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Abstract 
Deciphering the specificity of T-cell receptor (TCR) repertoires is crucial for monitoring adaptive immune responses and developing 
targeted immunotherapies and vaccines. To elucidate the specificity of previously unseen TCRs, many methods employ the BLOSUM62 
matrix to find TCRs with similar amino acid (AA) sequences. However, while BLOSUM62 reflects the AA substitutions within conserved 
regions of proteins with similar functions, the remarkable diversity of TCRs means that both TCRs with similar and dissimilar sequences 
can bind the same epitope. Therefore, reliance on BLOSUM62 may bias detection towards epitope-specific TCRs with similar biochemical 
properties, overlooking those with more diverse AA compositions. In this study, we introduce tcrBLOSUMa and tcrBLOSUMb, specialized 
AA substitution matrices for CDR3 alpha and CDR3 beta TCR chains, respectively. The matrices reflect AA frequencies and variations 
occurring within TCRs that bind the same epitope, revealing that both CDR3 alpha and CDR3 beta display tolerance to a wide range 
of AA substitutions and differ noticeably from the standard BLOSUM62. By accurately aligning distant TCRs employing tcrBLOSUMb, 
we were able to improve clustering performance and capture a large number of epitope-specific TCRs with diverse AA compositions 
and physicochemical profiles overlooked by BLOSUM62. Utilizing both the general BLOSUM62 and specialized tcrBLOSUM matrices in 
existing computational tools will broaden the range of TCRs that can be associated with their cognate epitopes, thereby enhancing TCR 
repertoire analysis. 
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Introduction 
T cells orchestrate precise adaptive immune responses against 
pathogens and cancer by recognizing peptides (antigens, epitopes) 
presented by major histocompatibility complexes (MHCs). Each T 
cell expresses a single, distinct T-cell receptor (TCR) on its surface. 
With an estimated TCR diversity of more than 1011 different pos-
sible TCRs in every person [1], this ensures both comprehensive 
coverage and remarkable specificity in detecting foreign antigens. 
The uniqueness and specificity are largely governed by the amino 
acid (AA) sequence of the complementarity-determining region 
3 (CDR3), the most diverse TCR region, which directly interacts 
with the presented epitope. Deciphering the antigen specificity of 
T cells through analysis of TCR repertoire sequences is crucial for 
unravelling adaptive immune responses and advancing targeted 
immunotherapies and vaccine development. 

TCR-epitope prediction tools can be broadly categorized into 
three main groups: structure-based tools that rely on 3D struc-
tures of the TCR-pMHC complex, distance-based tools that use a 
single distance metric to calculate similarity between TCRs with 
known and unknown specificity, and feature-based tools that seek 
to identify common patterns within epitope-specific TCR sets. 
In the last two years, structure-based predictions of TCR-pMHC 
interactions began to develop and gain more attention [2–4]. With 
the growing availability of structural data [5] and the increasing 
reliability of structure predictions [6, 7], these approaches hold 
significant potential. The most active area of research focuses on 
developing feature-based machine learning (ML) tools. However, 
these methods face challenges with reproducibility across differ-
ent datasets [8]. According to a benchmarking study published in 
2023, their performance is still comparable to that of distance-
based approaches [9]. This study also revealed that incorporat-
ing both alpha and beta CDR3s improves overall performance. 
Nevertheless, until sufficient paired-chain TCR sequencing data 
is accumulated, most tools remain devoted to optimizing results 
based solely on CDR3 beta [10]. A comprehensive review of the 
methods and challenges they face was published by Hudson et al. 
in 2023 [10]. 

To elucidate the specificity of TCRs that have not been previ-
ously characterized (unseen TCRs), both distance- and feature-
based approaches often group TCRs based on their sequence 
similarity. This strategy leverages the observation that similar 
TCRs often recognize the same epitope [11]. However, it relies on 
a definition of ‘similarity’ between AA residues within CDR3s. For 
this reason, many tools, such as TCRdist [12], GLIPH [13], TITAN 
[14], TCRGP [15], epiTCR [16], GIANA [17], NetTCR 2.2 [18], etc., 
make use of the BLOCKS substitution matrix 62 (BLOSUM62) as 
the basis for quantifying AA similarity in the annotation process 
to infer epitope specificity of TCRs. 

BLOSUM62 matrix reflects the evolutionary conservation of AA 
substitutions within closely related protein families [19] and is 
broadly used to determine sequence homology and functional 
similarity [20]. In the case of TCRs, that translates into whether 
TCR sequences are similar enough to bind the same epitope. 
However, the exceptionally diverse TCR repertoires do not fully 
adhere to the assumptions of traditional protein family evolution. 
Unlike standard proteins that have evolved through gene dupli-
cation, divergence, and mutation, every TCR is independently 
generated in a process known as V(D) J recombination, which 
involves quasi-random rearrangement of V(D)J gene segments 
during the development of every T cell [21]. Consequently, while 
traditional protein families often exhibit conserved regions across 
functionally related members, somatic recombination results in 

a highly diverse pool of sequences where even dissimilar TCRs 
can recognize the same epitope [22]. As a result, we hypothe-
size that BLOSUM62 does not optimally guide TCR data analysis 
approaches to the full spectrum of epitope-specific TCR reper-
toires. 

