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Real-time gait estimation is important for the synchrony control of robotic exoskeleton to provide walking assistance. However, for
stroke patients with hemiplegic paralysis, the gait pattern is very complex. Accurate and timely gait intention recognition is
therefore difficult. To achieve human–robot synchrony control for an unilateral knee exoskeleton, a gait intention recognizer
coupling the adaptive frequency oscillator (AFO) and back propagation neural networks (BPNN) is proposed in this paper. The
BPNN is trained with gait data of healthy subjects and stroke patients to improve the accuracy of recognized gait pattern, which is
then imported into flexible interaction module to provide appropriate assistance. To evaluate the performance of gait intention
recognition, three stroke patients were recruited to conduct level ground walking tests. The kinematic and biomechanical data were
captured in each test and processed for the evaluation. Experimental results demonstrate the effectiveness of gait intention
recognition and movement assistance.

1. Introduction

Robotic rehabilitation presents a promising solution to the
situation of fast-growing number of stroke patients and pre-
dicted shortage of professional rehabilitation therapists [1, 2, 3].
Heretofore, lower limb exoskeletons focusing on different
joints have been widely used for gait rehabilitation. Compared
with bilateral exoskeletons for spinal cord injury patients, uni-
lateral exoskeletons are more beneficial to stroke survivors with
hemiplegic paralysis. Therefore, unilateral exoskeletons have
attracted more attention over the previous decades, in which
the knee joint is the major assistive target for its importance in
accomplishing bipedal ambulation in daily life [4, 5, 6, 7, 8].

Offering patients with proper assistance, which requires
an optimal control strategy, is one of the major concerns in
designing unilateral knee exoskeleton to maximize the reha-
bilitation effect [9]. In state-of-art studies, control strategies,
such as position control, torque control, and impedance con-
trol, have been widely applied to rehabilitation robots [10].
For gait rehabilitation, the involving motion intention control

strategy, which provides appropriate force and safe interac-
tion, remains challenging. The complexity of human motion
suggests the need of a robust perception system, and the
perception of gait is the priority for lower limb exoskeleton.
Gait is a periodic motion with specific frequency, phase, and
amplitude for each individual. Therefore, the perception of
gait means recognition of these characters.

To realize accurate prediction, the sensing systems and
algorithms are designed to interpret the gait signals. There-
fore, sensors play a significant role in measuring, classifica-
tion, and control of exoskeletons. Bioelectrical sensors, such
as surface electromyography (sEMG) and electroencephalo-
graph (EEG), have been commonly used in motion percep-
tion [11, 12, 13, 14, 15]. However, due to relatively low
amplitude, these biosignals can be easily interfered by the
electrodeposition, electrical noise, and surrounding condi-
tions [16]. In contrast, mechanical sensors, such as the iner-
tial measurement unit (IMU), are more robust and easily
embedded with rehabilitation robots [17, 18]. Owing to the
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precision and easy integration of mechanical sensors, the
IMUs are utilized for gait recognition.

For gait recognition, one of the approach to simplify the
task is by representing the cycle as a finite set of states and
transitions between them. Therefore, the finite state machine
(FSM) is widely used for discrete gait phase. Wang et al. [19]
proposed to optimize the parameters in the FSM states and
feedback laws, with the objectives of naturalness and con-
trollability of the generated motion. Apart from single gait
phase recognition, FSM is also used for different gait tasks.
Jang et al. [20] designed an assistance strategy based on FSM
to recognize stair ascent gait phase. The entire task was
decomposed into four states, and the states were recognized
by information from mechanical sensors. Similar work was
also conducted in [21] to provide assistance in different ter-
rain. Although FSM is effective in discrete states recognition,
the discrete gait event could only provide rough assist torque,
which is not conductive to the improvement of assist effi-
ciency [22].

The adaptive frequency oscillators (AFO) provides an idea
to estimate the gait continuously and has been a popular exo-
skeleton control architecture for its fewer sensor requirements
and strong robustness [23, 24, 25, 26, 27, 28, 29, 30]. AFO was
originated from the dynamic Hebbian learning rule in the
nonlinear oscillator, which was first proposed by Righetti et al.
[31] to synchronize with a periodic or pseudoperiodic signal.
Then it was applied to human–robot synchrony control, where
the AFO was utilized to extract periodic motion features and
predict assistive pattern. The gait phase is the major concern of
the intention estimation and assistive control. Though the
adaptive law is effective in frequency and phase learning, the
results show poor performance on the amplitude tracking [32].
The AFO-based control strategy was mainly applied to perfor-
mance augmentation for normal gait pattern. For stroke
patients with hemiplegic paralysis, the gait pattern is complex,

and gait parameters could vary with cycles. Accurate recogni-
tion of phase and amplitude is necessary for providing appro-
priate assistance without damages. In addition, the learning
process is time-consuming for AFO to obtain parameters
from several similar gait cycles. Timely recognition is also the
key requirement for active control system.

