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Abstract

Hyperplexed in-situ targeted proteomics via antibody immunodetection (i.e., >15 markers) is changing how we
classify cells and tissues. Differently from other high-dimensional single-cell assays (flow cytometry, single-cell
RNA sequencing), the human eye is a necessary component in multiple procedural steps: image segmentation, signal
thresholding, antibody validation, and iconographic rendering. Established methods complement the human image
evaluation, but may carry undisclosed biases in such a new context, therefore we re-evaluate all the steps in
hyperplexed proteomics. We found that the human eye can discriminate less than 64 out of 256 gray levels and
has limitations in discriminating luminance levels in conventional histology images. Furthermore, only images
containing visible signals are selected and eye-guided digital thresholding separates signal from noise. BRAQUE, a
hyperplexed proteomic tool, can extract, in amarker-agnostic fashion, granular information frommarkers which have
a very low signal-to-noise ratio and therefore are not visualized by traditional visual rendering. By analyzing a public
human lymph node dataset, we also found unpredicted staining results by validated antibodies, which highlight the
need to upgrade the definition of antibody specificity in hyperplexed immunostaining. Spatially hyperplexed
methods upgrade and supplant traditional image-based analysis of tissue immunostaining, beyond the human eye
contribution.

Impact Statement
Staining with multiple biomarkers in a single tissue section, multiplex staining, is changing how we examine
in-situ normalcy, pathology, and the interrelationship of good and bad biological actors. Bioinformatic pipelines
developed to deal with high-dimensional datasets such as single-cell RNA sequencing or multiparameter flow
cytometry have been adapted to analogous types of data derived from tissue, and co-exist with conventional
image analysis tools and human eye-guided image evaluation. We wanted to evaluate if multiplex staining with
more than 15markers (hyperplexed) has comparable sensitivity to conventional image analysis and if these latter
analysis tools carry undisclosed biases and should not be used together with hyperplexed staining.We found that
the human eye has a reduced discriminative power for grayscale and luminance levels compared to the 8-bit

©TheAuthor(s), 2024. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

Biological Imaging (2024), 4: e10
doi:10.1017/S2633903X24000138

https://orcid.org/0000-0002-8238-2369
https://orcid.org/0000-0002-8907-0034
https://orcid.org/0000-0002-6208-636X
https://orcid.org/0000-0001-8145-2364
https://orcid.org/0000-0003-4892-925X
https://orcid.org/0000-0003-3799-3221
mailto:giorgio.cattoretti@unimib.it
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/S2633903X24000138


available spectrum, affecting positive signal recognition above the noise. We also found that the granular
analytical power of recent bioinformatic pipelines can extract information from images which defy human eye
perception and deliver information unattainable with existing image analysis tools for single-stain images.

1. Introduction

In situ antigen detection in tissues via antibody staining, in transmitted (immunohistochemistry; IHC) or
fluorescent light (immunofluorescence; IF) is an established tool in science. It is a space structure
preserving assay, complementary to other techniques such as in situ transcriptomics(1) or in situ
proteomics.(2) It is also complementing all techniques applied to disaggregated specimens, the latter as
single cell suspensions (e.g., single-cell RNA sequencing(3); scRNAseq) or homogenates.

In recent years, in situ immunostaining has evolved from a single stain (IHC, the staple tool of
diagnostic Pathology) to multiple (from two to seven or more) IF stains, to a much higher number of
simultaneous co-stains, typically in excess of a dozen, in what is called high-plex or high-dimensional in
situ staining or targeted antibody-mediated proteomics.(4) Recommendations for standardization of the
diagnostic use of multiplex stains followed,(5) including antibody validation practices.

An analogous progress occurred earlier with flow cytometry (FCM), a technique which employs
conjugated antibodies to characterize single-cell suspensions.(6) An acceleration of the evolution of the
technique was brought by the use of metal-conjugated antibodies and mass spectrometry for detection
(Cytometry by time of flight; CYTOF), in lieu of photodetectors and photomultipliers.(7) The evolution of
the technique was accompanied by an evolution of the bioinformatic tools required to handle such an
increase in data dimensionality to be analyzed.(8)Most of the bioinformatic tools developed for single-cell
assays (scRNAseq, FCM) have been applied to the analysis of single cells in tissue sections.