Ideally, the most suitable substitution matrix for TCR-epitope 
annotation should reflect AA similarity and CDR3-epitope inter-
action patterns. AA substitution scores in BLOSUM62 approxi-
mate the similarity between the biochemical properties of AAs, 
reflecting the underlying evolutionary constraints within the data 
used for matrix construction. However, general-purpose matrices 
such as BLOSUM62 have demonstrated limitations in accurately 
aligning sequences of narrow protein classes, particularly those 
with distinct compositional biases [23, 24] or relative mutability 
of AAs [25]. Accordingly, various alternative substitution matrices 
have been developed over the years, including those based on 
structural alignments [26], peptide:MHC class I binding [27, 28], 
substitutions within protein families with non-standard compo-
sitions [29–32], and others. Similarly, BLOSUM62 may not fully 
capture the unique characteristics of TCR sequences, suggesting 
that TCR analysis may benefit from a specialized AA substitution 
matrix tailored to the substitutions within the CDR3 class. Such 
a matrix could offer new insights into the similarity of AAs and 
biological associations between them in the CDR3-epitope space, 
potentially enhancing TCR repertoire analysis. 

In this study, we re-evaluate the use of BLOSUM62 for TCR 
analysis and present an alternative AA substitution matrix, tcr-
BLOSUM, which is consistent with AA frequencies and changes 
occurring within CDR3 sequences. Evaluation of tcrBLOSUM on 
a new set of TCRs with unseen epitopes showed that it enables 
the capture of a large number of epitope-specific TCRs with more 
diverse AA composition and physicochemical profiles, which were 
overlooked by BLOSUM62. By accurately aligning distant TCRs 
with tcrBLOSUM, we seek to expand current epitope annotation 
strategies, which rely on BLOSUM62, to include dissimilar CDR3s, 
thus enhancing TCR repertoire analysis. 

Methods 
Assembly of the datasets 
Human CDR3 sequences with known epitope specificity used 
in this study were collected from VDJdb [33] (access date: 
13.06.2023), McPAS [34] (access date: 10.09.2022), and ImmuneAC-
CESS [35] (access date: 26.05.2020). After filtering to remove 
duplicates, CDR3 sequences (CDR3s) with spurious symbols, 
CDR3s that do not start with conserved cysteine (C), and CDR3s 
that do not end with phenylalanine (F) (in alpha & beta chains) 
or tryptophan (W) (in alpha chain), 85,053 CDR3 alpha/beta 
sequences specific to 1441 epitopes were retained. Identical CDR3 
sequences differing in their V/J genes and/or cognate epitopes 
were kept since they have been generated independently and 
thus reflect the diversity and specificity patterns of epitope-
specific TCR repertoires. In order to exclude the bias that could 
arise from conserved flanking AAs in CDR3s, all the sequences 
were processed. Specifically, flanking AA positions where 99% of 
the sequences had at most two different AAs were trimmed. In 
the case of CDR3 alpha, this was the first (position 1) and the 
last AA (position −1). In the case of CDR3 beta, this was two first 
(positions 1, 2) and the last AA (position −1). 

Several data subsets were then derived from the complete 
assembled dataset: a dataset only with CD8+ TCR sequences, 
only with CD4+ TCR sequences, only with alpha chain, and
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Table 1. Summary statistics of all TCR datasets used in the study. 

alpha chain 
dataset 

beta chain 
dataset 

CD4+ 
dataset 

CD8+ 
dataset 

SC2neg alpha 
chain dataset 

SC2neg beta 
chain dataset 

SC2only alpha 
chain dataset 

SC2only beta 
chain dataset 

N CDR3s 17,669 63,445 4174 50,434 14,966 33,266 2703 30,179 
N unique 
CDR3s 

14,493 56,281 3571 42,136 12,014 27,194 2660 29,550 

N unique 
epitopes 

370 637 62 528 226 309 144 328 

N blocks 1042 2388 309 2380 727 1220 315 1168 

only with beta chain. Additionally, alpha and beta chain datasets 
were split into non-overlapping source and validation datasets. 
Source alpha/beta chain data subsets (SC2neg dataset) did not 
include alpha/beta TCRs specific to any of SARS-CoV-2 epitopes, 
while validation alpha/beta chain data subsets (SC2only dataset) 
contained only alpha/beta TCRs specific to SARS-CoV-2 epitopes. 
While no CDR3-epitope pairs occurred in both source and 
validation datasets, 181 alpha and 463 beta CDR3s were specific 
to epitopes from both datasets. A summary of all the datasets can 
be found in Table 1. 

Construction of alternative AA substitution 
matrices 
tcrBLOSUM 
Traditional BLOSUM-series matrices were built from sequence 
blocks of the BLOCKS database, where one block referred to a mul-
tiple sequence alignment of protein regions that are conserved 
across different members of the protein family [19]. To design 
a BLOSUM-style matrix (tcrBLOSUM) reflective of TCR composi-
tional bias, we utilized exclusively CDR3 sequences of TCRs. 

Specifically, each of the assembled datasets was processed 
to define blocks of CDR3 sequences that would be conceptually 
similar to blocks of the BLOCKS database. One TCR block was 
defined as a group of at least two different CDR3 sequences that 
(i) recognize the same epitope, (ii) originate from the same chain 
(alpha/beta), and (iii) have the same length. 

Similarly to BLOSUM62, tcrBLOSUM score for a particular AA 
substitution (Eq.1) is a log-odds score that provides a measure 
of the biological (observed) probability of a substitution in TCRs 
relative to the chance (expected) probability of the substitution. 

Sij = 
1 
λ 

log 
pij 

qiqj 
(1) 

pij - the probability of two AAs replacing each other in CDR3s 
recognizing the same epitope (observed frequency of a pair AAi 

– AAj in TCR blocks) 
qi, qj - background probabilities of finding the AAs in all CDR3s 

(expected frequency of a pair AAi – AAj based on individual 
frequency of each AA in TCR blocks) 

1/λ - scaling factor 
As an initial step, the frequency of each AA in the entire 

dataset of TCR blocks was computed (qi, qj). Next, we counted the 
number of AA pairs (substitutions) in every column of all pairwise 
sequence combinations in every TCR block. Dividing these AA 
pair counts by the total number of all AA substitutions in the 
data, we obtained frequencies of the AA pairs (pij). Frequencies 
of AA pairs (pij) that have not been observed in the data of TCR 
blocks were substituted with the smallest frequency of all pairs 

in the data divided by 100. Finally, following the methodology 
proposed by Henikoff & Henikoff [19], a log-odds score of an AA 
substitution was calculated according to Equation 1. To ensure 
comparability with the original BLOSUM62 matrix, the scaling 
factor of two was applied, and computed substitution scores 
were rounded to the nearest integer. Scripts utilized for all the 
calculations were produced in-house and can be found under 
src/calculate tcrBLOSUMs.py in the GitHub repository https:// 
github.com/apostovskaya/tcrBLOSUM. 

