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Abstract 

Manual annotation of medical image datasets is labor-intensive and prone to biases. 
Moreover, the rate at which image data accumulates significantly outpaces the speed 
of manual annotation, posing a challenge to the advancement of machine learning, 
particularly in the realm of supervised learning. Self-supervised learning is an emerging 
field that capitalizes on unlabeled data for training, thereby circumventing the need 
for extensive manual labeling. This learning paradigm generates synthetic pseudo-
labels through pretext tasks, compelling the network to acquire image representa-
tions in a pseudo-supervised manner and subsequently fine-tuning with a limited set 
of annotated data to achieve enhanced performance. This review begins with an over-
view of prevalent types and advancements in self-supervised learning, followed 
by an exhaustive and systematic examination of methodologies within the medical 
imaging domain from 2018 to September 2024. The review encompasses a range 
of medical image modalities, including CT, MRI, X-ray, Histology, and Ultrasound. It 
addresses specific tasks, such as Classification, Localization, Segmentation, Reduction 
of False Positives, Improvement of Model Performance, and Enhancement of Image 
Quality. The analysis reveals a descending order in the volume of related studies, 
with CT and MRI leading the list, followed by X-ray, Histology, and Ultrasound. Except 
for CT and MRI, there is a greater prevalence of studies focusing on contrastive learning 
methods over generative learning approaches. The performance of MRI/Ultrasound 
classification and all image types segmentation still has room for further exploration. 
Generally, this review can provide conceptual guidance for medical professionals 
to combine self-supervised learning with their research.
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Introduction and background
Medical imaging is an interdisciplinary field that harnesses specific substances—like 
X-rays, electromagnetic fields, and ultrasound—to interact with the human body, 
capturing its structure and density through visual representations. These diagnostic 
images are invaluable in clinical settings, offering insights that aid physicians and sur-
geons in diagnosing and assessing medical conditions. Over the past few decades, the 
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exponential growth in the volume of medical images has outstripped the availability of 
human resources, highlighting an urgent need for the integration of automated diagnos-
tic and analytical systems into the medical imaging workflow. Such systems are poised to 
enhance diagnostic efficiency and ensure the precision of medical evaluations, thereby 
fortifying the quality of patient care.

Advancements in the field of computer vision (CV) have provided a novel and promis-
ing solution for medical image analysis and diagnosis to help doctors in patient care and 
treatment. Since the release of AlexNet [1] in 2011, CV has begun to enter the stage of 
deep neural networks structured such as convolutional neural networks (CNNs), which 
makes deep learning a popular tool for medical image analysis. Especially after the 
release of Vision Transformer (ViT) [2] in 2020, CV research entered a new era where 
two backbone architectures—convolutional neural networks and transformers—coex-
ist as mainstream approaches. These deep network-based Computer-Aided Diagnosis 
(CAD) systems have gradually demonstrated accuracy comparable to or even exceed-
ing that of human experts, including X-ray [3–9], computed tomography (CT) [10–20], 
magnetic resonance imaging (MRI) [21–27], histology [28–36], ultrasound [37], and 
hybrid [38–48].

However, many successful studies have adopted the pattern of supervised learning in 
the past, which requires tens of thousands of data and corresponding labels for train-
ing. These labels seriously affect the model performance, and the majority require man-
ual annotation. Annotating training data costs the labor of numerous imaging experts, 
which is expensive and time-consuming. In pathological images, subjective bias can lead 
to the low quality of labels [49], and manual labeling of 3D images can pose security 
issues of privacy exposure [23]. In addition, the performance and generalization ability 
are limited by the size of the dataset, leading to a lack of practical significance in train-
ing models using small datasets. Overall, the annotation and quantity limitations of data 
when using supervised learning to train models have become the main challenges for 
deep neural networks in medical image diagnosis applications, limiting research on con-
structing effective models in different clinical use cases.

Transfer learning has become a new attempt to alleviate these challenges. Transfer 
learning first pre-trains the neural network on a large dataset (such as ImageNet [50]), 
then adds an adaptation layer [51] to the network and fine-tunes the whole with rel-
atively smaller labeled data to improve performance [52]. Transfer learning can reuse 
pre-trained neural networks in different tasks, saving training time and shrinking the 
need for labeled data what is more. The key to this mechanism working is that the image 
features and low-level statistics learned by the network during pre-training can be 
reused [53]. Transfer learning has achieved good results in the natural image field but 
performs poorly in transferring from the natural to the medical image field [54]. This 
may be because the features of natural images are not similar to those of medical images. 
Besides, the number of labels in natural is much larger than that of medical images (e.g., 
imagine-1 k [55] has a thousand categories), which may result in the medical image field 
not requiring such many classes of pre-trained models [56].

To overcome the generalization problem of transfer learning in the medical field, and 
driven by the goal of reducing manual labeling, self-supervised learning (SSL) is starting 
to be the research preamble for the pre-selected connectivity paradigm in CV research. 
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SSL uses unlabeled datasets and the pretext task to learn semantic features in images 
and does not require manual labeling [24]. A small amount of labeled data is used to 
fine-tune the pre-trained network and achieve satisfactory performance. This upstream–
downstream training mechanism (pre-training and fine-tuning) allows the use of a large 
number of unlabeled datasets (as close as possible to the type of target task) from the 
Internet to participate in the pre-training to improve the performance while requiring 
only a small amount of labeled data (the same type with the target task) with super-
vised learning to improve the performance further. With the success of SSL in the natu-
ral image field, more and more researchers deem SSL as a promising way to utilize large 
amounts of unlabeled data in clinical practice and medical research. In recent years, 
many studies have demonstrated the effectiveness of SSL in medical image research 
tasks, such as classification, segmentation, false-positive reduction, and image enhance-
ment. Hence, it is valuable to summarize these SSL studies in the medical image field 
and the most appropriate implementation strategies.

This review will look back at the recent works on SSL and the results of its role in 
medical image diagnosis, and discuss the shortcomings and further directions of current 
research in medical imaging. The review aims to provide a general reference for imag-
ing practitioners and researchers in the CV field, or readers interested in both fields, to 
understand SSL. This review will first provide a background on the characteristics and 
development of SSL and then implement a comprehensive review of 59 recent works in 
which SSL has been applied to medical image diagnosis, covering X-rays, CT, MRI, his-
tology, and ultrasound images. Similar SSL reviews have been conducted before us, such 
as Huang et al. [57] and VanBerlo et al. [58]. Compared to their work, this review updates 
the research that emerged after 2022 and includes multiple tasks, such as segmenta-
tion, image enhancement, and false-positive reduction besides classification. Compared 
to VanBerlo et al., this review contains histological image studies and excludes articles 
that partially or all use unpublished datasets, so all included studies have a reproducible 
basis.

Materials and methods
Study outline

This review mainly focuses on the research of SSL in computer vision, involving the 
fields of natural and medical images. Since SSL nowadays uses deep neural networks 
almost as the basic algorithm, the research covered is based on CNN or ViT as back-
bones, and some complex models may also have both. The research on SSL will be sum-
marized into two categories: contrastive learning and generative learning. The initial 
section delved into studies about the natural image domain, establishing a foundation 
for the discussion, followed by a summary of the application of SSL in medical images. 
After that, the enumeration of the respective strengths and limitations of each study is 
accompanied by a comparative analysis. In the conclusive segment, the review discusses 
previous research and draws conclusions and future recommendations.

Data acquisition

The data for the review mainly selected peer-reviewed journal and conference articles 
publicly published between January 1, 2018, and September 10, 2024. For SSL papers in 
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the natural image domain, this review is only cited to demonstrate the categories and 
developments of SSL, so that would only include representative articles with milestone 
significance. For the medical image, Google Scholar and PubMed are selected as data-
bases, and the search keywords used are “self-supervised learning” +  “Medical image”, 
“X-ray”, “CT”, “MRI”, “Histology”, or “Ultrasound”. The search results were checked by 
the title and abstract to determine their relevance, and irrelevant articles were excluded. 
In the scrutiny of SSL research about medical images, the review process deliberately 
excluded studies that relied solely or partially on proprietary datasets, and those that 
partially utilized public datasets without clear delineation of the utilized segments, 
due to the infeasibility of comparative analysis. Ultimately, 46 articles were retained for 
detailed examination and discussion within this review.