To address these issues, the AFO cascaded with back
propagation neural networks (BPNN) is proposed in this
paper to recognize the gait pattern for an unilateral knee
exoskeleton gait rehabilitation training robot (GRTR). AFO
is responsible for learning and predicting the frequency and
phase of gait pattern from hip joint. Based on the recognition
of hip joint motion, the BPNN is utilized to realize the accu-
rate recognition of the target knee joint. The gait data for
training BPNN was collected from both healthy subjects and
stroke patients. The specially trained BPNN is therefore cas-
caded to improve gait frequency, phase, and amplitude rec-
ognition performance for knee joint. The recognized motion
intention is then imported to flexible interaction module to
generate corresponding assisting torque.

The rest of this paper is organized as follows: Section 2
describes the methods including GRTR design and active
control system especially the intention recognition in detail.
Section 3 contains the experiments to verify the performance
of the proposed gait intention recognition for active control.
Discussion and conclusion are presented in Sections 4 and 5.

2. Materials and Methods

2.1. Unilateral Knee Exoskeleton. The knee exoskeleton
GRTR weighs about 2 kg and has the advantage of convenient
wearing, as is illustrated in Figure 1(a). The GRTR mainly
consists of a powered knee joint and connecting mechanisms
(Figure 1(b)). The powered joint is implemented with electric
motor and speed reducer which can provide peak torque of
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FIGURE 1: Mechanical design of GRTR: (a) convenient wearing of GRTR for the user; (b) the overall structure of GRTR; (c) the waist part with
adjustment mechanism; and (d) the connection part with 3-DOF adjustment mechanism for shank.
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40N·m. This power combination is also back-drivable with
extremely low friction. For rigid exoskeleton, multi-DOF
mechanism helps to ensure the comfort of wearing [33].
Three connecting mechanisms, including waist part, thigh
part, and crus part, are specially designed to ensure comfort-
able wearing. The waist support functions to transfer the
weight of powered joint to the waist and to restrict the pow-
ered joint from sliding down which would give rise to its
misalignment with knee joint. The battery and the control
pack are also fixed to waist support through quick-release
mechanism. In addition, a rotary adjustable mechanism of
waist part is designed to enable quick adjustment to the indi-
vidual’s waist size, which is shown in Figure 1(c). A 3-DOF
adjusting mechanism is specially designed for the crus part to
allow adjustments according to the leg characteristics of dif-
ferent individuals, as is illustrated in Figure 1(d). Moreover,
an IMU is attached to the waist part through a soft brace on
the healthy side to collect the gait data of that.

The electrical frame of GRTR is illustrated in Figure 2.
The whole electrical system is comprised of core controllers,
drive unit, sensors, and power units. Two STM32F7-series
microcontroller units (MCU) are utilized as the controller,
one in charge of collecting the sensor data, controlling the
motor, and the other one is a coprocessor for recognizing
intention of the wearer with BPNN. The drive unit for knee
joint is composed of brushless direct current motor and
harmonic reducer integrated with encoder and torque sen-
sor. To capture the joint information, three IMUs are inte-
grated: one for the hip joint of the healthy side (integrated
with soft brace), one for the hip joint of the hemiplegia side
(embedded in powered joint shaft), and the last one for waist
posture (integrated in the waist support). All the electric
components communicate with MCU through the Control-
ler Area Network.

2.2. Active Control Architecture. A complete gait cycle for
knee joint consists of support phase and swing phase [34],
as is shown in Figure 3. It usually begins with the heel strik-
ing the ground and ends with the heel striking the ground
again. The joint angle varies with the process of gait phase.

The objective is to recognize current walking pattern and
provide corresponding joint assistance.

Based on the objective, the control architecture mainly
consists of intent recognition module and flexible interaction
module, as shown in Figure 4. An improved gait synchro-
nizer driven by AFO and BP neural networks is designed for
gait features detection. Two AFOs are utilized to learn gait
features from hip joint of healthy side and hemiplegia side,
respectively. The BPNN is cascaded with the AFOs to
improve generalization of gait detection. Trained with gait
data of healthy people and hemiplegia patients, the BPNN
improves the gait pattern recognition performance. Then,
walking states recognized by the gait detection algorithm
are transmitted to the flexible interaction module. The refer-
ence assistive torque is generated according to torque data-
base with the estimated gait phase and walking states. Finally,
through the low-level direct force controller, the ideal force
tracking performance is achieved to ensure the flexibility and
walking assistance.