Physicochemical similarity matrix 
The Physicochemical Similarity Matrix (PhysChemSim) is an AA 
substitution matrix designed to quantify the similarity between 
two AAs based on their physicochemical properties. Initially, each 
AA was encoded as a vector of z-descriptors of physicochemi-
cal properties, a common technique in quantitative structure– 
activity relationship modelling of biological activities of small 
peptides [36]. 

Next, the Euclidean distance was computed between all pairs 
of AAs, resulting in mostly negative substitution scores. However, 
certain AA pairs yielded positive scores, while self-substitution 
received a score of zero (representing the Euclidean distance to 
itself). Since any AA is most similar to itself in terms of biochem-
ical properties, the self-substitution scores were adjusted to have 
the highest positive score. 

Topological similarity matrix 
The Topological Similarity Matrix (TopoSim) is an AA substitution 
matrix designed to quantify the similarity in atomic composition 
and atomic neighborhoods between pairs of AAs. Initially, each AA 
was encoded as a binary vector using extended-connectivity fin-
gerprints with radius two (ECFP4) [37] from the RDKit (v. 2023.9.5) 
Python library [38]. ECFPs are circular topological fingerprints 
describing an atom’s circular chemical environment. They are 
commonly used for various applications in drug discovery, such as 
small molecule characterization, similarity searching, structure– 
activity modelling, and evaluation of high-throughput screening 
results [39]. Subsequently, Tanimoto similarity (Eq.2) was calcu-
lated to reflect the similarity between the fingerprints of two AAs 
[40], resulting in a range of positive substitution scores, with the 
self-substitution scores having the highest value. 

T
(
AAi, AAj

) = AAi ∩ AAj 
AAi + AAj − AAi ∩ AAj 

(2) 

AAi, AAj – ECFP4 binary vectors of two AAs for which similarity 
score is being calculated. 

To ensure compatibility with other matrices, the similarity 
scores were rescaled to fit within the range of 1–10.

https://github.com/apostovskaya/tcrBLOSUM
https://github.com/apostovskaya/tcrBLOSUM
https://github.com/apostovskaya/tcrBLOSUM
https://github.com/apostovskaya/tcrBLOSUM
https://github.com/apostovskaya/tcrBLOSUM
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Comparison of matrices 
To establish the relationship between all constructed matrices 
and BLOSUM62, Pearson correlation between the AA substitution 
score vectors of all the matrices was performed. Additionally, to 
evaluate the similarity of tcrBLOSUM matrices constructed using 
the full dataset and data subsets, we calculated the Euclidean 
distance (Frobenius norm) between them. Hierarchical clustering 
was then conducted based on the computed Pearson correlation 
values or Euclidean distances, respectively. The analysis was per-
formed using SciPy (v. 1.10.1) Python library [41]. 

Evaluation of the tcrBLOSUM 
TCRdist distance metric with subsequent 
clustering 
To evaluate the effectiveness of tcrBLOSUM and BLOSUM62 in 
accurately grouping TCR sequences based on their epitope speci-
ficity, we employed TCRdist distance metric which uses BLO-
SUM62 by default. Firstly, we transformed the tcrBLOSUM similar-
ity matrix into a distance matrix according to the rules of TCRdist 
metric [12]. Next, we aligned sequences using the Needleman-
Wunsch algorithm from Parasail (v. 1.3.4) Python library [42] and  
computed the TCRdist distance adapted from the original TCRdist 
[12] and TCRdist3 [43] publications. TCRs with known epitope-
specificity were then clustered with HDBSCAN algorithm from 
scikit-learn (v. 1.3.0) Python library [44] based on their TCRdist 
distance to each other. 

To assess the accuracy of the clustering, we employed several 
metrics which have been introduced elsewhere [11]. Briefly, reten-
tion indicated the fraction of TCR sequences assigned to any clus-
ter; purity measured the fraction of TCR sequences within a single 
cluster recognizing the same epitope; consistency represented 
the fraction of TCR sequences recognizing the same epitope and 
assigned to one cluster. These three metrics were computed for 
clustering performed on the TCRdist distance matrix computed 
with either tcrBLOSUM or BLOSUM62, providing test statistics. 
Since both related and unrelated TCRs could end up in the same 
cluster by chance, we have also calculated clustering metrics for 
randomly shuffled TCR-epitope pairs as baseline statistics. Test-
to-baseline statistics ratios were then compared between the two 
approaches. 

Evaluation of the similarity of the identified 
epitope-specific CDR3s 
To explore the benefits of tcrBLOSUMb for epitope annotation 
of TCRs, an alignment-based approach was employed to identify 
epitope-specific CDR3s. The SC2only dataset was utilized to score 
against a query CDR3 (qCDR3) to identify hit CDR3s. Each CDR3 
in the dataset served iteratively as a query, and every CDR3b in 
the SC2only dataset was aligned against all other CDR3s in the 
dataset using the Needleman-Wunsch (NW) algorithm. The align-
ment was performed using BLOSUM62, PhysChemSim, TopoSim, 
or tcrBLOSUMb, with the latter constructed on the SC2neg data 
subset to maintain independence between source and validation 
datasets. The NW alignment score provided a measure of similar-
ity between the qCDR3 and other CDR3s, with higher scores indi-
cating higher similarity and potential shared epitope specificity. 