Review
Background: deep neural network and self‑supervised learning

In the past decade, computer vision has been firmly bound to deep neural networks, 
and almost all research is based on a specific deep neural network algorithm—CNN or 
ViT. These two structures were created for computer vision tasks, and many improved 
algorithms have been derived based on them. This section reviews these two basic neu-
ral network structures to provide readers unfamiliar with deep learning with a more 
specific understanding of them. Afterward, the working mechanism of SSL will also be 
introduced.

CNN

CNN is a neural network architecture suitable for image tasks, and its conception 
emerged in 1989 [59]. Unlike a Multilayer Perceptron (MLP), a CNN consists mainly of 
convolutional and pooling layers. The sensory field of the topmost convolutional layer 
already covers the whole image, so the CNN can extract any helpful attribute and has 
translational invariance (i.e., the target can be recognized no matter where it is located 
in the image). Each convolutional layer contains more than one filter, which can be 
tuned as hyperparameters. The pooling layer aims to reduce the size of the feature map 
by iterating and retaining only the maximum or average values in the latent space. Con-
volutional and pooling layers are stacked on top of each other hierarchically, allowing 
the CNN to extract basic visual features that can ultimately be used for a specific target 
task. The more layers of CNN, the more refined the abstract information that represents 
the image. This gives CNN greater robustness to image variations, scaling, and distor-
tion relative to MLP and greater applicability in CV. Its advanced performance has been 
achieved in datasets such as ImageNet, which is known as a typical representative tech-
nique in supervised learning.

CNN models usually have multilayer networks, the last few layers being MLP with 
BackPropagation (BP). The convolutional and pooling layers scan the entire pixel 
matrix in left-to-right and top-to-bottom directions, where the pooling layer can be 
in the form of Max, Min, and Average. As an example of a pixel matrix, the compu-
tation of the convolution layer and the maximum pooling layer is shown in Fig.  1, 
where the convolution layer uses a dot product. The convolution kernel size is not 
fixed and is usually an odd number, such as a 3 × 3 matrix [60]. Besides, the stride of 
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the convolution and pooling kernel scans is not fixed, as long as it does not exceed 
the side length of the convolution/pooled kernel.

Since the emergence of AlexNet, CNN has skyrocketed to several times that of 
classical machine learning algorithms in the image field. Following this, a series of 
classical models arose based on AlexNet. In medical image diagnostics, there have 
been countless studies based on CNNs from 2012 to the present, generating tens 
of thousands of papers annually. The mainstream CNN models are divided into 
two groups called Visual Geometry Group (VGG) [61] (which focuses on deepen-
ing the network) and NetWork In NetWork (NIN) [62] (which focuses on enhancing 
the function of the convolutional module) and combined to produce the Inception 
ResNet [63] eventually. However, a problem covering all CNN models can be identi-
fied from the computational principles of the CNN convolutional layer in the above 
paragraph, i.e., it is difficult to establish connections between pixels beyond the 
range of the convolutional kernel. For example, the pixel regions in the upper left 
and lower right corners cannot overlap each other’s perceptual fields regardless of 
the convolutional layers, which makes it difficult for CNNs to focus on global infor-
mation. This difficult-to-improve defect leads to the limitations of CNNs in image 
semantic understanding.

Fig. 1 Computational procedure for convolutional and pooling layers



Page 6 of 36Zeng et al. BioMedical Engineering OnLine          (2024) 23:107 

Vision transformer

ViT is a model for applying the transformer [64] to image classification proposed by the 
Google team in 2020 [2]. Although it is not the first paper that uses a transformer for 
vision tasks, it still became a landmark work in applying the transformer in CV since its 
model is simple, effective, and scalable. When the training dataset is not large enough, 
ViT usually performs worse than ResNet [60] of the same parameters scale because it 
lacks two inductive biases compared to CNN. One is localization, i.e., neighboring 
regions on the image have similar features, and the other is a translation equivariance. 
However, the most central conclusion in the ViT paper is that when there is enough data 
for pre-training, ViT could break through the limitation of inductive biases and achieve 
better migration results in downstream tasks than CNN [2]. Meanwhile, the self-atten-
tion mechanism of ViT can overcome the limitations of CNN, extracting the context 
dependency relationship in the picture easily, which brings a revolutionary change in the 
CV field.

Transformer distinguishes itself from CNN through its self-attention mechanism, sim-
ilar to looking up a dictionary. Taking the standard ViT structure as an example, ViT 
divides the input image into multiple patches ( n×16×16 ), and then projects each patch 
into a fixed-length vector (Fig. 2), adds a class token to these vectors, and then adds ran-
dom position vectors to all the patches. The internal structure of the encoder is shown 
in Fig. 3, in which the whole encoder can be concatenated as needed, and the number 
of concatenated encoders is a significant parameter of the transformer. In Multi-head 
Attention, the number of heads is also an important parameter, which determines the 
size of the transformer together with the number of encoders.

Transformer has led to significant advances in several areas of vision, such as target 
detection [65], video classification [66], image classification [67], and image generation 
[2]. In addition to the standard ViT, improved ViT algorithms such as Swin Transformer 

Fig. 2 Example of input patches generation for ViT
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[68], which draws inspiration from CNN ideas, and DETR [65], which can better focus 
on the relationships within images, have also emerged one after another. Some of these 
models applying ViT techniques for recognition can meet or even exceed the results 
of SOTA solutions in this field. In the field of medical images, some researchers have 
directly discarded CNNs and used ViT only to build networks [69] toward one force 
breaking all laws direction. On CT datasets, the transformer retains more spatial infor-
mation than CNNs, and models using it not only outperform CNNs [70, 71] but are also 
faster to train [72]. Transformer also performs well on 2D types like X-ray images and 
even outperform human experts on anomaly detection tasks [73]. It is far from reaching 
a performance bottleneck today and has no insurmountable drawbacks. Transformer is 
better suited for CV tasks than CNN during sufficient data, and it represents the future 
direction and a broad path.

Self‑supervised learning

Supervised learning requires data labels to train some or all of the model, which requires 
a certain amount of labeled data to ensure initialization. SSL neither requires labeled 
data nor is an extensive learning paradigm like unsupervised learning. It creates an 
artificial pretext task that allows the model to learn feature extraction as accurately as 
supervised learning. SSL has been broadly categorized into two paths, called generative 
learning and comparative learning.

Generative learning The easiest way to understand generative learning is to treat it as a 
destruction/reconstruction effort, with the most common form being generative adver-
sarial networks (GAN). The model crops or distorts an intact image X to Z and restores 
it to its original state ( G(Z) = X ). As the model is training, it learns the most important 
image features (e.g., the difference between a cat and a dog is in the ears, mouth, and eyes) 
and thus can parse the emerging image. Generative learning networks usually contain 
encoders and decoders, with which they are competing with each other. The encoder 
refines the input into high-level information, and the decoder reduces this information to 
the original input. The two networks work together to optimize until they are stable, and 
the encoder is usually utilized for some task of interest after training is complete, such as 
image style conversion [74].

Contrastive learning Contrastive learning usually aims to enable network learning to 
parse high-level representations of images, in which similar instances are more tightly 
coupled together in latent space because of akin features, while different instances are 
relatively far away. (For example, any photograph of a person is characteristic of that 
person, while photos of others can be recognized even if they have the same pose in 

Fig. 3 The workflow of ViT
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the same place.) Contrastive learning does not need to focus on the details of instances 
and only abstractly distinguishes various representations, which are more generaliz-
able. Furthermore, contrastive learning represents a framework that allows different 
backbone types. In the case of the CNN backbone, two instances are passed to two net-
works of generally the same structure to output U(I1) and V (I2) for comparison. The 
two networks share the same weights or use momentum updating [75] to update one 
network by the other. The contrast loss of the outputs forces two networks learning, i.e., 
the smaller the loss of the same class or the larger the loss of the different class, the better 
( Loss = U(I1)− V (I2) → 0).

Typical categories of self‑supervised learning

There is a giant amount of unlabeled data in the world, and ways to harness it can truly 
realize the potential of the internet. SSL is a subfield of machine learning and does not 
require human markup for training, unlike supervised learning. The regular workflow 
of SSL is shown in Fig. 4, which learns the representation from an upstream pretext task 
and transfers the representation parse ability to the downstream to solve the target task 
of interest. The pretest task replaces the role of labels in model training, so unlabeled 
data from any source not necessarily relevant to the target task can be utilized. The 
upstream of SSL pre-trains the network, and then the pre-trained weights are fine-tuned 
using specific data in the downstream. The pretext and the target task domains are not 
necessarily the same, similar to transfer learning. However, SSL is best pre-trained using 
the same type of data. Networks pre-trained using natural images are usually inferior to 
upstream networks pre-trained directly using medical resources, even after fine-tuning. 
The visual and semantic differences between natural and medical images may be why [3].