Low-plex staining (~7–10 biomarkers) is increasingly diffuse, partly owing to the popularity of a signal-
enhanced technique (Tyramide Signal Amplification or TSA(9)), however, the image analysis (IA) required
for this type of staining does not differ fromwhat is customarily used for single stain images in IHC or IF.(10)

What sets apart hyperplexed in-situ targeted proteomics via antibody immunodetection, the method
using high-plex (>15) biomarker determination at cellular or sub-cellular resolution in situ, from other
low-plex techniques is the use of bioinformatic tools, proper of other single-cell assays.(11,12) Analogously
to FCM and scRNAseq, human visual image assessment is minimal or nil for these processes, despite the
ground truth data which are tissue images.

IA tools development(13) has accompanied the production of images all along. Interestingly, one of the
main concern of scientists using IA is to identify nuclei in sections,(14) something Surgical Pathologists do
effortlessly every day.

IA has been developed not as a replacement for the human eye but as a companion, particularly for
simplified one-protein-at-a-time diagnostic immunostains.(15) However multiplex staining data are
intrinsically so complex that deep learning-assisted IA has an increasing role in multiple steps, such as
image segmentation,(16) data normalization, and cell classification.(17) Yet, the microscope’s future
evolution in an expert’s view still features eyepieces.(18)

We sought to reevaluate the individual components leading to single-cell classification via hyperplexed
stains, and in particular the role, when present, of a human visual assessment of images in processes such as
assay sensitivity, antibody validation, signal thresholding, and gating and cell segmentation.

By analyzing a public human lymph node dataset with a custom bioinformatic pipeline, BRAQUE,(19)

we found that the human eye is dispensable for the analysis of in situ hyperplexed multistainings.

2. Materials and methods

2.1. Ethical background

The study has been approved by the Institutional Review Board Comitato Etico Brianza, N. 3204, “High-
dimensional single cell classification of pathology (HDSSCP),” October 2019. Consent was obtained
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from patients who could be contacted or waived according to article 89 of the EUGeneral Data Protection
Regulation 2016/679 (GDPR) and decree N. 515, 12/19/2018 of the Italian Privacy Authority.

2.2. Human specimens

Sentinel lymph nodes (n = 5) were extracted from the laboratory information systems of the San Gerardo
Hospital by the Authors with clinical privileges and anonymized. Paraffin blocks and sections to be
analyzed were selected by a Pathologist after a review of the Hematoxylin and Eosin (H&E) stain. Only
archival formalin-fixed, paraffin embedded material (FFPE) was used.

2.3. Histology

Chilled paraffin blocks were sectioned in a rotarymicrotome (Leica Biosystems, Buccinasco,MI, Italy) at
3 μm, sections were placed in a warm waterbath and collected on charged microscope glass slides. After
an overnight oven incubation in an upright position, theywere further processed forHematoxylin&Eosin
(H&E), IHC, or IF stains.

2.4. Antigen retrieval

Antigen retrieval (AR) was performed by placing the dewaxed, rehydrated sections(20) in a 800 ml glass
container filled with the retrieval solutions (EDTA pH 8; 1 mMEDTA in 10 mMTris-buffer pH 8, Merck
Life Science S.r.l., Milano, Italy; cat. T9285), irradiated in a household microwave oven at full speed for
8 min, followed by intermittent electromagnetic radiation to maintain constant boiling for 30 min, and
cooling the sections to about 50 °C before use.

2.5. Immunohistochemistry

Primary unconjugated antibodies (Abs) were validated for frozen and for FFPE material according to
established criteria(21) (see Supplementary Tables).

For immunohistochemistry (IHC), optimally diluted, validated primary antibodies were applied
overnight, washed in 50 mM Tris–HCl buffer (pH 7.5) containing 0.01% Tween-20 (Merck) and
100 mM sucrose (TBS-Ts),(22) counterstained with a horseradish peroxidase–conjugated polymer
(Vector Laboratories, Burlingame, CA), washed, developed in DAB (Agilent, Santa Clara, CA), lightly
counterstained and mounted.

Serial LN sections were immunostained for the AE1–AE3 pre-made cocktail in a Omnis automated
immunostainer (Agilent, Santa Clara, CA) with routine same-day protocols.

2.6. Indirect immunofluorescence

Multiple immunofluorescent (IF) labeling was previously described in detail.(20) Briefly, the sections
were incubated overnight with optimally diluted primary antibodies in species or isotype mismatched
combinations (e.g., rabbit + mouse, mouse IgG1 + mouse IgG2a), washed and counterstained with
specific distinct fluorochrome-tagged secondary antibodies (Supplementary Tables).(20) The slides,
counterstained with DAPI and mounted, were scanned on an S60 Hamamatsu scanner (Nikon, Campi
Bisenzio, FI, Italy) at 20× magnification. The filter setup for seven color acquisition (DAPI, BV480,
FITC, TRITC, Cy5, PerCp, autofluorescence/AF) was as published.(23) Additional data are in the
Supplementary Material.