The top k-1 CDR3 hits with the highest NW scores (the most 
similar to qCDR3) that are known to bind the same epitope as 
qCDR3 were considered true positive (TP) CDR3 hits, with k as the 
number of TCRs with the given epitope specificity in the data. 
Subsequently, unique TP hits, identified exclusively with either 

of the compared substitution matrices, were further examined. 
To assess the (dis)similarity of unique TP CDR3 hits to their 
respective qCDR3s, we measured their differences in length, AA 
composition, and physicochemical properties. Two metrics were 
computed to estimate differences in AA composition: edit (Leven-
shtein) distance and TCRdist distance. NW alignment score calcu-
lated with PhysChemSim matrix represented similarity in physic-
ochemical properties. Finally, the four obtained (dis) similarity 
metrics were compared between BLOSUM62 and tcrBLOSUMb to 
evaluate the overall (dis)similarity of unique TP CDR3 hits relative 
to the competitor matrix. 

Results 
Different BLOSUM-style AA substitution matrices 
are suitable for CDR3s of alpha and beta chains 
of CD8+ T cells 
It has been noted that standard AA substitution matrices, such 
as BLOSUM62, may not be well-suited for sequence alignments 
within certain classes of proteins, primarily due to their non-
standard composition, since AA frequencies are an important 
component in the calculation of substitution matrices. Com-
paring AA frequencies in TCR CDR3s with those in functional 
proteins from UniProt [45] reveals a unique AA distribution in 
CDR3 sequences. CDR3s were found to be enriched in AAs with 
polar side chains and depleted in positively charged AAs and the 
majority of non-polar hydrophobic AAs (Fig. 1, Fig. S1), therefore 
supporting the creation of a specialized BLOSUM-like matrix for 
TCRs (tcrBLOSUM). 

First, we evaluated whether a single matrix for all T cells and 
TCR chains would suffice or if further specialization might be 
necessary. To this end, AA frequencies in different TCR data sub-
sets were compared, including CD4+, CD8+, CDR3 alpha (CDR3a), 
and CDR3 beta (CDR3b). Due to the limited size of the CD4+ 
data subset (Table 1), which was 4–13 times smaller than other 
data subsets, further specification to both CD4+/CD8+ lineage 
and alpha/beta chains was not feasible. Notable differences were 
observed in the frequencies of CDR3a (Fig. S1), while the fre-
quencies in CD4+ and CD8+ T-cell subsets were similar to those 
in CDR3b. Consequently, out of the four created BLOSUM-like 
matrices (Fig. S2), we focused on two chain-specific matrices, 
namely tcrBLOSUMa (Fig. 2, Table S1) and tcrBLOSUMb (Fig. 2, 
Table S2). 

To provide additional reference points, two matrices reflecting 
the similarity between the physicochemical properties of 
AAs (PhysChemSim, Table S3) and their topological similarity 
(TopoSim, Table S4) were derived using z-descriptors and 
extended connectivity fingerprints (ECFPs), respectively (Fig. S2). 
Our analysis revealed distinct clustering patterns among the 
constructed matrices. As can be seen in Fig. 1-b, the  two  most  
similar matrices were BLOSUM62 and PhysChemSim matrix. 
Moreover, when AAs were grouped based on their substitution 
scores in a matrix, AAs with similar biochemical profiles 
formed clusters in BLOSUM62 and PhysChemSim but not in 
tcrBLOSUMs (Fig. S3). This is consistent with expectations, as both 
BLOSUM62 and PhysChemSim matrices were designed to reflect 
the biochemical similarity of AAs. Notably, tcrBLOSUM matrices 
formed a distinct cluster from BLOSUM62 and the two descriptor 
matrices (Fig. 1-b), indicating their unique characteristics. In 
agreement with the observed unique AA frequency profiles of 
alpha and beta chain CDR3s, the distance between tcrBLOSUMa 
and tcrBLOSUMb was larger than between any of the three 
matrices in the BLOSUM62 cluster (Fig. 1-b). Accordingly, we

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
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Figure 1. (a) Bar plot representing the frequency of amino acids in CDR3 sequences relative to the frequency in proteins from UniProt. CDR3s are enriched 
in AAs with polar side chains (amide, in white, and small hydroxy, in green) and depleted in positively charged (basic, in blue) and the majority of non-
polar hydrophobic AAs (aliphatic, in grey). (b) Hierarchical clustering dendrogram depicting relationships between evaluated AA substitution matrices. 
While tcrBLOSUM matrices formed a distinct cluster from BLOSUM62 and the two descriptor matrices (PhysChemSim, TopoSim), the distance between 
tcrBLOSUMa and tcrBLOSUMb was larger than between any of the three matrices in the other cluster. AA: Amino acid. 

Figure 2. Constructed BLOSUM-style AA substitution matrices for CDR3 alpha (tcrBLOSUMa, left) and CDR3 beta (tcrBLOSUMb, centre) and the original 
BLOSUM62 matrix (right). In contrast to BLOSUM62, constructed tcrBLOSUMa and tcrBLOSUMb matrices mostly feature neutral substitution scores 
of zero. 

concluded that employing separate AA substitution matrices for 
each CDR3 chain would be appropriate. 