Generative learning in SSL

Autoregressive Autoregressive (AR) models are usually Bayesian network structures in 
SSL. PixelRNN [76] and PixelCNN [77] separately use RNN and CNN as backbone con-
structs. Their general idea is to model the discrete probability distribution of an image 
and encode the dependencies of different pixels in the image. The neural network pre-

Fig. 4 The typical workflow of self-supervised learning
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dicts the conditional distribution by scanning each pixel and then generates the next pixel 
sequentially. For example, PixelRNN generates the next pixel using all previous pixels and 
the specific unidirectional decomposition probabilities in the 2D image, its pretext task 
compares the predicted pixel and the original pixel. The subsequent PixelCNN relies on 
multi-channel convolution to acquire pixel sequences of different lengths of the image at 
once to learn the probability distribution, which saves a lot of computation (The training 
phase leverages parallel processing for efficiency, while the inference phase remains a 
sequential pixel-wise operation). This mechanism relies on masked convolutional kernels 
to mask or blur parts of the image, where each kernel contains lots of masked channels 
with different sizes. Figure 5 represents the main implementation idea of the two studies.

Flow‑based model The flow-based model is capable of accurate likelihood estimation 
and inference, generally estimates the high-dimensional density p(x) of the input x and 
then infers the z that can describe x through p(x) . The model is trained by reducing the 
loss between z and x , i.e., using an abstract representation of itself to reconstruct itself 
as a pretexting task. RealNVP [78] devised novel affine coupling layers to perform the 
estimation. Further, Glow [79] introduced reversible 1× 1 convolution to simplify Real-
NVP’s work and achieved good results. The loss function of this type can be represented 
by Formula (1).

Autoencoding model Autoencoder (AE) models typically consist of two components: 
an encoder and a decoder. The encoder maps the input data into latent space for sam-
pling, which is an order of magnitude faster than sampling in pixel space. The decoder 
reconstructs the input from the latent space and collaboratively updates the encoder and 
decoder by comparing the output to the original input. Only the encoder will be used 
for downstream tasks once the collaborative update has stabilized. Comparison of the 

(1)Loss = min
(

xi − p
(

f (xi)
))

Fig. 5 Left: PixelRNN utilizes all previous pixels to predict the current pixel. Each forward propagation is 
computed from the top left to the bottom right, and the predicted value of the current pixel is derived from 
the likelihood product of all previously predicted values; Right: PixelCNN uses masked convolutional kernels 
to mask the image in parallel. Each convolution (mask) can obtain all the required pixel regions and predict 
the target pixel accordingly in time-saving
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generated image with the original image is the pretext task. It may become the most 
popular generative model due to its flexibility. For example, VQ-VAE-2 [80] uses a multi-
scale hierarchical organization mechanism that maps local and global information to the 
latent space through different hierarchical encoders and then converts these continuous 
features into discrete ones. The decoder reconstructs the discrete features to images and 
compares them to the original to push training forward. Figure 6 shows the workflow of 
its multilevel encoder/decoder. Typically, this type of model is deployed in three ways, 
such as denoising the image (input the blurred image during training and forcing the 
model to restore the original), classifying by looking for similarities through Euclidean 
distance in latent space, and leveraging the trained encoder for downstream tasks, includ-
ing but not limited to classification and segmentation.

Hybrid generative model Hybrid generative models are structures that combine AE and 
flow-based models [81] or AR and AE models [82, 83], typically used in the natural lan-
guage domain and graph generation. Such models generally can combine the advantages 
of different model types, but complex steps leading to more processing time are hard to 
avoid.

The different typical types of generative learning mentioned in this section are listed in 
Table 1.

Contrastive learning in SSL

Contrast learning in SSL has evolved through four phases: Exploration stage, Merging 
stage, Maturity stage, and Extension stage. A representative working relationship of 
these is schematically shown in Fig.  7. Contrast learning using SSL has outperformed 
supervised learning already on ImageNet [84, 85]. One important reason is that the net-
work has mastered higher-level features in the learning process of multi-view images 
[86], thereby recognizing images in higher dimensions.

Exploration stage—no fixed training paradigm In this period, methods, models, objec-
tive functions, and pretext tasks are not unified, and all the work is in the exploration. The 
first representative work in this period is InstDise [87], where the authors consider each 

Fig. 6 The typical workflow of self-supervised learning
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image as one class and hope that the model can learn the image representation to distin-
guish all kinds of classes. Each image with different views is positive, and other images 
are negative samples. A memory bank stores all negative samples and updates them every 
epoch. The authors set the representation vector of each image to 128 dimensions to 
control the size of the memory bank since there are 1.28 million images in the ImageNet 
dataset. Considering the time consumption, only 4096 negative samples were randomly 
selected to participate in comparison in the forward propagation. The second representa-
tive work is InvaSpread [88], which abandons the memory bank and only utilizes the data 
in the mini-batch. Each instance in the mini-batch is augmented once into 2N positive 

Table 1 Summary of typical types in generative learning

Type Mechanism Pros and Cons

Autoregressive Predicts the current image by all previous 
pixels

Numerous amounts of data are not required as 
the model can predict, but the data needs to 
be autocorrelated, and the model cannot easily 
utilize the context simultaneously

Flow-based The data itself is estimated using the likeli-
hood of the abstracted representation of the 
data (high-dimensional features). Half of the 
features are returned to the previous step 
after each abstraction to continue participat-
ing in the abstraction

The trained encoder can be used directly in 
reverse to become a decoder, but it also limits 
the performance of the whole model

Autoencoding Encoding the image as a high-level feature 
(shrinking) and then recovering it forces the 
encoder–decoder to learn the representation 
of the image

Good generalization ability and can also utilize 
context at the same time. However, it is sensi-
tive to anomalous data and does not recognize 
the labels of the data itself

Fig. 7 The representative works of contrastive learning in each stage
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samples, the rest of the 2(N − 1) as negative samples. Similarly, CMC [89] augments an 
image four times and uses it as its positive sample, and the rest 4(N − 1) samples are nega-
tive samples.

Merging stage—two studies determine the  future direction The most significant rep-
resentations of the second stage are MOCO v1 [75] and SimCLR v1 [90]. MOCO v1 
summarized contrastive learning as a dictionary query problem, a memory queue, and 
momentum encoder technology have been added to the workflow to form a giant and 
constant dictionary for negative sample saving. The memory queue dynamically updates 
the representation of negative samples in each small batch training, which ensures low 
time consumption and stable update representation. SimCLR v1 augments samples twice 
to form N positive and 2(N − 1) negative samples and adds a projector layer (i.e., MLP). 
Its structure only added a projector layer compared with nvaSpread [88] but achieved a 
better performance.

Maturity stage—training only  using positive samples The third stage of comparative 
learning discards negative samples completely, avoiding the overhead of storing and 
updating a negative library. The purpose of using negative samples in previous stages was 
to prevent the models from falling into shortcut solutions. It is envisioned that without 
constraints, all models use the same output for any input so that models will fall into a 
situation where the loss is 0 but meaningless, becoming a model collapse. However, start-
ing from BYOL [91], a representative work of this phase, the model was trained without 
negative samples and can achieve satisfactory results. Simsiam [92] streamlined many 
modules in the past work to verify the root cause affecting the model performance. It 
did not need negative samples, a large batch size, and a momentum encoder but instead 
ended up with fantastic modeling results. In conclusion, the third phase did not make 
structural changes but achieved good results and avoided negative samples as an influ-
encing factor. The BYOL and Simsiam architectures are shown in Fig. 8 [92].

Fig. 8 Architecture bet1ween BYOL and Simsiam
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Extension stage—pursue higher performance with  vision transformer Since the emer-
gence of ViT, many contrastive learning tasks have begun to use ViT as a backbone due 
to its powerful ability. MOCO v3 [93] and DINO v1 [85] are the representations in this 
stage. The structure of MOCO v3 is similar to Simsiam, except its CNN is replaced by 
ViT. In addition to ViT, DINO v1 uses a centering normalization operation in the teacher 
encoder to avoid model collapse. That is, average the data in the batch and then subtract 
this average from all instances in the batch.

