λ

ACC (%) AUC (%) F1‑score (%) NPV (%)

None 83.75 86.63 82.68 84.17

λ = 0.5 85.50 89.73 85.44 86.35
λ = 0.9 84.00 88.35 83.96 87.32

Table 7 The effectiveness of the multiphase information fusion framework

Layer1 Layer2 Layer3 Layer4 ACC (%) AUC (%)

83.50 87.58

√ 84.25 88.81

√ √ 84.75 88.96

√ √ √ 85.25 89.54

√ √ √ √ 85.50 89.73

Table 8 Different combinations of windows widths and window levels

CT pattern 1 CT pattern 2

WL WW WL WW

NP 65 HU 30 HU 40 HU 20 HU

AP 55 HU 70 HU 50 HU 40 HU

PVP 150 HU 30 HU 80 HU 100 HU

DP 175 HU 50 HU 75 HU 80 HU
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the lesion are. Compared to the original single-channel data, the expanded three-
channel images more clearly depict the shape of the lesions, the results are shown in 
Table 9.

Comparison of three and four‑phase CT images

Many studies [8] 11–13 have utilized three-phase CT images, lacking either the PV or 
DL phases, whereas four-phase CT images provide more comprehensive feature infor-
mation than three-phase CT images. This is particularly beneficial for diseases involving 
dynamic temporal changes. Through comparative experiments, we have demonstrated 
the necessity of using four-phase CT images. We employed two sets of different three-
phase data: one comprising NC, ART, PV, and the second comprising NC, ART, DL, the 
results are shown in Table 10. This design allows us to compare the imaging features of 
different phases to determine whether four-phase CT images provide more detailed and 
comprehensive information in specific disease scenarios. Figure 4 illustrates our experi-
mental results.

Discussion
As a powerful machine learning method, deep learning has made significant progress in 
the field of computer-aided cancer diagnosis. In medical image analysis, deep learning 
models can identify, extract and learn features at various levels from different medical 
images, and provide more accurate and efficient diagnostic insights for medical experts.

In this study, we propose a four-phase CT lesion recognition algorithm based on a 
multi-phase information fusion framework and a spatiotemporal prediction module for 
the classification task of hepatocellular carcinoma (HCC) and intrahepatic cholangio-
carcinoma (ICC). Our model demonstrated significant performance on the four-phase 
CT dataset, with an ACC of 85.5% and an AUC of 89.73 in the test cohort, outperformed 
some 3D models. These results indicate the high reliability of our algorithm in distin-
guishing between these two types of liver cancer lesions.

Most previous studies [8, 11] have used manually selected 2D CT slices as input to the 
network. However, because lesions are 3D structures in CT images, a single CT slice 
cannot adequately capture the spatial information of the lesion. The use of 3D CNNs 

Table 9 Comparison of original image and pseudo-color image results

ACC (%) AUC (%) F1‑score (%) NPV (%)

Original data 81.50 85.72 81.38 79.35

Multichannel data (ours) 85.50 89.73 85.44 86.35

Table 10 Comparison of different phase combinations

Model ACC (%) AUC (%) F1‑score (%) NPV (%)

NC + ART + PV 84.00 87.57 83.95 85.68

NC + ART + DL 83.50 88.69 83.48 84.66

Ours 85.50 89.73 85.44 86.35
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has shown promising results in liver cancer classification [10, 31, 34]. However, the large 
number of parameters can lead to excessively long training times and increased com-
putational costs. To overcome these challenges, we use 2D ResNet-18 as the base net-
work and enhance the model with the multi-phase information fusion framework and a 
spatio-temporal prediction module. In our method, since the size and location of tumors 
may be different in CT images of different phases, we introduce a multi-phase infor-
mation fusion framework in the feature extraction stage, in which an interactive per-
ception mechanism is adopted. Through this mechanism, we realize the channal-space 
interaction between phases to ensure the effective fusion of different phase information. 
It makes it easier for the model to notice the location of the lesion. Given that 2DCNNs 
struggle to capture temporal enhancement information between CT image slices, we 
propose a spatio-temporal prediction module, which uses a one-dimensional deep resid-
ual network for integrating multi-phase feature vectors and uses a GRU architecture to 
solve the problem of model incompleteness in capturing spatial information.