CDR3s display tolerance to a wide range of AA 
substitutions 
In tcrBLOSUM, as in BLOSUM62, the score indicates whether a par-
ticular AA pair (substitution) occurs more, less, or as frequently 

as expected and therefore can be considered favorable, unfa-
vorable, or neutral, respectively. While most scores are negative 
(unfavorable substitutions) in BLOSUM62, both tcrBLOSUMa and 
tcrBLOSUMb predominantly feature neutral (equal to zero) scores 
(Fig. 2, Fig. S4). A unique characteristic of tcrBLOSUMb is the 
self-substitution scores of 0 for three aliphatic/hydrophobic AAs 
(A, G, V) and one small hydroxy AA (T). Intriguingly, despite being

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
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among the most unique and conserved AAs in BLOSUM62 (Fig. S3), 
all substitutions for tryptophan (W), except with cysteine (C), were 
neutral in tcrBLOSUMb (Fig. 2). 

Another pronounced difference between both tcrBLOSUMs 
and BLOSUM62 lies in the strongly negative scores for cysteine 
(C) in tcrBLOSUMs, as this AA is the rarest in CDR3s (excluding 
the first conserved position). Notably, in both tcrBLOSUMa and 
tcrBLOSUMb, three additional AAs displayed a high degree of 
conservation, with at least 50% of their non–self-substitution 
scores (≥10/19) being negative (Fig. S4): one basic AA (K) and 
two aliphatic/hydrophobic AAs (A, L) in tcrBLOSUMa; one amide 
AA (Q) and two aromatic AAs (Y, F) in tcrBLOSUMb. In this 
instance, it appears unrelated to the abundance of these AAs 
in the dataset, as all of them had frequencies higher than the 
median (Fig. S1). 

Among favorable substitutions, several pairs in tcrBLOSUMa 
stood out because these substitutions occurred between AAs 
from different classes: C-R and T-I. Interestingly, some favorable 
substitutions were observed between AAs with opposite charges 
of their side chains across all three matrices: K-E in BLOSUM62 
and tcrBLOSUMb, H-E in tcrBLOSUMa. Additionally, several sub-
stitutions between AAs with polar charged and uncharged chains 
received positive scores in all three matrices: N-D in BLOSUM62, 
K-N and K-Q in tcrBLOSUMa, T-E and N-D in tcrBLOSUMb. 

tcrBLOSUM matrices are stable towards new 
epitopes 
Given the tendency for similar TCRs to recognize the same epi-
topes, we considered the possibility that the constructed tcr-
BLOSUMs might not generalize well to new TCRs recognizing 
epitopes not present in the current source TCR-epitope data. If 
the constructed tcrBLOSUMa/b matrices do not represent the 
entire TCR space, the inclusion of new epitope-specific TCRs could 
significantly alter the scores in the matrices. To assess the impact 
of the size and (TCR-epitope) diversity of the source TCR-epitope 
data, we leveraged the abundance of TCR sequences recognizing 
SARS-CoV-2 epitopes generated during the COVID-19 pandemic. 

To this end, we split the full dataset into two non-overlapping 
subsets, each lacking TCR-epitope pairs present in the other. The 
first data subset (SC2neg dataset) contained CDR3s specific to 
all epitopes except SARS-CoV-2 epitopes. Conversely, the second 
data subset (SC2only dataset) exclusively contained SARS-CoV-
2-specific CDR3s. The two resulting beta subsets were compa-
rable in size, number of unique epitopes and CDR3s, as well 
as the number of CDR3 blocks (Table 1). In contrast, there was 
a noticeable discrepancy in the size of the two alpha subsets, 
with the SC2only alpha subset having five and two times fewer 
unique epitopes and CDR3s, respectively, compared to the SC2neg 
alpha subset (Table 1). tcrBLOSUMa and tcrBLOSUMb matrices 
were constructed for each subset, resulting in four new matrices 
(Fig. S5), which were then compared to each other and the respec-
tive matrices derived from the full dataset. 

Among three matrices (full, SC2neg, SC2only) within the same 
class (alpha/beta), a slight variation in scores was observed 
(Fig. S5). Furthermore, while two beta matrices built on data 
subsets were equidistant from the full tcrBLOSUMb (Fig. S6), 
SC2only tcrBLOSUMa resembled full tcrBLOSUMa less than 
SC2neg tcrBLOSUMa (Fig. S6), highlighting the importance of 
source dataset diversity in epitopes and CDR3s to obtain a 
representative AA substitution matrix. Despite minor differences, 
the alpha chain matrices and beta chain matrices formed two 
distinct clusters when compared to BLOSUM62 (Fig. 3). The 
predominant similarity between the matrices of the same class 

indicates that the most distinct features of AA substitutions in 
alpha and beta CDR3s were captured in the respective tcrBLOSUM 
matrices constructed from the full dataset, thus demonstrating 
their stability. 

tcrBLOSUM results in higher cluster purity and 
consistency 
After producing the tcrBLOSUM matrix, our subsequent objective 
was to assess whether this matrix enhances the identification 
of TCRs sharing the same cognate epitope. A common approach 
to annotating TCRs involves clustering them based on sequence 
similarity, as TCRs within the same cluster are likely to bind the 
same epitope. To quantify the similarity between two TCRs, we 
employed the TCRdist distance metric, which is the most widely 
used, performant, and interpretable method for TCR repertoire 
analysis. 

To rigorously evaluate the performance of tcrBLOSUM on TCR 
data unseen during matrix construction, we made use of the 
two datasets described in the previous section. The first dataset 
named SC2neg was used as a source dataset to construct tcr-
BLOSUMb matrix, while the computation of the TCRdist distance 
metric and the subsequent TCR clustering were conducted on the 
second dataset named SC2only, which therefore served as a vali-
dation dataset. This approach enabled us to estimate the tcrBLO-
SUM performance on unseen TCR-epitope pairs not utilized in the 
matrix construction, ensuring a robust evaluation of its efficacy. 
The evaluation of tcrBLOSUM was conducted only for the beta 
chain matrix, as alpha chain subsets demonstrated noticeable 
variation, therefore compromising the accuracy of the test. 