The typical works of generative and contrastive approaches are listed in Table 2.

Self‑supervised learning in medical image application

Most of the representations of SSL development have arisen in the natural image field, 
and one reason may be that natural images are more intuitive, i.e., the visualization of a 
model can be easily judged without prior knowledge. In relative terms, medical images 
generated by medical devices contain different semantic information, contextual struc-
tures, and representation types, which require independent research and evaluation. In 
most cases, SSL works in medical images have a similar workflow with differences in 
pretext tasks, embedded modules, and encoder types. The rest of this section summa-
rizes the achievements of SSL on different image types, and Table 3 summarizes some 
valuable works.

X‑ray

SSL has had many successful studies in medical imaging. In the X-ray images field, Azizi 
et  al. [3] demonstrated that in self-supervised frameworks such as SimCLR v1, first 
using ImageNet for unlabeled self-supervised pre-training, followed by routine medical 
image pre-training and fine-tuning can effectively improve performance. This conclu-
sion is based on X-ray and dermatology images, providing an optimization approach for 

Table 2 Summary of SSL approaches for different types or stages

NLL Negative log-likelihood, the smaller the better, ACC  Top 1 accuracy, the higher the better The research in contrastive 
learning is based on ResNet50 or ViT-S as the backbone

Category Type or stages Refs. Pretext Task Dataset Perf

Generative learning Autoregressive PixelRNN [76] Self-pixel prediction MNIST [94]
CIFAR-10 [95]
ImageNet [50]

80.75 (NLL)
3 (NLL)
3.86 (NLL)

PixelCNN [77] CIFAR-10 [95]
ImageNet [50]

3.14 (NLL)
3.57 (NLL)

Flow-based RealNVP [78] Self-pixel abstract-recon-
struction

CIFAR-10 [95]
ImageNet [50]

3.49 (NLL)
4.28 (NLL)

Autoencoding VQ-VAE-2 [80] Local/global information 
mapping-reconstruction

FFHQ [96] 3.41 (NLL)

Contrastive learning Exploration InstDisc [87] Positive and negative 
samples comparison

ImageNet [50] 54% (ACC)

Merging SimCLR v1 [90] 69.3% (ACC)

MOCO v1 [75] 60.6% (ACC)

Maturity BYLO [91] Different image view 
comparison

74.3% (ACC)

Simsiam [92] 71.3% (ACC)

Extension MOCO v3 [93] Different image view 
comparison (ViT)

77% (ACC)

DINO v1 [85] 77% (ACC)
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Table 3 Summary of representative SSL works that contain downstream tasks in the medical image

Refs. Type Pretext task Dataset Metrics Perf

Taleb et al. [23] G & C Contrastive predictive
Rotation prediction
Jigsaw puzzles
Relative patch location
Exemplar networks

BraTS 2018 (MRI) [115] DSC 85.27
86.04
83.79
84.86
84.71

Haghighi et al. [40] Discrimination
Image restores

11 datasets include
ChestX-ray14 [106]
CheXpert [97]
And Montgomery 
(X-ray) [142]

AUC [106] 81.12 ± 0.17
87.59 ± 0.28

IOU [142] 98.24 ± 0.09

Cox et al. [117] C Masked volume in-
painting
Random rotation
Contrastive coding

T1w and T2-FLAIR from 
the UK Biobanks (MRI) 
[162]
BraTS 2021 (MRI) [115, 
128, 129]
ATLAS v2 (MR) [163]

DSC For pre-train
0.9115
0.712

Qi et al. [116] Reconstructing original 
images based on partial 
observations

BraTS 2021 (MRI) [115, 
128, 129]
Amos 2022 (MRI) [164]

86.75 ± 0.75
57.77 ± 13.93

Zeng et al. [109] Generative adversarial FS-CAD (X-ray)
XCAD (X-ray)

0.828
0.755

Yu et al. [114] Positive and negative 
pairs
Neighboring crops 
contrast

COPDGene (CT) [151]
MosMed (CT) [152]

ACC 86.3 ± 0.7
65.4 ± 2.5
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Table 3 (continued)

Refs. Type Pretext task Dataset Metrics Perf

Zhu et al. [38] C Cube disorder
Cube spin
Cube mask

BraTS 2018 (MRI) [115] DSC 81.70

Spitzer et al. [29] 3D distance BigBrain (His.) [123] 0.80

Lin et al. [35] Class comparison
Coloration

MoNuSeg (His.) [124]
CPM (His.) [125]

74.41
73.73

Taleb et al. [41] G Multimodal data gen-
eration
Puzzle solving

BraTS 2018 (MRI) [115]
Prostate (MRI) [126]
CHAOS (MRI/CT) [127]

81.89 (10%)
80.69 (10%)
93.85 (10%)

Chen et al. [24] Context restoration BraTS 2017 (MRI) [115, 
128, 129]

84.27 25%)

Tajbakhsh et al. [11] Rotation
Reconstruction

LIDC-IDRI (CT) [130] DSC
ROC

0.909 (10%)
0.645 (10%)

Wu et al. [14] Pixel disorder
Nonlinear transforma-
tion
Patches exchange
Internal cropping
External cropping

AUC 97.17 ± 0.32

Zhao et al. [42] Pixel shuffling OCT (CT) &
Chest X-ray [131]

0.9642
0.8265

Wang et al. [21] Multi-input correspond-
ence
Geometric transforma-
tion

PROSTATEx (MRI) [132] 0.753 (10%)

Zhou et al. [12] Nonlinear
local exchange, external 
cropping
Internal cropping

LUNA2016 (CT) [133]
ChestX-ray 14 [106]

98.34 ± 0.44

Haghighi et al. [47] Self-discover
Self-classification
Self-restoration

98.47 ± 0.22

Tao et al. [45] Rubik’s cube restoration NIH Pancreas computed 
tomography (CT) [134]
MRBrainS18 (MRI) [135]

DSC 73.3 (10%)
77.56

Chaitanya et al. [25] C Positive and negative 
pairs

ACDC (MRI) [136]
Prostate (MRI) [137]
MMWHS (MRI) [138]

0.912
0.697
0.787

Srinidhi et al. [28] Spatial correspondence 
of resolution predicting

BreastPathQ (His.) [139]
Camelyon 16 (His.) [140]
Kather multiclass (His.) 
[141]

ICC
AUC 
ACC 

0.701 (10%)
0.836 (10%)
0.976 (10%)
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situations where the number of medical images is insufficient. Azizi et al. [5] and Li et al. 
[6] conducted the same type of research and reached the same conclusion.

Gazda et al. [4] tested the SSL transferability of X-ray images using a framework simi-
lar to SimCLR v1. The study used CheXpert [97] as the training set and tested it on four 
other X-ray datasets. The results indicate that even with the same image type, images 
from different sources can lead to unstable performance of the model. Furthermore, 
Xing et al. [7] tested the masking rate of the Masked AutoEncoders (MAE) framework 
[98] on X-ray images and finally obtained the best rate of 0.4. Reversely, Imagawa et al. 
[99] found that fine-tuning with 60% labels on the SimCLR framework can achieve per-
formance equivalent to supervised learning, and better performance can be achieved by 
retaining a higher proportion.

Tiu et al. [8] used images and corresponding clinical reports to train the model that 
the performance obtained can surpass supervised learning. However, clinical reporting 
means images have been reviewed and diagnosed, which requires as much human labor 
as labeling.