The comparison experiment with 3D CNNs proves the superiority of the proposed 
model. The key difference between this method and 3D CNNs is that the dynamic 
change information of the lesion across CT slices is incorporated so that the model can 
learn the characteristics of the lesion more accurately. Zhou et al. [11] proposed that 2D 

Fig. 4 ROC curves for different combinations of phases
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CNNs ignore the spatial discontinuity between slices, and the spatio-temporal predic-
tion module effectively addresses this issue by using GRU architecture to model the tem-
poral enhancement information between CT slices. ConvLSTM can effectively capture 
spatial features in sequence through convolution operations, which makes it perform 
well in spatio-temporal sequence prediction tasks. However, in the case of limited data-
sets, such as in the four-phase lesion recognition task, GRU is more appropriate for spa-
tio-temporal modeling. GRU has a simple structure and fewer parameters, so it can still 
maintain good performance with less data and resources. The advantage of this model 
is that it maintains the efficiency of 2D CNNs while having the same ability to model 
spatio-temporal features as 3D CNNs.

In addition, we also focused on data augmentation. By using pseudo-color processing 
techniques on CT images, we not only successfully enriched the dataset, but also utilized 
model parameters based on transfer learning. Yamashita et  al. [19] have validated the 
superiority of networks trained using transfer learning over those trained from scratch. 
Furthermore, the two CT systems we used had five CT models, which enhanced the 
diversity of CT scans. In model training, we employed a multi-task learning framework, 
deepening the model’s understanding across various aspects simultaneously, further 
optimized the performance of the network, and thus significantly improved the perfor-
mance in the multi-phase CT image classification task.

Despite our models achieving significant results, there is still room for improvement in 
several aspects. Firstly, the relatively small size of our dataset might contribute to over-
fitting, potentially limiting the model’s performance, considering more data for training 
and validation is a direction worth exploring. Second, this study concentrated solely on 
the classification of HCC and ICC, excluding other disease types such as liver metastases 
and hepatoblastoma. Introducing more diverse data and encompassing a broader range 
of disease categories could further enhance the model’s robustness and applicability.

Conclusion
In this study, we propose an innovative four-phase CT lesion recognition algorithm 
for the diagnosis of liver malignancies. Experimental results demonstrate the effective-
ness of this method in diagnosing multi-phase liver malignant tumors. This research 
introduces a novel approach to advancing liver lesion diagnostics, holding significant 
potential for clinical application in clinical practice. Future directions include further 
validating the algorithm’s robustness, expanding the scope of study subjects, and opti-
mizing the algorithm to adapt to a broader range of clinical scenarios.

Methods
Our proposed model, as shown in Fig. 5, employs a 2D CNN ResNet18 network as the 
foundational architecture for effectively extracting features from four-phase CT images. 
We introduce an interactive perception mechanism into each block of ResNet18 to form 
a multi-phase information fusion framework. This mechanism enables channel-spatial 
information interactive weighting across multi-phase and multi-dimensional features, 
thereby enhancing the extraction of CT image features.The prediction module utilizes a 
1D deep residual network for initial result prediction, which is well-suitable for the fea-
ture extraction task with four-phase CT images. To further improve the model’s overall 
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efficiency and generalization ability, we employ a multi-task learning framework to train 
the entire network, enabling it to handle multiple related tasks simultaneously.

It is crucial to note that the input imagesX ∈ RB×T×C×H×W ,where B represents Batch 
Size, T  signifies the number of CT slices, C indicates the number of channels of CT 
slices, H and W  represents the height and width of CT slices, respectively. As we employ 
a 2D CNN, certain adjustments are made: multiplying dimensions B and T  , transform-
ing the 5D (B,T ,C ,H ,W ) into 4D(B× T ,C ,H ,W ) . Furthermore, the first convolutional 
layer of ResNet18 is modified by adjusting the stride to 2. In the single-phase classifica-
tion task, we introduce a time-series average pooling layer after the fully connected layer 
of the network, and the classification results of all CT slices in that phase were averaged 
over the time-series dimension. Finally, the average results of the single-phase and the 
prediction results from the prediction module are weighted to obtain the final results.