2.7. Tyramide signal amplification

Sections to be processed for TSA were dewaxed, antigen retrieval was performed as mentioned,
endogenous peroxidase was blocked, incubated with the primary Ab overnight and processed as per
the manufacturer’s instruction for Alexa Fluor™ 647 Tyramide (cat. N. B40958; Thermo Fisher
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Scientific, Vedano al Lambro, Italy), a fluorochrome emitting in the red spectrum where tissue auto-
fluorescence is minimal. The Alexa Fluor™ 647 signal was acquired with a 650/13 nm excitation filter, a
694/44 nm emission filter, and a dichroic FF655-Di01 filter(24) and could be combined with other
fluorochrome combinations except the ones emitting in the 530–570 nm range, where the TSA-Alexa
FluorTM 647 product bleeds. All filters are from Semrock, Lake Forest, Ill. Details of the process can be
found in the Supplementary Material.

In the double indirect IF-TSA combined staining, TSAwas performed first.

2.8. Preparation of immunofluorescent images for single cell analysis

After the stainings were acquired, digital slide images (.ndpi) were imported as uncompressed .tiff with
ImageJ (ImageJ, RRID:SCR_003070). Tissue autofluorescence (AF) was subtracted when appropriate as
published.(20)

2.9. Image analysis

IHC/IF staining quantitation: Fluorescence images were imported in Fiji(25) (RRID:SCR_002285). For
area quantification, inverted images were adjusted (Brightness/Contrast command) and thresholded
(OTSU). The stained area value was normalized for the total nuclear area value (DAPI). For IHC, the
image was color deconvoluted(26) and the DAB image was processed as above. Hematoxylin was used for
normalization instead of DAPI. Brightness/Contrast, Math transformation (log), and 3D surface plot were
used for visualization (see Supplementary Methods).

Two public-domain IA tools were used for nuclear identification: QuPath (RRID:SCR_018257)(27) and
CellPose 2.0 (RRID:SCR_021716).(28) Details of the setting for IA are reported in the SupplementaryMethods.

Adobe Photoshop 2023 (San Jose, CA) (RRID:SCR_014199) andAdobe Illustrator (RRID:SCR_010279)
were used for figure layouts.

2.10. Grayscale tone discrimination test of the human eye

Fourteen pathologists, 11 males and 3 females, aged 43 ± 13.8 years (range 29–71), 14.1 ± 13 years into
the profession (range 0–43) were asked to log into the Time magazine website https://time.com/4663496/
can-you-actually-see-50-different-shades-of-grey/, perform the test and provide the score obtained.
Additional information is provided in the Supplementary Methods section.

2.11. Bit depth reduction discrimination tests

Twelve pathologists with diagnostic digital pathology experience examined a series of continuous gray
shaded bars and full-size four-images composites uploaded into NDPserve (Hamamatsu Photonics) via a
provided link. The images encompass the various typology of digital images encountered during
diagnostic sign-up (Supplementary Figure S1). The bit depth of each image in the composite was changed
from the conventional 24 bit (8 bit times three, 256 colors each) to 6, 5, or 4 bit via the Adjustments >
Posterize command (Adobe Photoshop 2023), then saved in the new format with the original image size
and pixel resolution. The 7-bit image was not used for the histology image test, except for the grayscale
gradients bars. The percentage of correct scores for each observer, the image type and bit depth were
recorded. Additional information is provided in the Supplementary Methods section.

2.12. High dimensional analysis with BRAQUE

BRAQUE,(19) an acronym for Bayesian Reduction for AmplifiedQuantization inUMAPEmbedding, has
been developed for the global analysis of individual cells in tissue sections stained in IF with multiple
biomarkers and uses dimensionality reduction algorithms. Is a Python pipeline for automated cluster
enhancing, identification, and characterization.
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The key procedure of BRAQUE (whose code may be found on GitHub at https://github.com/
LorenzoDallOlio/BRAQUE) consists of a new preprocessing, called lognormal shrinkage. This pre-
processing specifically addresses the problem arising from noise due to crossbleed from neighboring
cells, in fact, if single-cell data are more distinct and discrete on the other hand spatial proteomics markers
assume a more continuous distribution with less clear separation among the modalities.(29,30)

In BRAQUE’s preprocessing a mixture of normal distributions is fitted for each of the log-transformed
markers, and then each normal component of the mixture is shrunk toward its mean to help further steps
counter this continuity and lack of clear separation.