Dong et al. [9] used a sliding window mechanism to feed high-resolution images. Each 
image will be divided into many patches, and two augmented views of one patch become 
a positive sample pair, while the adjacent patches are negative samples. This framework 

Table 3 (continued)

Refs. Type Pretext task Dataset Metrics Perf

Nguyen et al. (2020) [10] G Confirm replacement
Replacement sources

StructSeg2019 (CT) 
[143]

DSC 91.02 (50%)

Fischer et al. [27] C Multiple views com-
parison

ACDC (MRI) [136]
MMWHS (MRI) [144]
Prostate (MRI) [137]

89.4 ± 03.6 (6)
80.4 ± 04.2 (6)
76.3 ± 05.6 (6)

Gazda et al. [4] Positive and negative 
pairs

Cell (X-ray) [145]
ChestX-ray 14 [106]
C19-Cohen (X-ray) [146]
COVIDGR (X-ray) [147]

AUC 96.9
78.1
91.5
86.0

Zhou et al. [46] ChestX-ray 14 [106]
LUNA2016 (CT) [133]

76.2 (10%)
84.4 (10%)

Li et al. [36] Camelyon 16 (His.) [140]
TCGA (His.) [148, 149]

0.9165
0.9815

Dong et al. [9] DBT (X-ray) [150]
Cell (X-ray) [145]

0.7848
0.8831

Yan et al. [100] Multiple views com-
parison

Chest X-ray 15 K [157]
RSNA2018 [158, 159]
COVID-19 Radiography 
Database[160]

0.96 (10%)
0.92 (10%)
0.925 (10%)

Sheng et al. [101] VinDr-CXR [161]
ChestX-ray 14 [106]

mAP50
AUC 

0.2502
0.7756 (10%)

Liu et al. [17] Rotated degree predic-
tion

LUNA2016 (CT) [133] FROC 0.906 (1/8)

Sun et al. [16] Patch contrast
Graph contrast

COPDGene (CT) [151]
MosMed (CT) [152]
COVID-19 CT [153–156]

ACC 80.8 ± 0.17
65.3
96.3

G and C represent generative and contrastive learning, separate. The table only contains classification, segmentation, and 
false-positive reduction task studies. If works use similar frameworks and the same dataset, only record the ones with 
better performance. The metrics they use include Dice Similarity Coefficient (DSC), Receiver Operating Characteristic Curves 
(ROC), Area Under Curve (AUC), Intraclass Correlation Coefficient (ICC), Accuracy (ACC), Intersection Over Union (IOU), and 
Free-response Receiver Operating Characteristic Curves (FROC). About parentheses contents after the number in the Perf., 
the percentage indicates the proportion of fine-tuning data used, the number between brackets represents the amount of 
fine-tuning annotations (if any), and the blank means that the article does not mention it
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adopts the pretext task of positive and negative sample pairs and the structure of an 
encoder and a projector, where only the encoder participates in downstream tasks.

Yan et al. [100] trained the encoder using the MOCO v1 paradigm, forcing the model 
to learn losses from the output features of both encoders. This study mainly focuses 
on protecting the privacy of fine-tuned datasets. It factorizes each residual layer of the 
backbone into two low-rank layers called LoRA, and after freezing the pre-training 
weights, adds Gaussian noise for parallel training. The essence of this study is to add 
Gaussian blur to the original image for confidentiality and freeze pre-training param-
eters to reduce the impact of noise on performance. However, increasing noise would 
hurt model training, and the idea of encrypting data needs to have a smaller impact on 
performance.

Sheng et al. [101] adopted a two-step training strategy: Barlow Twins [102] pre-train-
ing and Faster R-CNN [103] fine-tuning (ResNet50). Two different datasets were used 
in two steps to apply the model for abnormal area localization in lung X-ray images. 
This study provides new ideas for different framework combinations, without significant 
changes to the original structure.

Zhang et  al. [103] used the MAE framework to validate the transferability of adults 
to young children on four datasets: MIMIC-CXR [104], CheXpert [97], COVIDx [105], 
ChestX-ray 14 [106], and PediCXR [107, 108]. After pre-training on adult X-rays and 
fine-tuning on young data, its results are positive. Although this study does not have an 
innovation framework or model, it once again confirms the usefulness of a broader pre-
training dataset.

Zeng et al. [109] transformed photos of the same region in different states to perform 
generative adversarial tasks and finally fine-tuned the trained model for vascular seg-
mentation. This approach can be used for any task that involves before and after states, 
besides vascular segmentation.

CT

CT can be seen as a 3D X-ray image and has been widely used in clinical practice. In the 
study of the CT field, Nguyen et al. [10] established an analytical framework for organ 
segmentation and intracranial hemorrhage detection using semantic and spatial features 
using a standard self-supervised upstream and downstream pattern. This framework 
utilizes the spatial information of 3D data and the semantic information in 2D slices to 
train pretext tasks. Specifically, a portion of a 3D data slice will be replaced by the same 
region in another slice. The two labels of the task are whether the specific slice has been 
replaced and which slice the replaced region comes from. The entire framework is con-
cise and clear, and the only problem is that the lowest proportion of fine-tuning data 
used is 50%.

Tajbakhsh et al. [11] used rotation and reconstruction pretext tasks for the false-pos-
itive reduction in lung lobe segmentation and nodule detection, respectively. Two tasks 
were conducted independently with different network structures but the same dataset. 
The results of this study indicate that a self-supervised framework relying on a single 
simple task (single loss function) and CNN backbone may be insufficient performance 
for classification tasks.
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Zhou et  al. [12, 13] set up four schemes to deform images, i.e., non-linear, local 
exchange, outer cropping, and inner cropping. The outer cropping preserves the selected 
patches, while the inner deletes the selected patches. The input data set will be randomly 
transformed through three schemes, with 12 conversion paths in total. The transformed 
image will undergo loss calculation with the original image after passing through the 
encoder–decoder structure, and the encoder is used for downstream false-positive 
reduction classification of pulmonary nodules.

Wu et al. [14] and Huang et al. [15] combined image perturbation with self-supervi-
sion. The pretext task designed by it first divides the image into different crops, which 
undergo pixel rearrangement, monotonic Bessel curve nonlinear transformation [12], 
local patches exchange within the crop, and data generation through inner and outer 
cropping. The upstream network structure adopts an encoder–decoder structure, which 
is the difference between the restored and original image as a loss. Huang et al. [15] fur-
ther designed a Domain Adaptation Block but achieved relatively lower performance.

Sun et al. [16] used the anatomical features of medical images to help establish pseudo-
labels that similar regions in images can be represented as similar nodes (graphs). Each 
node and its enhanced image are positive sample pairs, while other nodes at the same 
position are negative sample pairs. All nodes in a graph can form a complete image rep-
resentation, with different views of the image forming secondary positive sample pairs 
and different images forming secondary negative sample pairs. This study innovatively 
combines deep learning and graphs, belonging to the category of contrastive learning. 
Downstream tasks include future exercise detection, severity of lung tissue abnormali-
ties, and classification of COVID-19 patients.

Liu et al. [17] directly rotated each 3D image three times (90°, 180°, 270°) and formed 
four positive samples with the original image to train the ability to predict rotation 
angles. The framework only uses one encoder, which is used for classification tasks after 
fine-tuning.

Shabani et al. [18] build a segmentation model through two steps. First, the pseudo-
mask is generated over SSL, and then traditional supervised learning is performed 
using U-Net [110] for conventional supervised learning. In detail, they first use a vanilla 
encoder–decoder to turn unhealthy images into healthy images. The generated image is 
compared with the original image to obtain the changed area outline, i.e., the pseudo-
mask. Although the performance is quite different from supervised learning, it provides 
a new direction for pseudo-label generation.

Tan et  al. [19] combined MAE and self-distillation and found that the performance 
can be effectively improved where the best masking ratio of MAE is 0.4. Another uncon-
ventional study is by Yu et al. [20]. This study used normal images and artificial images 
containing metal artifacts to train the network, constructing a contrastive learning 
framework that can effectively remove metal artifacts in CT images.

Another innovative application of the MAE framework is Kumar et al. [111] using it 
to encrypt images. The specific method is to encrypt the masked image using TPM and 
transmit it to the user. In addition to possessing the key, the user must have a trained 
decoder to restore the original image from the damaged image.

Guo et  al. [112] proposed a stepwise incremental pre-training strategy, which first 
trains a discriminative encoder through discriminative learning, and then connects 
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the pre-trained discriminative encoder to a recovery decoder to form a skip-connected 
encoder–decoder for further joint discriminative and recovery. And then, associating 
the pre-trained encoder–decoder with the adversarial encoder for complete discrimina-
tion, recovery, and adversarial learning. This strategy improved the AUC performance of 
frameworks, such as MoCo, BYOL, PCRL [46], and Swin UNETR [113], for different dis-
ease classifications on the LUNA16 dataset by 0.1%–10.6%, but the improvement effect 
for most classification tasks did not exceed 1%.