2.3. Intention Recognition

2.3.1. AFO. Gait is a periodic motion and therefore can be
learned through AFO. Based on the Hopf oscillator in [35],
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FIGURE 2: Electronic design of GRTR.
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FIGURE 3: A gait cycle for knee joint.
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the differential equation of the adaptive model is described as
follows:

ẋh ¼ α μ2 − r2h
À Á

xh − ωhyh þ εFh

ẏh ¼ α μ2 − r2h
À Á

yh þ ωhxh

ẋp ¼ α μ2 − r2p
À Á

xp − ωpyp þ εFp

ẏp ¼ α μ2 − r2p
À Á

yp þ ωpxp

φ¼ tan−1 y=xð Þ

8>>>>>>><
>>>>>>>:

; ð1Þ

where x and y are the state variables in phase space and r¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The subscripts h and p stand for healthy and

hemiplegia side. μ with μ>0 represents the radius of limit
cycle and controls oscillator amplitude. ω stands for the
oscillator intrinsic frequency, and φ is the phase angle. The
oscillator frequency ω will converge to the gait frequency,
and phase φ corresponds to the gait phase. α represents the
attraction coefficient of the limit cycle and is set as α¼ 0:5.
The coupled periodic force F acts as the teaching signal, and
ε is the coupling constant with value 8. The input periodic
force F is the captured hip joint data. The oscillator has a
stable harmonic limit cycle when F¼ 0. Small perturbations
(ε>0) only change the form and time scale of the system
without the general behavior. For the adaption to the gait
pattern, the system is further transformed into the following:

Δμ¼ σF cos φ¼ σF
x

x2 þ y2

Δφ¼ −σ
F
r
sin φ¼ −σF

y
x2 þ y2

Δω¼ −
σ

ΔT
F

y
x2 þ y2

8>>>>>><
>>>>>>:

; ð2Þ

where σ is the coefficient determining the convergence rate.
ΔT represents system sampling time. The estimated gait
phase angle is continuous and periodic, which indicates

that the adaptive law is effective on frequency and phase
learning.

The hip joint is the basic part of lower limb to generate
gait motion. Therefore, the gait information of hip joints is
utilized as the reference to predict hemiplegia side’s gait
intention. The kinematic data are captured from the afore-
mentioned IMUs on the two sides. The angle information in
the sagittal plane is then extracted as the inputs of two AFOs.
The learned gait frequency and phase from hip joints are
then imported into BPNN to recognize the knee motion.

2.3.2. BPNN. The BPNN is a supervised learning method of
which the output is forward-propagated and the errors is
transmitted by back propagation. It has the advantages of
flexible nonlinear modeling capability and strong adaptabil-
ity. In addition, there is no need of huge computing resources
for the trained BPNN to run in real-time, which is beneficial
for the miniaturization of the system. Therefore, BPNN can
be applied to establish the model between the kinematic data
and gait information. Cascaded with the established AFOs,
the BPNN here is to improve the gait intention recognition
performance from the point of amplitude and circumstances
of stroke patients.

Based on the integrated sensors in GRTR, a host of data
can be collected and processed in real-time. After plenty of
data analysis, those signals which have significant changes or
distinctive characteristics are selected as the input of BPNN.
A total of 19 signals from six parts are finally included: (1)
thigh of hemiplegia side, pitch and roll angle and angular
velocity in the sagittal and coronal planes; (2) waist, roll
angle; (3) thigh of healthy side, same with hemiplegia side;
(4) target knee, angle, angular velocity, and torque; (5) AFO
output, gait frequency and phase for healthy and hemiplegia
sides; and (6) last result from BPNN, current gait and next
possible gaits 1 and 2. In addition, a low-pass filter with
20Hz cutoff frequency is utilized to reject noise.