After this crucial step, the markers are standardized and combined in a 2-dimensional latent spaces by
the UMAP algorithm. On this embedding space, the clustering of cells is performed by HDBSCAN and
lastly, each cluster is tested for significantmarkers, which are ranked by effect size to help experts with cell
type annotation.

The output consists of multiple clusters, whose numerosity is defined by the size of the smallest cluster
(usually not below 0.005%of the cell number or ~ 20 cells). Each cluster is defined by (A)markers ranked
for probability or possibility to identify the cluster, (B) a tissue map of the cells belonging to the cluster,
and (C) the expression of a pre-defined set of diagnostic markers for that cluster, compared to the whole
population (Supplementary Figure S1). Each cluster is classified by an expert supervision into cell types.

The HubMap lymph node dataset HBM754.WKLP.262 (doi:10.35079/HBM754.WKLP.262) was
downloaded from the HubMap consortium website (https://hubmapconsortium.org/) as a .csv file, thus
pre-segmented by the source.

3. Results

3.1. The human eye has a biased vision

In image analysis, the human eye is required to discriminate signal from noise or background.
Published research shows that humans can distinguish about 870 different shades of gray,(31) data

which are contradicted by Kreit et al.,(32) who sets the gray level discrimination in humans at about
30 shades.

Fourteen experienced observers produce a gray discrimination score of 37.8 (SD ±4.77) out of
50 (Figure 1) which is below the discrimination of 64 gray tones out of 256 (8-bit scale) (see
Supplementary Methods) and in keeping with published results(32) and anecdotal annotations in the
public domain (see Supplementary Tables).

The type of images of this test (homogeneously tinted squares surrounded by a thick border) are not the
type of images encountered in medicine or biology and may be also prone to hallucinations.(33) We then
used microscopy digital images in which the luminance repertoire was reduced from the 256 usual
channels (8 bit) down to just 16 (4 bit) (see an example in Figure 2 and Supplementary Figure S3).

While the observers identify laddering (that is reduced bit depth) on the monochrome continuous
grayscale images below amean of 7.7 ± 0.2 bits (range 8–7.5) (Figure 3a and Supplementary Figure S3T),
they scored correctly the bit depth of only 51% ± 33% of the images (range 26%–75%). There was no
apparent relationship between the ability to identify bit degradation in monochrome bands, which scored
at the top for all pathologists, and in histology images (Figure 3a).

Themost degraded images (4 bit) were more likely to be correctly identified (Figure 3b). Erroneous bit
depth assignment was equivalent in all kinds of common pathology images (Figure 3c), being a single
triple immunofluorescent image the most variably scored (mean 35% ± 42% correct score, range 0%–

100%) (Figure 3).
The discrimination power for degraded images was highest among the bottom range of bit depth

(Figure 3d), with no differences among the image types.
Very detailed images (e.g., colon, testis, LCH) scored marginally better on average than images with

low details (brain, muscle, IHC), with 55.8% versus 49.7% correct answers.
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From these experiments, we conclude that the discriminative power of the human eye for details along
a 8 bit luminance scale is significantly reduced, compared to the available range.

3.2. Signal enhancement methods may deliver marginal gains

Positive signal brightness affects detection. Thus, we wanted to define the sensitivity of the immuno-
fluorescent techniques used in multiplexing, compared to a brightfield standard, DAB IHC. To do so, we
usedwidely used algorithms for immunostain separation from background and identification such as Otsu
and K-mean clustering, which are based on vector quantization. These algorithms do not require tuning
and the result reflects the image ground truth according to the gray levels of the image.

Figure 1. (a) The shades of gray score distribution of 15 Pathologists, ordered progressively. The number
inside each circle is the number of subjects with that score. (b) The relationship between the score (x-axis)
and the subject’s age (y-axis). The R-squared value of the intercept is R2 = 0.0856. (c) The relationship
between the score (x-axis) and the pathologist’s working experience in years (y-axis). The R-squared

value of the intercept is R2 = 0.1876.
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As previously published by others,(34,35) TSA was not superior, compared to DAB, and as good as
double indirect IF(20) for some fluorochromes (Figure 4). The use of signal-enhancing methods for
immunofluorescent staining may marginally benefit signal detection.

3.3. Simplified image analysis tools lack sensitivity

For quantification, we used images of abundant lowmolecular keratin 8 and 18 (LMW-KRT) expressed in
thin dendrites of fibroblastic reticular cells (FRC), and we found that commonly used thresholding
algorithms to quantify IF immunostains fail to account for positive pixels at the low end of the spectrum,
despite being visible to the human eye after image rendering (Figure 5).