Yu et al. [114] improved MOCO v1 using the same image region of different patients 
as positive sample pairs and the remaining regions as negative pairs based on anatomical 
structure. At the same time, feature similarity was also calculated in the nearby regions 
of this region. The overall approach and pretext tasks are relatively primitive, so the per-
formance is not outstanding.

MRI

Wang et al. [21] proposed an SSL framework called MI SelfL for prostate cancer clas-
sification in MRI images. The self-supervised framework in the article designs two 
pretext tasks, namely Multi-input correspondence and Geometric transformation. Spe-
cifically, this framework randomly replaces the local regions of some input images with 
those of the same image batch to generate pseudo-labels (modified images are abnormal 
images). Secondly, the framework randomly rotates and flips images. The image features 
that have been randomly replaced should have significant differences from the original 
image, while images that have only undergone geometric changes should have similar 
features. As a prerequisite, this framework needs to work in a patient with multiple dif-
ferent modalities or parameters images, and its performance still has room for further 
improvement.

Kalapos et  al. [22] did not attempt to achieve better downstream task performance. 
They discovered a new pre-training mechanism that enables downstream tasks to con-
verge faster/more stably and reduces the need for fine-tuning data. Concisely, this study 
conducted weight transfer on the online (teacher) and target (student) encoders of the 
BYOL framework, with the transferred weights coming from the supervised and self-
supervised networks trained with ImageNet. Although this approach requires pre-
training the initial weights of BYOL, it is meaningful when various publicly available 
ImageNet weights can be directly used.

Taleb et  al. [23] designed five models and their respective pretext tasks (contrastive 
prediction, rotation prediction, jigsaw puzzle, relative position, and exemplar networks), 
respectively. Contrastive prediction first divides the 3D image into several patches (such 
as 3 × 3 × 3), then uses pyramid-shaped data as input to predict a specific patch (e.g., if 
predicting the patches Pi,j,k+1 and Pi,j,k+2 , the input data is Pi±1,j±1,k and Pi±2,j±2,k−1 ). 
The second training task is to rotate the image by any angle and force the model to pre-
dict the angle. The puzzle task also requires dividing the image into several patches, 
shuffling the order, and having the model restore it. Relative position prediction is to 
give any patch to the model, and the model predicts its position throughout the entire 
image. Exemplar networks use a positive and negative sample pairing mechanism to 
train the model, where the feature Zi of the original image and the augmented Zi+ form 
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a positive sample pair. In contrast, Zi and the feature Zj of other images form a negative 
sample pair.

Chen et  al. [24] used image restoration as a pretext task and validated it on three 
downstream tasks (classification, localization, and segmentation). Detailed, the study 
divides an image into several regions and then randomly exchanges the positions of 
some regions. The original image is used as the label of the scrambled image for training. 
The self-supervised framework uses a single encoder structure and calculates the loss 
with L2 compared between the original and the restored image. This study belongs to the 
early stages of SSL, in which the concise structure results in suboptimal performance.

Chaitanya et al. [25] innovated two loss functions, namely global and local comparison 
loss functions. Then, the training process adopts the paradigm of contrastive learning, 
sampling N  images as a batch, enhancing a single image once as a positive sample pair, 
and enhancing the remaining images once as 2N − 2 negative sample pairs. The new loss 
function is a framework that can achieve 8% of baseline performance with only 4% of 
data.

Zhou et al. [26] developed a self-supervised multi-modal image (different perspectives 
to one region) synthesis framework to enhance MRI image quality. The framework com-
bines autoencoding and the self-attention mechanism to implement SSL on 2D and 3D 
images. Region images in different perspectives undergo a destruction–restoration pre-
text task to train their region-dedicated feature extraction SSL model. The intermediate 
features of various models are superimposed on each other and sent to the generation 
network to obtain an enhanced image. This framework was tested on the BraTS 2018 
[115] data set, and the peak signal-to-noise ratio (PSNR) was greatly improved com-
pared to the baseline.

Fischer et al. [27] combined random walks with SSL and used multi-stage contrast to 
enhance training. This SSL framework uses an encoder–decoder structure (like U-Net) 
to parse different augmented views, trained by reducing the gap between views of the 
same original image. Uniquely, the decoder stage performs loss calculations in each step 
to enforce constraints and fine-tune with only 6 annotations.

Qi et al. [116] randomly extracted different crops from MRI images and attempted to 
restore the original images using a Siamese ViT network. The model loss function is the 
MSE value between the restored image and the original image, as well as the similarity 
coefficient between the outputs of the Siamese network. This is a novel pretext task, but 
the current performance is not stable.

Cox et al. [117] designed a novel two-stage pre-training method using the Swin Trans-
former for segmenting brain lesion locations. During model pre-training, only healthy 
images and Swin UNETR are used to train the model, and then abnormal are used for 
fine-tuning. This study achieved good performance, however, the pre-training of the 
model requires healthy images, and the tolerance for noisy data has not been tested. At 
the same time, the training strategy for fully healthy images also requires some annota-
tion labor.

Histology

Srinidhi et al. [28] proposed a new pretext task to predict and sort resolution sequences 
in images, which essentially predicts the corresponding spatial relationships between 
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images of different resolutions that are enlarged or reduced. The model used the 
ResNet-18 network as the backbone and constructed a classic teacher-student structure. 
During the experiment, there was a significant difference in performance between add-
ing or not adding unlabeled test sets to the training set.

Spitzer et  al. [29] used SSL to segment 3D histological images of the human brain. 
They designed a Siamese network to encode two patches separately, with pseudo-labels 
representing their 3D distance of on the human brain. Compared to the baseline, the 
performance has improved by 8%.

Lu et al. [30] used self-supervised methods to extract abstract features of proteins in 
cells from cell microscopy images, which can be used for tasks such as determining the 
impact of drugs on cells. The pretext task of the framework utilizes different channels of 
cells, such as ordinary protein images and corresponding stained protein images, as data 
and label pairs. The data and label images are processed through an encoder, concatena-
tion, and decoder to obtain protein features. The entire study does not have a conven-
tional classification or segmentation downstream task. However, the feature extraction 
ability can save a lot of labor, providing a novel reference for the application direction of 
self-supervision.

The study by Ciga et al. [31] aims to verify the factors that affect the performance of 
SSL and experiment with their hypotheses on 57 tissue pathology datasets with SimCLR 
v1. In the end, they found that pre-training with data similar to downstream tasks is bet-
ter than directly using the pre-training weights of ImageNet. Secondly, the smaller the 
dataset, the greater the pre-training effect. The other two findings are that the more pre-
trained images, the larger the size, which is more beneficial for downstream tasks.

Veeling et al. [32] used image rotation as the pretext task and two encoders with the 
same network structure for feature extraction, with the distance between the two output 
features used as the loss. The experimental results indicate that overly simple networks 
and self-supervised structures make it difficult to achieve satisfactory performance, and 
a deep neural network with sufficient parameters and training constraints may be the 
performance guarantee.

Zhao et  al. [33] built a framework that combines one online (teacher) and two tar-
get (student) encoders. Its process is similar to BYOL and aims to classify and diagnose 
endometrial cancer. However, the performance increased only slightly compared with 
BYOL.

Yang et al. [34] designed a two-step contrastive learning framework. First, the H and 
E channel views are entered into the encoder–decoder structure for contrastive learn-
ing. Following this, the encoder continues to perform contrastive learning by different 
augmented images and then combines the decoder (frozen parameters) to perform MSE 
loss calculation with the original image. The two encoders of contrastive learning share 
parameters and participate in specific downstream tasks. The work of Lin et al. [35] also 
separated H and E channel images, but they only used the H channel for training. The 
two images ( H channel) generate pseudo-labels through clustering and then send them 
to the segmentation net (encoder). The generated features are compared with each other 
(task 1) and compared with the original image after coloring (task 2).

Li et  al. [36] used the characteristics of whole slide images to design a classification 
framework based on pyramid shape features. This framework first uses contrastive 
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learning (the image and its augmented view form a positive sample pair and form nega-
tive pairs with other images) to train the model by different enlarged images (such as 
5x, 20x) and then concatenate the outputs of multiple encoders in order along the pyra-
mid shape. These features represent the characteristics of images and are used to distin-
guish image class. Finally, the framework outperforms supervised learning and mitigates 
memory requirements.

