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Oligomeric rearrangement may regulate channel activity
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Abstract

Channels are typically gated by several factors, including voltage, ligand and mechanical force. Most

members of the calcium homeostasis modulator (CALHM) protein family, large-pore ATP release chan-
nels, exist in different oligomeric states. Dynamic conversions between CALHM1 heptamers and oc-
tamers to gate the channel were proposed. Meanwhile, the latest study observed that the transient re-
ceptor potential vanilloid 3 (TRPV3) channel adopts a dynamic transition between pentamers and
canonical tetramers in response to small molecule treatment. These results suggest that oligomeric re-
arrangement may add a new layer to regulate the channel activities.
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INTRODUCTION

Channels play a vital role in a variety of physiological
processes, which can be mainly divided into voltage-
dependent gating, ligand gating and mechanical force
gating. Voltage-dependent channels respond to trans-
membrane voltage gradients, causing changes in the
conformation of the voltage-sensing domain, which
rearrange the pore domain to open the channel
(Tombola et al. 2006). The conformational change mod-
els of voltage-dependent channels include the helical
screw, the paddle, the oscillating gate, and the interac-
tion with membrane lipids (Kariev and Green 2012).
Ligand-gated channels bind ligands to selectively per-
meate specific ions through the pore (Hucho and Weise
2001). Mechanosensitive channels convert mechanical
disturbances into electrical or chemical signals, and the
gating models include dragging, membrane dome for-
mation, and tethering (Kefauver et al. 2020). Other gat-
ing mediators also include pH, light and redox potential
changes (Woolley and Lougheed 2003), however,
oligomeric rearrangements have not been previously
reported.
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OLIGOMERIC CHANGE IN THE CALHM1 CHANNEL

The calcium homeostasis modulator (CALHM) protein
family has six homologs (CALHM1-6) in vertebrates
with 20%-50% sequence similarity (Foskett 2020;
Taruno et al. 2013). CALHM1 is a voltage- and extracel-
lular Caz"-gated ATP release channel, which has been
implicated in neural signaling and even Alzheimer's dis-
ease (Dreses-Werringloer et al. 2008; Taruno 2018).
CALHM1 can also form heterologous complexes with
CALHM3, which cannot generate conductance alone, to
form fast voltage-gated ATP release channels in type I
taste bud cells for downstream G-protein-coupled
receptor-mediated taste perception (Ma et al. 2018).
CALHMZ2, which can form undecamer hemichannels and
gap junctions (Choi et al. 2019), mediates ATP release
in astrocytes and regulates inflammatory activation in
microglia (Cheng et al. 2021). CALHM4 gap junction
channel and CALHM6 hemichannel, both of which can
form two oligomeric states (10-mer and 11-mer), are
abundantly expressed in placental tissues and have no
significant voltage- or calcium-gated channel activity
(Drozdzyk et al. 2020), but also participate in some
physiological processes. CALHMS® is the only one in the
family that is highly expressed in immune cells and
regulates natural killer (NK) cell activation Kkinetics
(Danielli et al. 2023). The function of CALHM5, which
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can form undecameric hemichannels (Bhat et al. 2021),
needs to be further investigated.

In recent years, structures of the CALHM family, ex-
cept CALHM3, have been resolved. The oligomeric
states of CALHM family members vary, and even the
same channel protein can exhibit different oligomeric
states. In addition, cryo-EM structure studies of human
connexin36 junction or hemichannel have been report-
ed to have both 6-fold and 7-fold symmetry (Lee et al.
2023). At present, the putative regulatory mechanisms
of CALHMs mainly include the transmembrane helix 1
(TM1) and the N-terminal helix (NTH) movement (Choi
et al. 2019; Syrjanen et al. 2023), and lipids in the cen-
tral pore and between helices (Syrjanen et al. 2020),
but the differences in oligomerization states are not
well explained. Ren et al. first reported the octameric
structure of Danio rerio CALHM1 (drCALHM1) with a

pore diameter of approximately 20 A (Ren et al. 2020)
(Fig. 1A). Later they discovered the existence of hep-
tameric drCALHM1 with pore diameter of about 6.6 A
(Fig. 1B), and proposed the channel gating mechanism
by oligomer states rearrangement for the first time
(Ren et al. 2022). The main difference between the two
oligomeric states lies in the position of the N-terminal
helix (NTH). Molecular dynamics simulations indicate
that the upward movement of NTH toward the extracel-
lular space can lead to the deformation of the heptamer
structure and a significant increase in the pore size. In
the resting state, CALHM1 may exhibit a heptameric
structure with NTH down. Upon sensory stimulation,
the NTH moves upward toward the extracellular space,
driving conformational changes, and oligomeric rear-
rangement to form the octamer, allowing the perme-
ation of ATP molecules (Fig. 1C).
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Fig. 1 Putative regulatory mechanism of CALHM1 channel by oligomer rearrangement. A Structure of drCALHM1 heptamer (PDB
7DSE). B Structure of drCALHM1 octamer (PDB 6LYG). C Schematic drawing of oligomeric rearrangement regulation mechanism. In the
resting state, the NTH of the heptameric CALHM1 is in the downward position. The pore is too narrow to pass through ATP molecules.
When stimulated, NTH moves upward to widen the pore, triggering the formation of octamers. The pore is wide enough to permeate
ATP molecules. The contours of two opposing monomers are shown as solid black lines. The yellow background represents the plasma
membrane. TM1 and NTH of heptamers and octamers are shown in purple and green, respectively. Red spheres represent ATP

molecules
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OLIGOMERIC CHANGE IN THE TRPV3 CHANNEL

This way of regulating channel activity through oligo-
meric changes appears to be novel, introducing greater
complexity to channel gating. Besides CALHM1 chan-
nels, does a similar regulation mechanism exist in
other channels? Recently, Lansky et al. reported on the
pentameric transient receptor potential vanilloid 3
(TRPV3), which differs from the previously established
canonical tetramer (Lansky et al 2023). TRPV3, a
member of the TRP ion channel family involved in vari-
ous physiological processes such as sensory function
(Huffer et al. 2020), is primarily associated with skin
temperature perception, wound healing, immune re-
sponse, cancer, and other diseases (Su et al. 2023). Fur-
thermore, they employed high-speed atomic force
microscopy (HS-AFM) to observe the dynamic changes
in the lipid bilayer, revealing the transient and re-
versible protomer exchange between pentamers and
tetramers facilitated by membrane diffusion. They also
identified that a chemical compound diphenylboronic
anhydride (DPBA), can increase the proportions of
TRPV3 pentamers. The cryo-EM structure of the
TRPV3 pentamer indeed shows a dilated channel pore.

SUMMARY AND PERSPECTIVES

The observation that oligomer rearrangement effec-
tively regulates channel activity in two distinct channel
types marks a significant breakthrough. This finding
not only opens new pathways for gaining a deeper in-
sight into channel mechanisms but also holds promise
for innovative approaches in developing more effective
drugs for diseases associated with channel dysfunction.

During the process of protomer exchange, a multi-
tude of intriguing questions emerge, ranging from the
necessity of an energy supply to the sources of this
energy, the potential roles played by surrounding
phospholipids, and the potential involvement of other
auxiliary factors. These inquiries present compelling
opportunities for further exploration and investigation.

As we witness advancements in technologies such as
cryo-ET and expansion microscopy, there is a growing
anticipation that similar regulatory mechanisms, cen-
tered around oligomer rearrangement, may soon be
unveiled in other channels. This could herald a new era
in our understanding of channel functions and provide
novel avenues for tackling diseases linked to channel
malfunction.
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