3.4. Hyperplex staining methods have superior sensitivity

Next, we tested the analytical power of hyperplexed stainings by examining a public human lymph node
dataset, composed of 28 antibodies (+ DAPI), for which the segmentation method was previously
published.(36) In the panel, a widely used “pan keratin” antibody cocktail, AE1 and AE3(37) was used.

Only AE3 is able to detect KRT8, one of the two LMW-KRT in LN (the other is KRT18). The
AE1-AE3 cocktail (“panCK” or “CK”) is used daily by thousands of surgical pathologists to detect nodal
metastasis from carcinoma. Because a selective epitope condition prevents the broad detection of LNFRC
with this cocktail, only occasional KRT8+ cells are being detected.(38) The presence of a panCK reagent in
the dataset made a comparison of the detection power possible between single-stains and hyperplexed
images, by enumerating the positive cell types.

Figure 2. Example of two different bit depths for an H&E image. The two images represent A, a high
magnification detail of an 8 bit (24 bits in RGB)H&E image of the human colon, B the same image at 4 bit

depth reduction. The R, G, and B images on the right are the frequency plots of the image pixels,
distributed along the 0–255 channels for each of the three color components. Image A contains 255 levels
per channel, image B 16 levels, as shown by the laddering of the RGB profile in the RGB details. Note the
same size of the visible pixels. Scale bar: 2.25 μm (five pixels; 3200x). The insets in the lower left corner of

each image show the full-size originating images (scale bar 50 μm).
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Figure 3. Descriptive graphics of the bit-reduced images scores. (a) The two-scale image shows the bit depth
belowwhich each of the 12 pathologists identifies degradation on amonochrome image (red circles; scale to the
right). The mean ± SD percentage of correct bit depth identification on the global test is shown (blue squares;
scale to the left). (b) Mean percentage ± SD of correct identification on images divided by bit depth. (c) Mean
percentage ± SD of correct identification on images divided by image type. B&W: grayscale images; Color:
H&E-stained images; IHC: immunohistochemistry examples; Special: special stains; IF: immunofluorescence.

(d) Mean percentage ± SD of correct bit depth identification subdivided between top discrimination
(discrimination between 8 and 6 bits), bottom discrimination (5 and 4 bits), 8 bits versus 4 bits, 5 or 6 bits versus
4 bits, 8 bits versus 5 or 6 bits. The scores are further shown for the whole test or divided by image type (B&W:
grayscale images;Color:H&E-stained images; IHC: immunohistochemistry examples; Special: special stains).
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We applied to the HubMap dataset BRAQUE,(19) a dimensionality reduction algorithms-based
analytical pipeline (DRAAP) designed for the spatial Ab-based proteomic data in multiplex, which do
not requires pre-definition of positive signal thresholds.

BRAQUE was able to identify 12 clusters containing CK+ cells for a total of 16,698 cells out of
188,450 (9.24%) (Table 1, Supplementary Tables, and Supplementary Figures S1 and S2).

Nine clusters expressed SMA together with CK, a known phenotype of FRC,(39) together with variable
expression of CollagenIV, CD35 and Podoplanin. These cells accounted for 7.54% of the LN population
(13,621 cells).

Three clusters (3,077 cells, 1.70%) had an endothelial phenotype (CD34+ CD31+), where the CK
signal could be bleeding from adjacent FRC. A total of 8,196 cells (4.54%) had a stromal phenotype
devoid of CK, divided into fibroblasts (4.30%) and SMA-expressing myofibroblasts (0.23%). The tissue
distribution of CK+ FRC and fibroblasts is partially overlapping and distinct from endothelial cells
(Figure 6).

A distinct population of Lyve1+ sinus lining cells coexpressed CD31, Vimentin, CD107a but not
CD34 (Supplementary Figure S4).

None of these stromal clusters expressed CD44, CD45, or CD45RO, or any other leukocyte-restricted
marker. The complete cell classification results are available in the Supplementary Methods
(Supplementary Tables).

The spatial distribution of the FRC clusters is consistent with the known tissue location and the
percentage of total stromal cells (Table 1).

7.4% of the segmented cells were contained in nine clusters which could not be classified (unclear,
artifacts) in addition to cells discarded by BRAQUE (6.8%) upfront on a statistical basis.

By analyzing the same dataset with Phenograph, a similar classification was obtained, including the
identification of CK+ stromal cell clusters (Supplementary Figure S5).