Despotovic et al. [118] tested self-supervised learning frameworks, such as SimCLR, 
BYOL, and MOCO v3, in glioma subtype classification tasks, and the final experimental 
results showed that BYOL performed the best in this task. Another similar study was 
carried out on breast cancer images by Ye et al. [119]. They found that the original iBOT 
model performed best.

Ultrasound

Ultrasound images are formed by collecting the echoes generated by ultrasound pass-
ing through the human body. About ultrasound images, Liu et  al. [37] developed an 
enhancement framework for images. They used CNN to multiscale low-resolution 
ultrasound images into high and super-resolution and then converted these images into 
low-resolution. The process of enlarging/reducing the original image is completed by 
the Generative Adversarial Network (GAN), and the loss function is the adversarial and 
discriminator losses. Compared to conventional GANs, the same images with different 
resolutions form a self-supervised training pair that enhances the training, ultimately 
resulting in the enhanced original resolution image.

Hybrid

Hybrid works have validated its framework on multiple image types, demonstrating 
hyper-universality. Zhu et  al. [38] proposed a contrastive learning framework using 
a combination of three sub-tasks (three loss functions): cube sorting, orientation, and 
masking recognition, as a 3D pretext task. The framework performs two tasks: cerebral 
hemorrhage classification and brain tumor segmentation in CT (private) and MRI brain 
images. In detail, this framework divides 3D images into several cubes of the same vol-
ume and then shuffles them in order, randomly rotates, and masks the partial volume of 
the cubes. Then, two identical and synchronously updated CNN Siamese networks are 
used to train the model. The three sub-tasks mainly rely on the translation and rotation 
invariance of 3D images for work, and the entire framework has a certain tolerance for 
noisy data. Zhuang et al. [39] adopted the same network structure, but only cube sorting 
and rotation were used as pretext tasks. Due to the fewer loss functions for constraint 
training, their model performance is relatively lower.

Taleb et al. [41] innovatively set up a multimodal puzzle task for images. It divides the 
image into several crops and then exchanges some crops between different modalities to 
generate a ground truth. These exchanged ground truth images will be sent to the model 
for training after shuffling the cropping order, and the loss function is the mean squared 
error between the model output and the unordered ground truth. The multimodality of 
images was generated using cycle GAN [78], which solved the bottleneck of using the 
model on datasets with insufficient modalities. Finally, this framework was applied to 
CT and MRI datasets for segmentation and achieved good results.
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Haghighi et  al. [40] combined discriminative, restorative, and adversarial learning 
tasks to calculate losses and train the model, applying them to data types, such as CT, 
MRI, and X-ray. First, the model uses a separate discriminator to determine the dif-
ferences between images through hyper-features which is the first training route. The 
second route establishes an encoder–decoder structure, which updates the model by 
generating adversarial paradigms and the distance loss between the generated and the 
original image. This framework can be combined with other SSL methods, such as 
MoCo v2 [120], SinSiam [92], etc., to improve the performance of downstream tasks.

Zhao et  al. [42] proposed an anomaly detection SSL framework called SALAD 
for diagnostic analysis of CT and X-ray images. The entire pretext task relies on a 
mechanism called random pixel shuffling, which swaps some pixels in the image to 
form pseudo-labeled data with the original image. The encoder processes the pseudo-
labeled data, and then the decoder restores the encoded features. The loss function 
is the output comparison consisting of the encoder and the output with the original 
image. For the dataset, the training of this model needs to exclude all abnormal and 
only use healthy ones.

An exploratory study on CT, X-ray, and MRI by Haghighi et al. [43] combined mul-
tiple SSL paradigms, including Discriminative, Restorative, and Adversarial Learning. 
This study used three routes for combined training, with the total loss function being 
the weighted sum of the three paths. The discriminative route separately uses two 
encoders fθ and fγ to encode two inputs X1 and X2 , and compare the distance of the 
encoded features. The two inputs may be different images or unlike views of the same 
image. The restorative route compares image X1 with reconstructed image X ′

1
 , which 

is processed by encoder fθ and decoder gθ and then calculates the loss. Finally, the 
adversarial route added a discriminator after encoder fθ and decoder gθ to utilize X1 
and X1 for adversarial evolution. This scheme works successfully on frameworks, such 
as MoCov2 and SimSiam, but has performance improvements of 0.08% -13.6% under 
different frameworks and fine-tuning data ratios.

Ghesu et  al. [44] used four types of medical images: X-ray, CT, MRI, and Ultra-
sound, totaling over 100 million images, to pre-train the model. The self-supervised 
framework adopts a Siamese encoder setting, and the difference in features after 
encoding is the training loss. Where input images will be scaled and Energy-based 
augmented [121]. The experimental task is divided into three parts: abnormal chest 
X-ray detection, MRI detection of brain tumor metastasis, and CT detection of cer-
ebral hemorrhage. The research results indicate that pre-training mechanisms can 
effectively improve accuracy, robustness, and model convergence speed. Like this 
study, Anand et al. [122] prove the same effectiveness of pre-training in SSL based on 
cardiac ultrasound images.

Haghighi et al. [47] constructed a framework including self-discovery, self-classifica-
tion, and self-recovery tasks. In the three tasks, self-discovery utilizes the anatomical 
features of medical images to divide them into different patches, followed by self-classifi-
cation to classify these patches according to their types. For example, they could be used 
to determine whether a patch belongs to the left or right lung in an X-ray. The final self-
recovery is a typical self-supervised method, which borrowed the method of Zhou et al. 
[13] to establish a pipeline and validate the idea on X-ray, CT, and MRI images.
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Tao et al. [45] explored the performance of self-supervised frameworks in segmenta-
tion tasks on CT and MRI images. They divide the 3D image into volumes like a Rubik’s 
cube so the image can rotate in three directions: sagittal, coronal, and axial. Randomly 
rotate the Rubik’s Cube and restore to the original image as the pretext task. The frame-
work adopts a GAN structure and calculates losses in both discriminator and image res-
toration directions.

Zhou et al. [46] added two encoders to improve the performance of X-ray and CT con-
trastive learning, forming a structure of three encoders and one decoder. One of the two 
newly added encoders learns image representations as a regular encoder, while the other 
hybrid encoder mixes the outputs of the regular encoder and momentum encoder. The 
image is processed through one of the augmentation methods in the random crop, ran-
dom flip, random rotation, painting, outputting, and Gaussian blur before entering the 
regular and momentum encoders. The outputs of the three encoders are then compared 
to the original image, resulting in mean squared error loss (the encoder has a U-Net-
like structure). The framework also stores images in the memory bank, where the same 
image and its enhanced images are positive samples and form negative sample pairs with 
other images. The update mechanism is similar to InstDisc.

Qayyum et  al. [48] built a new transformer-based SSL framework on MRI and CT 
images, using different image views for contrastive learning. The innovation is that the 
encoder uses a transformer, and the decoder is a CNN, and then the cascade becomes a 
U-shaped structure.

Discussion
Medical images are different from natural images in that they are only composed of a 
single-color channel and have specific position/intensity/size features. These features are 
crucial components of medical images and may serve as potential indicators of health 
conditions. Owing to these unique features, the exploration of medical images neces-
sitates a specialized approach that diverges from the methodologies applied to natural 
images. This review encapsulates the recent scholarly work on self-supervision within 
the medical imaging sphere, encompassing X-ray, CT, MRI, Histology, and Ultrasound. 
The previous SSL works have shown a clear division of stages, i.e., the nascent and the 
flourishing stages. The nascent stage is usually a single pipeline, wherein researchers 
harness unlabeled data for training after designing an encoder/decoder. This encoder/
decoder is then directly deployed for specific diagnostic tasks. A flourishing stage study 
typically involves upstream and downstream work, with upstream using unlabeled data 
to pre-train models and downstream using labeled data to fine-tune the pre-trained net-
work (usually the encoder in the upstream). Post-fine-tuning, the network is augmented 
with additional layers to execute the targeted medical imaging tasks.