Our analysis demonstrated that using the TCRdist distance 
metric with tcrBLOSUMb improved the clustering accuracy of 
beta chain CDR3s compared to BLOSUM62. Notably, the ratio 
of test to baseline statistics consistently showed higher values 
for both purity and consistency of clusters when using tcrBLO-
SUMb (Table 2). This improvement is noteworthy because there 
is typically a trade-off between these two metrics, where higher 
purity often comes at the expense of lower consistency, and 
vice versa. An example of clusters specific to the same epitope, 
generated with either tcrBLOSUMb or BLOSUM62, is provided in 
Table S5. Upon further examination, clusters of size 2 were found 
to constitute 50% of all clusters in both cases. Among these, 
72 epitopes were shared between the two methods, with each 
method also identifying clusters for 20 unique epitopes that were 
not detected by the other. In the clusters specific to these 20 
unique epitopes, the CDR3 sequences in the tcrBLOSUMb clusters 
exhibited a higher median TCRdist distance and lower median 
physicochemical similarity than the CDR3s in the BLOSUM62 
clusters (Table S6). 

To illustrate how a similar approach could be beneficial for 
TCR repertoire analysis, we applied this workflow to two pre-
viously published TCR repertoires [46]: one from a critically ill 
COVID-19 patient and one from a non-critical COVID-19 patient 
(Supplementary material 1). When standard database matching 
was used to identify SARS-CoV-2-specific TCRs, both patients 
exhibited similarly low repertoire breadth devoted to the virus 
(Table S7). However, after combining TCRs from SARS-CoV-2-
specific clusters uniquely identified with BLOSUM62 and tcr-
BLOSUM, the repertoire breadths clearly aligned with the orig-
inal publication’s findings derived from repertoire depth [46]. 
Specifically, the non-critical patient displayed markedly higher 
proportion of unique SARS-CoV-2-specific TCR sequences than 
the critical patient (Table S7). Expanding the number of identified 
virus-specific TCRs enabled clearer differentiation between the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data


tcrBLOSUM: substitution matrix for TCR alignment | 7

Figure 3. Hierarchical clustering dendrogram depicting relationships between alpha/beta tcrBLOSUM matrices constructed using the full dataset or 
either of the two data subsets (SC2neg and SC2only). The matrices formed two distinct chain-specific clusters, alpha chain tcrBLOSUMs (green) and 
beta chain tcrBLOSUMs (orange), illustrating the predominant similarity between the matrices of the same class. 

Table 2. Clustering performance on the validation (SC2only) dataset. 

SC2neg tcrBLOSUM BLOSUM62 

metrics test baseline test/baseline ratio test baseline test/baseline ratio 

retention 0.703 0.703 1.000 0.726 0.726 1.000 
purity 0.743 0.287 2.588 0.729 0.294 2.482 
consistency 0.095 0.021 4.546 0.094 0.021 4.408 

The values have been rounded to three decimal places. 

repertoire breadths of these individuals without considering their 
repertoire depth. 

tcrBLOSUM identifies ‘unseen’ epitope-specific 
TCRs with more diverse AA composition and 
physicochemical profile than BLOSUM62 
To further explore the advantages provided by utilizing tcrBLO-
SUMb for epitope annotation of TCRs, we aimed to investigate 
epitope-specific CDR3s that could be identified using either 
tcrBLOSUMb or BLOSUM62. We opted for an alignment-based 
approach that would not require subsequent clustering, thereby 
eliminating the potential effects of the interplay between distance 
metric and clustering method on the performance. 

As a TCR repertoire can be scanned to find TCRs similar to 
a TCR with known epitope-specificity, the SC2only data subset 
(search space) was scored against a query CDR3 (qCDR3) to find 
the most similar CDR3s as detailed in Fig. 4. To this end, every 
CDR3 beta in SC2only dataset was aligned against all other CDR3s 
in the dataset using the Needleman-Wunsch (NW) algorithm with 

one of the AA substitution matrices (Fig. 4, steps 1–2). In the case 
of tcrBLOSUMb, the matrix constructed on the SC2neg data subset 
was used, adhering to the aforementioned approach of having 
independent source and validation datasets. The NW alignment 
score provided a measure of similarity between a qCDR3 with 
known specificity and ‘unlabelled’ CDR3s, where the epitope-
specificities were masked. Higher NW scores indicated higher 
similarity between TCRs, which should be a proxy for shared 
epitope specificity. CDR3s which were most similar to a qCDR3 
and were identified exclusively with either of the compared sub-
stitution matrices (step 5), termed unique true positive (TP) CDR3 
hits, were further examined. This section aimed to investigate 
the distinctions between TP CDR3 hits derived from BLOSUM62 
and tcrBLOSUM matrices, rather than assessing method perfor-
mance, given that the identification of epitope-specific TCRs typ-
ically involves more advanced approaches than simple sequence 
alignment. 

TP CDR3 hits uniquely identified with BLOSUM62 or tcrBLO-
SUMb were found for 85% (25656) and 84% (25314) of qCDR3s,
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Figure 4. Workflow used to identify and evaluate epitope-specific TCRs uniquely identified by aligning CDR3s from search space to query CDR3 (qCDR3, 
purple) using Needleman-Wunsch (NW) algorithm with either BLOSUM62 (blue) or tcrBLOSUMb (orange). SC2only dataset was used for evaluation, 
while tcrBLOSUMb was constructed on a SC2neg dataset. (1) qCDR3 and search space are selected from the dataset. (2) CDR3s from search space are 
aligned against qCDR3 using NW-algorithm with either BLOSUM62 (blue) or tcrBLOSUMb (orange). (3) aligned CDR3s with the highest NW-scores are 
retained. (4) CDR3s that recognize different epitope than qCDR3 are removed from retained top-scoring CDR3s, therefore only true positive (TP) CDR3s 
are labelled as hits. (5) to compare TP CDR3 hits identified exclusively with BLOSUM62 or tcrBLOSUMb (unique TP CDR3 hits), overlapping TP CDR3 
hits are filtered out. (6) similarity metrics are computed between qCDR3 and unique TP CDR3 hits derived with BLOSUM62/tcrBLOSUMb. (7) similarity 
metrics of BLOSUM62-derived unique TP CDR3 hits and tcrBLOSUMb-derived unique TP CDR3 hits are compared. 