To estimate how the percentage of CK+ FRC detected by BRAQUE in the single HubMap LN would
position among the results obtained with an available single-stain, single-cell quantitative tool, QuPath,
we quantified the IHC stain of two different antibody cocktails: the AE1–AE3 mixture and a two-rabbit
monoclonal antibodies cocktail directed at low molecular weight keratin 8–18. AE1–AE3 labeled
9.27% ± 6.79% cells (5 sentinel LN), the LMW keratin cocktail 8.05% ± 7.02% (4 sentinel LN). We
also used QuPath to quantify the IF stains used for the TSA and the control experiments. Quantification of
IF stains in QuPath was highly erratic because of the difficulty of discriminating by eye signal from
autofluorescent background (see Supplementary Tables).

Figure 4.Comparison of sensitivity of detection systems. The area of detection of anti-LMWKRTin serial LN
section by secondary Abs conjugated with three fluorochromes (FITC = Alexa 488 green, TRITC = Rhoda-
mine Red™ X orange, Cy5 = Alexa 647 red) and DAB is plotted on a logarithmic scale, relative to the area

detected with TSA Alexa 647 (100%). Duplicate experiments.
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3.5. Hyperplexed staining methods can handle images unreadable by the human eye

We obtained the raw IF images from the HubMap dataset and we could not visualize a distinct CK+ cell
population except by applying an image log transformation combined with virtual 3D visualization, after
which wewere able to identify a weak CK signal co-localizing with vimentin and SM actin (Figure 7a and
Supplementary Figure S6).

Since additional sections from the CODEXLN sample were not available, we used in-house processed
FFPE LN sections and stained them with an aliquot of the original AE3 antibody, which we found still
effective on a positive control after 37 years(40) (Supplementary Figure S7).

Figure 5. Thresholding LMWKRTstaining in LN. The LMWKRT IF stain detail is shown as an inverted,
unmodified image, modified with three different Fiji thresholding algorithms (Otsu, Huang, and per-
centile) and as a 3D plot. Only three thresholding algorithms are shown, out of 17 tested. A FRC CK+
dendrite is highlighted with a red rectangle and themean pixel density value along that rectangle is shown
next to the image. Note that, because of the image inversion, darker pixels have lower values in the plot.
The continuous intensity variations of the signal above background can be appreciated in the 3D plots.
Note that the percentile algorithm highlights numerous background spots in addition to the dendrite of

interest. The image shown measures 105 × 165 pixels (47.5 × 74.25 μm).
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By optimizing the staining conditions(41) and enhancing the image contrast, numerous AE3+ cells
co-localize with a LMWKRTstaining (Figure 7c), in addition to other stained cells. The latter appeared to
be B cells, based on location and aggregation (no B cell markers were co-stained). TSA amplification of
the AE3 signal did not improve the stain (Supplementary Figures S8 and S9).

The staining pattern of in-house CK staining of the lymph node reproducedwhatwas obtained from the
CODEX dataset, including the follicular B cell staining (Figure 7b).

Table 1. Stromal cells and phenotypes

BRAQUE cell
classification Clusters

Total
cells %

% of
total Typical phenotype

CK+ FRC 9 13621 32.17 7.54 SMA,CK, CD35, CollIV, PDPN,VIM
Fibroblasts 5 7776 18.37 4.30 VIM, CollIV, PDPN
Myofibroblasts 3 420 0.99 0.23 CD34, SMA, CollIV
Endothelium (CK+) 3 3077 7.27 1.70 CD34, CD31, VIM, CK
Endothelium 10 7021 16.58 3.89 CD31, CD34, CollIV, VIM,
Lyve1+ endothelium 8 8755 20.68 4.84 Lyve1, CD107a, CD31
FDC 2 1671 3.95 0.92 CD21, PDPN, CD35, CD20
Total stromal cells 38 42341 100.0 23.43
Total cells 90 180708 100.0

Figure 6. Tissue distribution of FRC and stromal cells. The distribution of CK+ FRC (red; clusters 3, 6,
12, 22, 23, 56, 60, 78, 87), fibroblasts & myofibroblasts (blue; clusters 24, 31, 32, 36, 54, 59, 73, 82) and
endothelial cells (green; clusters 13, 14, 17, 25, 28, 29, 37, 46, 53, 72) is shown plotted on the UMAP plot
(left) and on a gray image of the LN section (right). The x and y scales on the left are UMAP virtual space
arbitrary references, on the right real pixel image dimensions (0.45 μm per pixel). The gray outlines

represent the remaining cell clusters (left) and the total of single cells (right).
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4. Discussion

The upper discrimination limit of 64 shades of gray we have shown implies that in the best scenario,
signals 4 gray intensity levels (at 8 bit) brighter than noise (256 divided by 64) cannot be discriminated
against by the human eye, in addition to known visual and cognitive traps.(33) We thus confirm published
data(32) and a number of publicly available anecdotal observations (see Supplementary Tables).