The performance of SSL frameworks has clearly shown characteristics of catching up 
with or exceeding the supervised learning frameworks in recent years. Especially at the 
current stage, researchers using combination loss functions and multi-pipeline struc-
tures will significantly improve the performance of SSL frameworks, indicating that 
SSL research has emerged as a mature paradigm and crossed the initial stage. The pre-
text task is the most critical and influential part of the SSL framework. It determines 
the basic structure of the framework, helping the model train and learn image features 
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without labels. Pretext tasks in medical images can usually be divided into three types: 
Destruction Recovery, Sample Pair Comparison, and Information Prediction (such as 
relative position prediction), among which Destruction Recovery and Sample Compari-
son are the most commonly used types. Destruction Recovery and Information Predic-
tion focus more on global features. In contrast, Sample Pair Comparison focuses more 
on local features (many studies combine destruction recovery and sample pair compari-
son to focus on both features). Using different pretext task strategies can make the model 
generative or contrastive. For example, Destruction Recovery is a generative task, while 
combining Destruction Recovery and Sample Pair Comparison would be a contrastive 
model. For the model explanation and implementation, the complexity of Information 
Prediction, Sample Pair Comparison, and Destruction Recovery increases in sequence, 
which usually leads to an increase in the structural complexity of the model. Information 
Prediction usually requires images in the dataset to have the same anatomical structure, 
sampling specifications, or other almost invariant information, while the other two types 
do not. Sample Pair Comparison has unique advantages in multimodal training, as it 
can compare the outputs of different modal encoders. However, this task usually means 
training multiple networks simultaneously, and more computational overhead cannot 
be avoided. Some studies have pointed out that medical image tasks focus on extract-
ing fine-grained features [40], so Destruction Restoration is more suitable. The fact that 
the most commonly used task type in existing research is the Destruction Recovery 
task indirectly proves this point, especially with the good performance of ViT, Destruc-
tion Recovery tasks have also shown more target tolerance and excellent performance 
results, but designing the areas or mechanisms of Destruction Recovery tasks requires 
more time. The correct choice of the pretext task is often a guarantee for the model’s 
performance. However, the selection process of the pretext task is inspiring and difficult, 
and there are almost no paradigms for all goals. Choosing the appropriate task based on 
different tasks is still worth exploring.

Due to the differences between medical and natural images, not all pretext tasks in 
natural images can be directly used. Usually, tasks, such as destruction recovery, patch 
order recovery, rotation, scaling, etc., can be directly utilized. However, some pretext 
tasks that rely on anatomical knowledge are unique to medical images, such as relative 
position prediction, distance prediction, etc. According to the included research, the 
performance of using a single task is generally worse than using multiple tasks, indicat-
ing that combining multiple tasks can enable the model to learn more accurate represen-
tations. The multiple loss functions can also constrain the model to make it more robust.

In some cases, the transferability of SSL remains a challenge, as test sets from the same 
distribution as the training data mostly outperform those from different sources, high-
lighting the need for improved generalization in SSL models. Models that perform well 
on one type of image often have unstable performance on another, with poor surface 
model universality. In addition, existing research still faces issues such as excessively 
high fine-tuning data or performance not significantly improving with an increase in 
the proportion of fine-tuning data. Most existing classification studies have not reported 
the false-positive rate, an important indicator. Due to unlabeled training of SSL, it can-
not focus on the target facts and may learn too much information, resulting in exces-
sive false-positive reports. Nevertheless, SSL has demonstrated significant benefits in 
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medical imaging, effectively mitigating the challenges associated with limited labeled 
data and reducing the impact of labeling biases.

Figure 9 illustrates that SSL-related studies exist in various medical image types, high-
lighting a notable focus on CT imaging studies. MRI, X-ray, and Histology are also well-
represented, whereas ultrasound imaging has garnered the least attention. In these SSL 
studies, except for the research on CT images that mostly use generative learning, con-
trastive learning in other image types is equally prevalent or significantly more than gen-
erative learning. The number of public datasets and the difficulty of diagnosis may be 
the reasons for different studied quantities. Moreover, the collected research also covers 
a comprehensive range of organs, including lungs, liver, kidneys, brain, heart, and pros-
tate. Regarding the specific clinical challenges (downstream tasks), the previous works 
involve classification, localization, segmentation, false-positive reduction, and image 
enhancement. Among them, classification and segmentation account for the majority. 
Figure  10 shows segmentation and classification performance statistics. The perfor-
mance metrics are the DSC and the AUC; however, the datasets utilized across various 
studies are not uniform. Therefore, the comparative figure is a general guide rather than 
a precise benchmark for the specific image type. In Fig. 10, MRI classification and His-
tology segmentation tasks are worthy of future exploration due to the small study size, 
and low or concentrated performance. Overall, after upstream pre-training, the current 
SSL framework can schedule any challenging downstream task with satisfactory results.

This review paper collects most of the research on medical images but does not 
include studies on Skin Lesions, Retina, Endoscopy, and Optical Coherence Tomography 

15 
9 

6 
0 1 

6 

10 
12 

9 
2 

C T M R I X - R A Y H I S T O L O G Y U L T R A S O U N D

Genera�ve Contras�ve

Fig. 9 Study amount statistics

Fig. 10 Study performance statistics



Page 27 of 36Zeng et al. BioMedical Engineering OnLine          (2024) 23:107  

images. In addition, this review cannot provide recommendations for optimal pretext 
tasks and their combination strategies. The impact of different tasks and self-supervised 
approaches on performance also cannot be answered.

In future, people could incorporate ablation experiments as much as possible. For 
example, comparing the studies of Zhu et  al. [38] and Zhuang et  al. [39] showed that 
frameworks with almost identical structures but using more modules achieved lower 
performance. In addition, future research should incorporate performance compari-
sons with supervised learning as much as possible to help readers understand intuitively. 
The computing overhead of the entire framework also needs to be provided to facilitate 
evaluation. This is because the deep network has more and more parameters and more 
complex structures. It is necessary to intuitively evaluate whether the network scale suits 
edge computing and other fields. Whether using different types of medical data before 
pre-training can achieve the same performance improvement as using natural images, 
researchers could test and find its effective mechanisms. For the pretext task, existing 
medical image-related research mostly uses mature frameworks or pretext tasks from 
natural images, and pretext tasks that utilize unique anatomical structures (such as pre-
dicting relative positions of regions) have not shown significant advantages. Therefore, 
it has been found that pretext tasks that are more suitable for medical images can also 
be further explored in future. Reducing the proportion of fine-tuning data, using syn-
thetic data for training, multimodal training, and specific distillation of large models is 
also worth exploring in future. The proportion of labeled data in the pre-trained data in 
downstream tasks is better not exceeding 10% or even 1%, which will make the model 
more practical. Otherwise, it should be compared with the baseline without pre-training 
to verify the value of the SSL strategy. Using generated data for training can increase the 
diversity of training data and decrease the difficulty of collecting data, thereby increas-
ing the model universality. However, bridging the domain gap between synthetic and 
real data is crucial. On the other hand, multimodal training can improve model accuracy 
and reduce false positives and misdiagnosis rates, which is also worth exploring. Finally, 
using large models for specific distillation can reduce pre-training time and obtain more 
feature parsing ability than conventional pre-training.

Conclusions
Machine learning diagnostic analysis methods for medical images past required extensive 
labeled data, which was often a challenge to satisfy in the medical field. SSL has emerged as 
a transformative solution, significantly diminishing the reliance on labeled data and achiev-
ing performance comparable to supervised learning with as little as 10% of the total labels. 
This paper aims to equip researchers with the foundational knowledge of SSL in medical 
imaging by reviewing the latest research in the field. The review commences with an in-
depth exploration of contrast learning and generative learning within SSL, followed by a 
categorized presentation of the image types already being extensively studied under the SSL 
framework, e.g., X-ray, CT, MRI, histology, and ultrasound. While SSL in natural images 
has seen a multitude of pretext tasks, the unique anatomical structures of medical images 
may necessitate the development of proprietary pretext tasks. This paper summarizes the 
pretext tasks utilized in medical images, encompassing damage recovery, patching dis-
order, rotation, scaling, relative position prediction, coloring comparison, path distance 
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prediction, and Rubik’s cube recovery. The downstream tasks covered in the review include 
classification, localization, segmentation, false-positive reduction, and image enhance-
ment. The analysis reveals certain patterns in impacting performance: complex structures 
and increased task/loss constraints tend to be advantageous. However, it is imperative to 
consider model size and training costs. The ablation studies to evaluate the contribution of 
each module are also beneficial. In conclusion, current SSL research has demonstrated the 
potential to match or even surpass the performance of supervised learning. Future direc-
tions include reducing the reliance on fine-tuning data, constructing more generalizable 
models, and leveraging clinical or insurance data for multimodal learning initiatives.
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