The modified BPNN is illustrated in Figure 5. There are
two hidden layers in this BPNN, the first hidden layer has
30 nodes with sigmoid functions, and the second layer has

Adaptive oscillators

Adaptive oscillators

Motor Load

Velocity
generator

Torque 
generator

Position
generator

θpTp ,

θ
.
hTy

θ
.
pTy

θ
.
pTy

θ
.
hipθhip ,

θpTr ,
θ
.
hTx , θ

.
hTy

θ
.
pTx ,

θhTr ,θhTp ,

Mknee ,

Mknee ,

Mknee , θknee ,

θknee ,

θ
.
knee 

θ
.
knee , 

θknee ,

θ
.
knee ,

θWTr

Signalsin

BPNN

fp ,φp

fh ,φh

Intent recognition

Butter
filter

Flexible interaction

Statec

Mtarget

θtarget

θ
.
target

ItargetGaitcurrent

Gaitnext1, Pnext1 
Gaitnext2 , Pnext2

Stiffness control

+

+

++

IMUSignalsB

IMUSignalsB

IMUSignalsG

x1
x2
x3

y1
y2
y3
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15 nodes with linear functions. And the output nodes are
also with linear functions.

Apart from the the current gait, two extra possible gaits are
also constructed as the outputs of BPNN, which are the next gait
1 (the gait with higher probability) and the next gait 2 (the gait
with lower probability). The output next gait 1 and gait 2 focuses
on possible changes of current gait according to the input data.
Recognition in advance could improve the accuracy of current
gait and reduce the possibility of wrong assistance.

In order to improve the recognition performance of
BPNN, extensive data collection on healthy people and
stroke patients has been conducted. About 1,000 data sets
have been collected, each lasting at least for 5min. Ninety
percent of the data was chosen randomly as the training
samples and 10% as the verification samples. In the training
process, an Adam optimizer was used, and the learning rate
was 0.004. After training, the determined parameters have
been translated into the real-time system in Figure 2.

3. Experiments

3.1. Experimental Protocols. Preliminary validation tests on
three stroke patients were conducted, and all three partici-
pants were at Stage VI of Brunnstrom recovery stage (BRS).
Patients with improved motor function were recruited in
consideration of safety and progressive research. Written
consent was obtained from all participants. This study was

carried out in accordance with the recommendations of
guidelines from the Institutional Review Board approval of
the Seven Affiliated Hospital of Sun Yat-Sen University
(JS-2021-005-01). Detailed information of the participants
can be found in Table 1.

Two series of ground-walking tests were conducted for
each participant in consideration of comparison, as is shown
in Figure 6. The kinematic and biomechanical data were
collected using IMUs (Xsens dots) and EMG sensors (Pico
EMG, Cometa) to evaluate the effectiveness of recognition
and assistance. The test without wearing the knee exoskele-
ton came first before the test with assistance. Two exoskele-
tons, aiming at right and left sides, respectively, were utilized
for specific participant. Participants were asked to complete
six round trips within experimental site constraints. It should
be noted that every participant was given several minutes to
adapt to GRTR before tests with assistance. A 5-min break
was taken between tests to avoid muscle fatigue. All the
participants were accompanied with operator and therapist
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TABLE 1: Participants’ information.

Subject Gender Age Height (cm) Weight (kg) Hemiplegia side

P1 Male 65 170 60.0 Right
P2 Female 34 160 55.0 Right
P3 Male 41 176 70.5 Left
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to guarantee safety. The collected data were processed after
all the tests were completed.

3.2. Result Analysis

3.2.1. Kinematic Data. To evaluate the performance of the
proposed intent recognition algorithm, indexes regarding rec-
ognition accuracy and detection delay were used to assess the
differences between desired knee trajectories and real-time tra-
jectories generated by recognition [31]. To make reasonable and
reliable evaluations of recognition performance, the root-mean-
square error δr and peak error δm between desired gait pattern
and recognized gait pattern, calculated in Equations (3) and (4)
respectively, were selected:

δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

i¼1
u − uð Þ2

s
; ð3Þ

δm ¼max u − uð Þ; ð4Þ

where u is the recognized knee trajectory and u is the desired
knee trajectory. To evaluate whether the knee pattern is
detected in time, the prediction time for knee trajectory of
each phase of gait was calculated by Td ¼ tr − tp. tr is the
moment when a gait cycle actually starts, and tp is the
moment when the detection occurs. Similarly, the average
time delay Ta and peak time delay Tm were calculated.

One round-trip test data of participant P1 are illustrated
in Figure 7(a). This test includes two sequences of flat walk-
ing, and the gap between sequences represents the interval of
turning around. The interruption of walking gait was accu-
rately recognized without inappropriate assistance. After
about two steps at the beginning of each sequence, i.e., con-
tinuous walking task, the gait and algorithm turned into a
stable state. The consistency of recognition and gait rhythm,
as well as rapid convergence, affirmed the performance of
gait recognition algorithm.