Lack of discrimination of signal from noise broadly affects the appreciation of the full spectrum of
biomarker distribution, both in light microscopy and IF. Despite having at disposal the most sensitive
stain, IHCwithDAB, IA tools are based on algorithmswhich do not reliably account for signals at the low
end of the spectrum. In IHC and IF, a dichotomous image representation (pos/neg) after thresholding is the
rule, because of the human eye limit.

Manual gating (i.e., the application of a threshold/barrier discriminating two sets of variables) is
considered the main source of data variability and inconsistency in FCM,(8,42,43) but has never been
addressed in tissue staining. The lack of awareness of this limit, results in most of the high-dimensional
approach to in-situ cell classification to take advantage of a gating strategy at some point during the
process.(29,44–47)

Figure 7. Image rendering of CK+ FRC. (a) A detail of three markers, CK AE1–AE3, Vimentin and SMA
as 2D log-transformed and inverted fluorescence CODEX images (top row) and the 3D transformation of
each (bottom row), is shown. (b) The same type of images are shown for another tissue detail, comparing
CK AE1-AE3 and a B cell marker, CD20. Scale bar: 100 μm. (c) A low and a high power magnification
detail show a three-color image of a LN, produced in-house, where nuclei are blue (DAPI) CK AE3 is
green and a LMW KRTcocktail is red. In this image, note a B cell follicle (asterisk) and coexpression of

AE3 and LMW KRT in FRC as yellow (green + red). Scale bar: 100 μm.
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Establishing a signal threshold has three effects, not all negative: i) positively assigning a cell to a
lineage, ii) removing “unwanted” evidence, and iii) limiting the discovery of new cell types, based on
novel phenotypic profiles.

In hyperplexed staining, the limitation in the number of Abs which can fit in a spatial panel forces the
selection of biomarkers with i) high “diagnostic” value, ii) dichotomic expression, and iii) little overlap
with other markers in the panel. A gating strategy to cluster classification(29,47) is a consequence.

This sparing choice results in a deductive approach to the cell classification, which is not ideal to
discover new cell types(44) and prone to overlook unexpected reactivities.

The selection and validation of the antibodies for in-situ staining(48) are made in general either in
unrelated substrates (cell extracts, FCM, tumor clonal proliferations) or in tissue staining devoid of
phenotypic detail, mostly derived by single color IHC (see Supplementary Data S1(47) as an example).
Strong staining by visual inspection is favored while concurrent additional weak tissue reactivity is
ignored and cataloged as “background.”

Dimensionality reduction algorithms-based analytical pipelines (DRAAPs) extract from spatial
images granular data which cannot be acquired by human eye-guided visual representation nor bymanual
signal thresholding. Both Phenograph and BRAQUE sample the whole range of pixel values, with the
difference that BRAQUE provides a phenotypic profile for each cluster, which is based on statistically
ranked characterizing markers, chosen from the whole biomarker set, agnostic of the cell type definition
meaning and not relying on preset thresholds. The roster of cluster-defining markers includes expected
diagnostic Abs, but also unexpected novel expressions such as CD35 and podoplanin (PDPN) on FRC
and CD107a/LAMP1 on sinus lining Live1+ endothelial cells. The advantage of BRAQUE and Flow-
SOM(49) is to provide marker-agnostic cluster-by-cluster evaluation of the key markers statistical
relevance (BRAQUE) or mean marker intensity (“star charts”; FlowSOM), and to present the evidence
to human judgment.

BRAQUE introduces an innovative data pre-processing step, Lognormal Shrinkage, which is able to
enhance input fragmentation by fitting a lognormal mixture model and shrink each component toward its
median.(19) It is therefore able to further subdivide signals in the low range and feed these discretized
values to the DRAAP. The final effect is somewhat analogous to the introduction of the “logicle”module
for FCM.(6)

As a result, BRAQUE is ranking AE3 levels in FRC and in those cells only in the significant first or
second tiers (see Supplementary Tables) despite the very low levels. In other words, BRAQUE provides
statistical strength to the visual perception in Figure 7c that AE3 and LMW KRT are co-expressed, thus
validated according to the “differential antibody” validation criteria,(21,50) but in those cells only. Worth
noting that BRAQUE allocates the CK signal in B cells only and not in other hematolymphoid cells
(Supplementary Data), and in the lowest tier when significant.