respectively. On average, for every qCDR3, slightly more TP CDR3 
hits were identified exclusively with BLOSUM62 (median = 68 
(4.5%), range = [1–1321] ([0.1–45]%)) than with tcrBLOSUMb 
(median = 57 (3.8%), range = [1–1389] ([0.1–50]%)). When the 
alignment query used the PhysChemSim or TopoSim matrices, 
the number of unique TP CDR3 hits decreased by at least two-
fold compared to those with BLOSUM62, with a median value 
being no greater than 30 unique TP CDR3 hits per query for 

any of the three matrices. These findings illustrate that with 
BLOSUM62 predominantly reflecting biochemical similarities 
between AAs, a higher degree of overlap occurs between TP 
CDR3 hits identified with BLOSUM62 versus PhysChemSim or 
TopoSim matrices. Conversely, tcrBLOSUMb specifically captures 
AA usage patterns unique to CDR3b, leading to the identifi-
cation of a larger number of non-overlapping epitope-specific 
TCRs. 
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Figure 5. (a-c) Distributions of the metrics used to evaluate the resemblance of unique TP CDR3 hits, identified either with BLOSUM62 (blue) or with 
tcrBLOSUM (orange), to their respective qCDR3s. (a) Edit (Levenshtein) distance; (b) TCRdist distance; and (c) physicochemical similarity demonstrated 
that tcrBLOSUM-derived unique TP CDR3 hits were characterized by more diverse AA composition and physicochemical profiles. (d) Examples of unique 
TP CDR3 hits identified with BLOSUM62 versus tcrBLOSUM, which demonstrate a smaller sequence identity in the case of tcrBLOSUM. Amino acids 
found in the query CDR3 and in both groups of unique TP CDR3 hits are in orange, while AAs found in the query CDR3 and only in BLOSUM62-derived 
unique TP CDR3 hits are in blue. 

To further evaluate the resemblance of unique TP CDR3 
hits identified with BLOSUM62 versus tcrBLOSUMb to their 
respective qCDR3s, we measured their closeness in length, 
AA composition, and physicochemical properties (step 6). We 
observed that although BLOSUM62 worked with a wider range 
of CDR3 lengths than tcrBLOSUMb, the most common length 
difference between qCDR3 and TP hits was −1 and 0, respectively 
(Fig. S7). As can be seen in Fig. 5-a, −b, TP CDR3s discovered 
using tcrBLOSUMb exhibited greater edit (Levenshtein) dis-
tance (median = 8, max = 18) and TCRdist distance (median = 72, 
max = 198) to the qCDR3 compared to those identified with 
BLOSUM62 (edit distance: median = 6, max = 16; TCRdist distance: 
median = 56, max = 170). Similarly, physicochemical similarity to 
qCDR3 (Fig. 5-c) was higher for CDR3s identified with BLOSUM62 
(median = 22, max = 77) than tcrBLOSUMb (median = 4, max = 57). 
An example of the query and detected TP CDR3s can be found in 
Fig. 5-d. These findings indicate the ability of tcrBLOSUMb to cap-
ture previously overlooked epitope-specific CDR3s characterized 
by more diverse AA composition and physicochemical profiles, 
which makes them more challenging to detect with traditional 
methods. 

Discussion 
One of the challenges on the way to solving the code of TCR-pMHC 
interactions is the immense diversity of TCRs, where even TCRs 
with dissimilar sequences can have the same cognate epitope 
[22]. The solution to this problem entails considering four distinct 
groups of CDR3 sequences: CDR3s with similar and dissimilar AA 

compositions and physicochemical profiles, either of similar or 
dissimilar lengths. Existing methods excel at identifying CDR3s 
with similar lengths and AA compositions, leveraging metrics 
like edit (Levenshtein) distance [47–52] and the TCRdist distance 
[43, 49, 53–55]. However, these methods struggle with CDR3s of 
dissimilar lengths, AA composition, and physicochemical profiles. 

In this study, we utilized tcrBLOSUMb and BLOSUM62 with 
TCRdist distance followed by clustering or with the classi-
cal Needleman-Wunsch alignment algorithm to find CDR3 
sequences similar in epitope-recognition space. Substituting 
the general-purpose BLOSUM62 matrix with the CDR3-specific 
tcrBLOSUMb matrix, we correctly identified CDR3s with identical 
epitope specificity but with dissimilar AA compositions and 
physicochemical profiles. We believe the grouping of distant 
epitope-specific TCRs became possible because tcrBLOSUM 
captures the actual AA variability observed across epitope-
specific TCRs, thus avoiding the restrictions imposed by the 
physicochemical similarity encoded in BLOSUM62. 

The standard BLOSUM62 matrix has produced distinct sets of 
epitope-specific CDR3s compared to substitution matrices based 
on physicochemical properties, such as PhysChemSim. With 
these findings, we would like to highlight the complementarity of 
tcrBLOSUM and BLOSUM62 matrices, as well as the importance 
of selecting the appropriate substitution matrix based on the 
research objective. tcrBLOSUM, designed to capture observed AA 
substitutions in CDR3s, is particularly effective at identifying 
epitope-specific TCRs that share little sequence identity. In 
contrast, BLOSUM62 is more suited for finding biochemically 
similar CDR3s. Thus, combining the results from these two

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae602#supplementary-data
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complementary matrices will enable identification of both similar 
and dissimilar epitope-specific TCRs. This dual approach can 
increase the proportion of disease-specific TCRs extracted during 
TCR repertoire analysis. The increased sensitivity of in silico 
TCR-epitope annotations would enhance the resolution with 
which disease-specific TCR clones can be monitored, particularly 
with respect to their breadth and depth. In turn, this would 
improve tracking of responding clones during [56] and  after an  
infection [57], and after vaccination [58]. Finally, knowing epitope 
specificity of a TCR from its sequence is essential for designing 
long-lasting vaccines [59] and engineering TCRs for personalized 
T-cell therapy [60]. 