The gait data under stable walking state of participants
were selected partially for further analysis. The data over
about 8 s and data of one gait cycle are shown in Figure 7(b).
The swing phase and support phase of each gait cycle were
recognized and depicted with black line. The predicted knee
motion by AFO-BPNN (red line) had good consistency with
the measured real-time knee angle (blue line). The measured
knee angle at the support phase was almost constant for the

reason of essential little variations from gait features and
uncertainty of measurement from misalignment. But the
system still generated knee angle prediction at support phase
based on the trained BPNN and real-time angle at swing
phase. As a consequence of this character, the predicted
knee angle was larger than the measured angle at the begin-
ning of swing phase. The gait information at swing phase was
then extracted and further analyzed for verification, as is
shown in Figure 7(c).

The measured angle curve occurred ahead of the pre-
dicted knee angle curve. This is because that the intent rec-
ognition of knee motion is based on the occurrence of real-
time knee angle. The difference was relatively obvious at the
initial swing phase. The maximal and average time delay
between measured and predicted knee angle was calculated
for verification, as is shown in Figure 7(d).

It should be noted that the computation intervals were
selected at stable gait. The maximal time delay Tm = 162ms
happened for P3. This is possibly because that P3 had shorter
support phase and larger flexion angular acceleration at ini-
tial swing phase. The maximal time delay for P1 and P2 is
93 and 135ms, respectively. The average time delay for par-
ticipants is below 100ms overall.

As for the recognition accuracy, the RMSE and peak
error between desired flexion pattern and predicted flexion
pattern for participants are shown in Figure 7(d). The RMSE
for all three participants were small. But the peak error for P3
was comparatively large, δm ¼ 19:3°, the main causes of
which could be the larger flexion angle as well as larger
angular velocity. The misalignment between GRTR and
lower limb at higher flexion speed or acceleration could also
be the influence factor. However, the recognition accuracy
was generally within a specific range.

The maximum indexes should be payed attention for more
comprehensive understanding of the control strategy. However,
the average time delay and angle error could reflect the global
features. These average indexes of the tests were at a relatively
low level, and the recognition was at an effective state.

3.2.2. Biomechanics. The performance of the entire control
system can be reflected by the assisting effect provided by
GRTR exoskeleton, which is quantified by EMG activities
[36]. Two groups of muscle activities were collected for bio-
mechanical analysis, with and without assistance, respectively
[37]. The activities of quadriceps of rectus femoris (RF), vas-
tus medialis (VM), and vastus lateralis (VL) were investigated

Sensors
A round trip

ðaÞ
GRTR

ðbÞ
FIGURE 6: Experimental settings: (a) the test without exoskeleton and (b) the test with assistance from exoskeleton.

6 Applied Bionics and Biomechanics



for the influence in respect of knee extension. The biceps
femoris (BF) and semitendinosus (ST) were investigated for
assistance influence in respect of knee flexion. The EMG sig-
nals were captured at a sample rate of 1,000Hz. The EMG
data were band-pass filtered between 20 and 450Hz, rectified
and low-pass filtered with 6Hz to obtain a smooth envelop
[38, 39].

The sequences of several gait cycles at stable walking state
were targeted. Muscle activities of RF, VL, VM, ST, and BF
were captured and processed for analyzing assistance perfor-
mance. The processed envelopes of EMG were segmented by
each gait cycle. Further data processing including mean value
and root mean square average was conducted for relevant
segmented EMG envelopes [40, 41]. Figures 8(a), 8(b), 8(c),
8(d), and 8(e) illustrated the muscle activities without and
with assistance for participant P1.

Themuscles regarding RF (Figure 8(a)), VL (Figure 8(b)),
and VM (Figure 8(c)) were targeted for extension assistance
performance. According to Figure 8(f ), the changes of RMSA
for these three muscles are −20.4%, 13.3%, and −30.6%,
respectively. The average activation for RF, VL, and VM
per gait cycle shows that the extensor without assistance
mainly activated at support phase and terminal swing phase.