Notably, there is another antibody which unexpectedly shows up in FRC: CD35 (Supplementary Tables
and Supplementary Figure S4). CR1 (the protein name of CD35) is not listed in the Human Protein Atlas
(https://www.proteinatlas.org) to be expressed in fibroblasts and in LN, only in the follicular dendritic cells,
B cells and macrophages.

CD107a (LAMP1) is listed by the Human Protein Atlas as ubiquitous, however, according to
BRAQUE, is differentially expressed only in Lyve1+ endothelial cells and some types of macrophages.
These data would not be anticipated by a traditional imaging (Supplementary Tables and
Supplementary Figure S4) or image analysis. Interestingly, BRAQUE do not list LAMP1 among the
ranked markers in neutrophils (Supplementary Data), because the mean expression in these cells falls
within the average variation of the rest of the cells.

Our experience from ongoing research (manuscript in preparation) is that the analytical power of
DRAAPs and of BRAQUE in particular will discover quite a few other examples of “validated”
antibodies which need to be reassessed because of single cell classification. Thismay be due to inadequate
validation upfront however we favor the hypothesis of missed low-level expression during antibody
characterization.

The shortcomings of a visual-guided appreciation of in situ immune detection are numerous.
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There are published data showing the expression of certain biomarkers which have never been
reproduced by in situ staining; one example is CD5, shown byRNA and protein on conventional dendritic
cells type 2 (cDC2) by high dimensional analysis(51–57) but not on tissuewith in situ IF (Wood et al.(58) and
manuscript in preparation). Another example is AID, the enzyme required in the nucleus to performDNA
alterations, which for some time has been detected only in the cytoplasm(59) and still not detected(60) in the
presence of the RNA message.(61)

Notices about the limitation of an eye-guided approach in high-dimensional studies have just begun to
appear in the specialized literature.(62,63)

DRAAPs sensitivity is superior to IA tools used in a conventional setting of low-plex staining.
However, saying that DRAAPs are more sensitive is an oversimplification, which blurs the details of
how this result is acquired.

First, the algorithm computes themean expression of all markers in a given cell against all others.Most
importantly, data are analyzed as continuous variables, as for FCM,(64) because they use normalizedmean
signal intensity data from single cells, despite the fact that biomarkers may be selected for all-or-nothing
expression.

Second, there must be enough biomarkers in the panel in order to classify as different cells which
would otherwise be clustered together. Note that DRAAPs can identify cells not only based on present, but
also on absent markers.(65)

Third, the algorithm must be robust enough not to be disturbed by noise.(29)

Fourth, unlike Principal Component Analysis (PCA) which requires at least 2 dimensions, other
DRAAPs do not have a minimum number of dimensions to identify meaningful relationships among the
data; however, the higher the number of dimensions/parameters provided, the better the discriminative
power.

And as a word of caution, fifth, DRAAPs work in a relative space run by mathematics, and can score
segmented cells as “negative” for a given biomarker, because statistically below a “mean average” or not
above the noise level; in some cases the mean average signal may be considered “positive” by human
visual evaluation.

In case the markers are not gated in advance, the product of the DRAAPs is a probabilistic phenotype,
because of the inner mathematical working of the algorithm. To go from there to a cell-type cluster
classification, other steps are required: deep learning cell classification(66) and/or human intervention,
neither envisioning visual appreciation of images.

In conclusion, it is about time for hyperplexed spatial proteomics to reduce the dependency from
multicolor IF images and the biases associated with human vision and to embrace a space savvy
bioinformatic approach like the one that FCM and scRNAseq currently employ. The huge bonus of
relinquishing visual imaging and gating is the ability to discover new cell types and cell functions,(66) at
the cost of revisiting the significance and specificity of the biomarkers which identify such novel
populations.

Abbreviations

Ab antibody
BRAQUE Bayesian Reduction for Amplified Quantization in UMAP Embedding
CK cytokeratin
CYTOF cytometry by time of flight
DAB diaminobenzidine
DRAAP dimensionality reduction algorithms-based analytical pipeline
FCM flow cytometry
FDC follicular dendritic cells
FFPE formalin-fixed, paraffin-embedded
FRC fibroblastic reticular cells
IA image analysis
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IHC immunohistochemistry
IF immunofluorescence
IHC immunohistochemistry
LMW-KRT low molecular weight keratins
MILAN Multiple Iterative Labeling by Antibody Neodeposition
scRNAseq single cell RNA sequencing
TSA tyramide signal amplification
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