Another advantage of the specialized AA substitution matrix 
is that it offers some insight into general rules of TCR-epitope 
interaction which become reflected in the substitution scores. 
Surprisingly, most of the substitutions in tcrBLOSUMs are neutral. 
Although this could be reflective of true interaction patterns, we 
lean towards a different explanation: non-participation of most 
CDR3 AAs in epitope binding. Since for most CDR3-epitope pairs, 
it is not known which AAs in a CDR3 form a bond with which 
AAs in a cognate epitope, these interaction patterns were not 
considered when the matrix was constructed. Observed AA pairs 
between non-interacting AAs add noise, resulting in more neutral 
tcrBLOSUM matrices. 

Despite predominantly neutral scores, AAs that have a signif-
icant proportion of non-zero, particularly negative, scores could 
point towards the relative importance of specific residues for 
epitope binding. Remarkably, AAs identified as conserved in tcr-
BLOSUMb are often located within 4 Å of the epitope in crystal 
structures of TCR-pMHC complexes [5], suggesting their crucial 
role in successful interactions. Furthermore, out of three highly 
conserved AAs we identified in tcrBLOSUMb (Y, Q, F), two (Y, Q) 
were among the 20% of residues most frequently involved in TCR-
pMHC binding, as reported in a study published in July 2024 [4]. 
Additionally, certain scores hint that, in some interactions, size 
might be more important than biochemical similarity. For exam-
ple, although threonine (T) and glutamine (Q) both have polar 
uncharged side chains, their size difference may have contributed 
to an unfavorable substitution score. Conversely, histidine (H), 
phenylalanine (F), and tyrosine (Y) have positive substitution 
scores, possibly due to their shared bulky ring structure, despite 
being from different biochemical classes. 

The alignment of our findings with crystal structures indicates 
that examining the locations of conserved AAs in CDR3s, along 
with their neighboring residues, could provide some insight into 
potential epitope-interaction sites and epitope-binding solutions. 
This could ultimately enhance our understanding of the key prin-
ciples underlying productive epitope recognition by diverse TCRs. 

The study exhibits several limitations that warrant consider-
ation. Given that epitope-specific TCRs tend to have inherent 
biases, the data employed in this study may not adequately 
represent the entire TCR-epitope landscape. This is particularly 
due to the fact that most of the publicly available TCR-epitope 
data is concentrated around the 3–6 most common MHC alleles 
[33], which could introduce bias into the resulting tcrBLOSUMs. 
The absence of a threshold for CDR3 sequence identity within 
TCR blocks may also affect AA substitution scores in tcrBLOSUM 
matrices due to the inclusion of highly (dis)similar sequences. 
Currently, CD4 and CD8 TCRs were combined into a single matrix, 
as the AA frequencies were highly similar. However, prior studies 
have noted slight AA preferences between T-cell lineages [61]. 

Finally, the accuracy and representativeness of the matrices 
could be improved if ground truth data were available regarding 

the specific positions and AAs that actively participate in epi-
tope binding. Such data would also allow the evaluation of the 
contribution of the two TCR chains to the interaction with an 
epitope, accounting for potential synergistic effects. Presented 
limitations could reduce the application potential of the matrices, 
highlighting the need for reliable and extensive ground truth data 
as well as continued refinement and validation of methodologies 
in TCR repertoire analysis. 

In conclusion, we presented tcrBLOSUMa and tcrBLOSUMb, 
specialized AA substitution matrices tailored to AA frequencies 
and variations occurring within epitope-specific TCRs. Analysis of 
these matrices revealed a notable tolerance for any AA substitu-
tion in the majority of the AAs of alpha and beta CDR3s. Distinct 
conservation patterns observed for aliphatic and aromatic AAs 
within CDR3a and CDR3b, respectively, suggest their higher rel-
ative importance for epitope binding. Lastly, tcrBLOSUMs enable 
accurate alignment of CDR3 sequences with dissimilar AA compo-
sitions and physicochemical properties. As a result, by accounting 
for distant CDR3s, tcrBLOSUMs offer the potential to enhance 
TCR repertoire analysis and epitope-annotation of TCRs in various 
therapeutic applications. 

Key Points 
• We present tcrBLOSUMa and tcrBLOSUMb, specialized 

BLOSUM-style AA substitution matrices consistent with 
the AA frequencies and variations occurring within 
CDR3 alpha and CDR3 beta sequences of epitope-specific 
TCRs, respectively. 

• tcrBLOSUMs differ noticeably from the standard BLO-
SUM62, revealing that both CDR3 alpha and CDR3 beta 
are tolerant to a wide range of AA substitutions. 

• Constructed tcrBLOSUMs proved to be stable towards 
new epitopes. 

• Application of tcrBLOSUMb instead of BLOSUM62 
improved clustering performance and enabled the 
identification of epitope-specific TCRs with more 
diverse AA compositions and physicochemical profiles. 

• Utilizing both general BLOSUM62 and specialized tcr-
BLOSUMs in computational tools that infer the epitope-
specificity of TCRs will expand the number and diversity 
of detected TCRs that bind the same epitope, thereby 
enhancing TCR repertoire analysis. 
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