Fig. 5 Overall framework of the model (IPM is the interactive perception mechanism)

Fig. 6 Multi-phase information fusion framework (MIFF)
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Multi‑phase information fusion framework (MIFF)

The features, sizes, and positions of tumors may vary across different phases, making the 
interaction of information between multi-phase CT images crucial for the task of liver 
malignant tumor classification. However, many previous studies overlooked this aspect, 
and some simply add the image features of different phases, with some simply perform-
ing a straightforward addition of features from different phases. To address this issue, we 
introduce a new multi-phase information fusion framework, as shown in Fig. 6, which 
includes an interactional perception mechanism. The key task of this mechanism is to 
establish channel-spatial information interactions between different phases to empha-
size meaningful features. Deviating from the direct use of a ResNet [10] network for 
feature extraction, our study employs a convolutional attention module. Taking NC and 
ART phases as examples, we use CBAM [35] to extract the channel and spatial depend-
ence of two-dimensional features from CT images. Then, the channel-spatial weights of 
NC and PV phase image features are applied to the ART phase image features. Similarly, 
we applied the channel-spatial weights of ART and DL phase image features to the NC 
phase image features, which enabled the model to more intelligently select the informa-
tion that plays a decisive role in tumor classification. In addition, it is noteworthy that 
this interactive perception mechanism is not limited to a single layer of the ResNet18 
network, weight calculation and channel-spatial information interaction weighting 
are performed on the output features of different layers to more fully exploit the hid-
den information from different layers. This contributes to enhancing the model’s clas-
sification performance, enabling more accurate identification of malignant liver tumors. 
This process can be expressed by the following formula (using NC and ART phases as 
examples):

�NC
I  and �ART

I  represent 2D features extracted by each layer of ResNet18 for the NC 
and ART phases. WART

C  and WART
S  are the channel attention weights and spatial atten-

tion weights for the ART phase. Similarly, WNC
C  and WNC

S  are the channel attention 
weights and spatio-temporal attention weights of the NC phase, as are WDL

C  and WDL
S  

and W PV
C  and W PV

S  , as shown in Eq. 1. This interactive perception mechanism is not only 
applied to the two phases of NC and ART but involves four phases, in which there is an 
interactive weighting of channel-spatial information between each of the two phases.

In summary, the introduction of an interactive perception mechanism within the 
multi-phase information fusion framework enables a more effective handling of varia-
tions in the features, sizes, and positions of liver tumors across different phases. This 
significantly improves the classification performance of the model, which holds great 
significance for early diagnosis and treatment planning of liver malignancies.

Spatiotemporal prediction module (SPM)

Utilizing the temporal enhancement information between the four-phase CT slices 
can significantly improve the classification of malignant liver tumors. Simply averag-
ing the results of the four phases and using it as the output for classification does not 
fully exploit the temporal enhancement information between slices. In this study, by 

(1)
{

�NC
O = �NC

I ⊗WART
C +�NC

I ⊗WART
S +�NC

I ⊗WDL
C +�NC

I ⊗WDL
S

�ART
O = �ART

I ⊗WNC
C +�ART

I ⊗WNC
S +�ART

I ⊗W PV
C +�ART

I ⊗W PV
S

,
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introducing one-dimensional feature fusion and a GRU architecture, which helps syn-
thesize the spatiotemporal information of different phases, and effectively improve the 
classification accuracy of liver malignant tumors. To achieve this, we propose a spati-
otemporal prediction module that can effectively integrate the 1D features of four-phase 
CT images and effectively model the dynamic changes between CT slices using the GRU 
architecture.

As shown in Fig.  7, we initially concatenate the one-dimensional features of the 
four-phase CT images along the feature dimension, thereby establishing a more 
enriched and comprehensive feature representation. We then use the GRU archi-
tecture to model the temporal enhancement information between CT slices, assist-
ing the model in better leveraging the dynamic changes in the sequence of images to 
obtain preliminary predictions.

Multi‑task learning framework

To ensure the accurate classification of four-phase CT images, we trained the network 
using a multi-task learning framework. In this multi-task learning framework, the 
primary task involves making preliminary predictions on the four-phase CT images 
using the prediction module, while the auxiliary task involves the output from the 
single-phase networks. The loss function of the multi-task learning framework can be 
expressed as follows:

where E(x, y) is the cross-entropy loss, λ is the balance factor of multi-task learning, Xf  
is the output of the prediction module, and Xn,Xa,Xp,Xd , represent the output of the 
single-mode network in four phases, respectively.

(2)L = E

{

(1− �)Xf +
�
(

Xn + Xa + Xp + Xd

)

4
, y

}

,

Fig. 7 Spatio-temporal prediction module (SPM)
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