This phenomenon corresponds with the description in ref-
erence [42]. The extensor at support phase activates to pre-
vent knee flexion and provides support stability. As for the
situation with assistance, the activation of RF and VM
reduced at support phase. The increase of joint stiffness
with assistance from GRTR could give rise to the activation
reduction. In addition, the reduction of muscle activation
around terminal swing is a result of the assistance from
GRTR. It should be noted that the terminal swing phase is
another activation period [42]. The activation reduction at
support phase and terminal phase is also valid for VL. How-
ever, the activation for VL increased around initial swing
compared the situation without assistance. It could be a result
of influence on muscle activation pattern from wearing the
exoskeleton. Similar results also happened for participant P2
regarding extensor. But the magnitude was lower than par-
ticipant P1. As for participant P3, all the muscle activation
for extensor showed synchronous reduction after wear-
ing GRTR.

Two main flexors were selected for analysis of flexion
assistance performance, i.e., the BF and ST. The flexor mainly
activates around terminal stance and initial swing. The acti-
vation pattern of BF (Figure 8(d)) and ST (Figure 8(e)) for
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P1 conformed to this theory. The flexion assistance from
exoskeleton delayed the peak of activation for P1’s flexor.
This is because that assistance contributed to the knee flexion
and reduced requirement for voluntary activation. The mag-
nitudes of changes for ST were not solid across participants
after wearing exoskeleton.However, as is shown in Figure 8(f),

the activation of BF for participants with assistance showed
major reductions.

From the point of majority, the GRTR provided appro-
priate assistance for knee flexion and extension. The reduc-
tions of activation for main extensor and flexor proved the
assistance effectiveness.
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4. Discussions

The gait intention recognition is implemented in the unilat-
eral exoskeleton GRTR for active control. The evaluations
were conducted with three stroke patients. From the perspec-
tive of kinematic data, the algorithm could recognize patient
gait with small time delay and high trajectory accuracy.
Accurate gait phase recognition is critical for predicting con-
tinuous trajectory and providing appropriate assistance. For
stroke patients, the gait pattern is more complex regarding to
changed motion sequence. Therefore, the BPNN trained
with patient data enables accurate phase recognition, which
is the most important contribution of this paper. As for tra-
jectory prediction, the average indexes with small value show
the stable performance of recognition. From Figures 7(b) and
7(c), the trajectory error mainly happened at preswing and
initial swing phases, especially the peak error. Larger knee
angle to provide foot clearance could be the reason for peak
errors happening at these phases. While at midswing and
terminal swing phase, high consistence could be obtained
between predicted and measured trajectory. The time delay
mainly happened when gait adjustments, such as the moment
of turning around. As for the biomechanics, the effectiveness
is reflected in reductions of EMG activation. The extensor and
flexor were investigated, respectively. The reductions not only
happened at swing phase, which contributed the main knee
motion, but also found at support phase. The assistive torque
at support phase provides the necessary knee stiffness and
thus reduced the muscle activation. Apart from reduction of
activation, the assistance from GRTR also regulated the mus-
cle activation. The activation pattern of muscles was guided to
more normal gait cycles, i.e., correcting the gait of hemiplegic
patients.

Although relatively fine results were obtained for the tests
on three stroke patients, there are still some deficiencies for the
research. The patients with lower recovery stages were not
recruited. These patients could show much more complex
gait patterns, such as more severe compensatory movement.
The data of patients with BRS Stage V have been captured and
utilized for training the BPNN. But at our preliminary tests
with one patient with Stage V, the assistance for correcting
the gait had influences on the original compensatory move-
ment. Although the gait with compensatory movement is not
adequate, the patients could maintain relatively stable move-
ment. With the assistance from exoskeleton, the original
compensatory movement is interrupted. The patient at the
preliminary test showed instantaneously reduced capacity of
movement. Therefore, the proposed algorithm would focus on
the patient with lower motor functions. In addition, the num-
ber of participants is another deficiency of this paper. But the
objective of this paper is to propose the recognition method
and conduct preliminary verification. The standard clinical
verification for long-term rehabilitation effectiveness and large
groups of patients will be conducted in the future. The effec-
tiveness evaluation will be conducted through standard assess-
ment scales and kinematic data of gait correction.

5. Conclusions

This paper proposed a novel intention recognition-based
assistive strategy for a unilateral knee exoskeleton. This design
does not rely on an accurate human exoskeleton dynamical
model or complicated EMG, EEG signals to evaluate motion;
instead, the adaptive oscillators coupled with a BP neural
network driven by joint angular information are presented
to estimate gait frequency, phase, and amplitude. Moreover,
the detected gait intention is imported as reference signals to
flexion interaction module for providing appropriate assis-
tance. Practical experiments have been carried out to verify
the good performance of gait motion recognition and reha-
bilitation assistance. The comparative analysis of kinematics
and biomechanics between walking tasks with assistance and
without assistance proved the assistive effectiveness.
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